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Experimental relevance

Kitaev-type interactions may arise from partially-filled t2g levels under strong 
spin-orbit coupling (G. Jackeli and G. Khaliullin, 2009)

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90!

bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by ! ’ 11! [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at #240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14"B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle # ’ 8! is close to !, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si % ~Sj þ JzS
z
iS

z
j þ ~D % ½ ~Si ' ~Sj(: (4)

Here, the isotropic coupling J ¼ $1ðt2s * t2aÞ, where ts ¼
sin2%þ 1

2 cos
2% cos2!, and ta ¼ 1

2 cos
2% sin2!. The second

and third terms describe the symmetric and DM anisotro-
pies, with Jz ¼ 2$1t

2
a, ~D ¼ ð0; 0;*DÞ, and D ¼ 2$1tsta.

[For ! ¼ 0, these terms vanish and we recover J1-term of
the 180! result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts # 2!which
is independent of &, and is solely determined by lattice
distortions. This explains the large spin canting angle ##
! in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si % ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle,#, with
tanð2#Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,
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FIG. 3 (color online). Examples of the structural units formed
by 90! TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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FIG. 4. The spin canting angle # (in units of !) as a function
of the tetragonal distortion parameter %. Inset shows a sketch of
an IrO2-plane. The oxygen octahedra are rotated by an angle,!
about z-axis forming a two sublattice structure. In the cubic case,
% ’ '=5, one has # ¼ ! exactly. The spin-flop transition from
the in-plane canted spin state to a collinear Néel ordering along
z-axis occurs at % ¼ '=4.

PRL 102, 017205 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

017205-3

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1
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FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-
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FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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α-RuCl3
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FIG. 1. (Color online) (a) The crystal structure of α-RuCl3, ex-
hibiting lamellar nature of the unit cell. (b) Individual honeycomb
layers are formed by edge-sharing RuCl6 octahedra (Ru in blue, Cl
in gray). (c) Detailed view of RuCl6 octahedra showing bond angles.
All the figures were produced with VESTA [26].

of intervening Na atoms between the honeycomb layers in
the latter compound, such that α-RuCl3 is closer to an ideal
two-dimensional system.

Single crystal samples of α-RuCl3 were prepared by
vacuum sublimation from commercial RuCl3 powder. The
dielectric function ϵ̂(ω) = ϵ1(ω) + ϵ2(ω) of RuCl3 was mea-
sured from 0.1 to 6 eV; for the range 0.9–6 eV, ϵ̂(ω)
was determined using spectroscopic ellipsometry. From 0.1
to 1.2 eV, we measured the transmittance through a thin
RuCl3 sample and extracted ϵ̂(ω) using a standard model for
the transmittance of a plate sample [29]. X-ray absorption
spectroscopy measurements were performed using the soft
x-ray microcharacterization beamline (SXRMB) at the Cana-
dian Light Source. Measurements were carried out at the Ru
L3 (2p3/2 → 4d) and L2 (2p1/2 → 4d) absorption edges [30].

Physical properties of α-RuCl3 have been extensively
investigated. The magnetic susceptibility of α-RuCl3 shows
a sharp cusp around 13–15 K, which was attributed to
antiferromagnetic ordering [31]; and a Curie-Weiss fit yields
an effective local moment of about 2.2µB and ferromagnetic
Curie-Weiss temperatures of 23–40 K [28,31]. The effective
magnetic moment is much larger than the spin-only value of
1.73µB for the low spin (S = 1/2) state of Ru3+, indicating
a significant orbital contribution to total moment. Based on
these observations, it was suggested that the nearest-neighbor
interaction within the honeycomb plane is ferromagnetic and
that these planes are weakly coupled with an antiferromagnetic
interaction. However, powder neutron diffraction failed to
observe magnetic Bragg peaks of (003) type, which are
expected from the predicted simple magnetic structure [31].
Although several spectroscopic and transport investigations
have been carried out to study the electronic structure of
α-RuCl3 [24,25,32,33], the role of SOC was not explored in
detail in these earlier studies.

The importance of SOC in the electronic structure of
α-RuCl3 can be revealed through XAS measurements. The
x-ray absorption spectra obtained at the Ru L2 and L3 edges
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FIG. 2. (Color online) (a) X-ray absorption near-edge spectra of
RuCl3 measured at the Ru L3 edge. The black solid line is the
experimental data, and the red solid line is a fit function that includes
two Lorentzian peaks associated with t2g and eg states and an arctan
function describing the edge jump. (b) Same spectra showing the
energy range of the Ru L2 edge. The scale is exactly half of the one
shown in (a), emphasizing the departure from the statistical branching
ratio of 2. (c) Comparison of the branching ratio with various Ru
standard compounds, ranging from Ru2+ (RuCl2), Ru3+ (RuI3), to
Ru4+ (RuO2). Note that RuCl3 (hydrate) has a structure different
from α-RuCl3 studied here.

are shown in Fig. 2. Two peaks are observed for the L3
edge data shown in Fig. 2(a), corresponding to exciting 2p3/2
core electrons into empty t2g and eg states. The intensity
ratio between these two features is related to the fact that
there is only one empty t2g state available for the transition
compared to four empty eg states. A quantitative description
of the intensity and the peak splitting requires ligand field
multiplet calculations and is beyond the scope of this Rapid
Communication. Here we instead focus on the different line
shapes observed near the Ru L2edge compared to that of the L3

041112-2

K. Plumb et al., 2014
Y. Kubota et al., 2015, ...

post-perovskite
2

FIG. 1: (Color online) (a) Crystal structure of the post-
perovskite CaIrO3. The solid lines indicate the conventional
unit cell, which is twice as large as the primitive unit cell.
The magnetic interaction, as well as the magnetic structure
determined in this study, are also shown. (b) Temperature
(T ) dependence of the magnetization (M) at the magnetic
field (H) of 0.1 T [13] (upper), and the intensity (I) of the 0
0 5 reflection at ψ = 0 (lower).

pressed octahedral coordination. We then compare these
results with theoretical predictions.
Single crystalline CaIrO3 was grown by the flux

method. CaCO3, IrO2, and CaCl2 with a molar ratio of
1:1:16 was slowly cooled from 1200 ◦C to 1000 ◦C for 240
h. Resonant x-ray diffraction measurements were per-
formed at the beamline BL19LXU at SPring-8 [13, 14].
An incident beam was monochromated by a pair of Si
(1 1 1) crystals and irradiated on the (0 0 1) surface of
the sample, which was mounted in a 4He closed-cycle re-
frigerator installed on a four-circle diffractometer with
a vertical scattering plane geometry. The intensities of
incident and scattered beams were detected by an ioniza-
tion chamber and a Si PIN photodiode, respectively. The
polarization of the incident beam was perpendicular to
the scattering plane (σ) and that of the scattered beam
was analyzed by using the 0 0 8 reflection of pyrolytic
graphite. The azimuthal angle ψ is defiled as ψ = 0◦

when σ || a. We also performed similar experiments at
the beamline BL02B1 at SPring-8, where we use an imag-
ing plate as a detector [15].
Figure 2 displays the absorption spectra obtained by

fluorescence measurements at room temperature (T ) as
well as the energy dependence of the scattered intensity
of the 0 0 5 reflection at T = 10 K. At ψ = 0◦ [Fig. 2(b)],
we can observe a strong resonance peak at the L3 edge
∼11.2 keV; the intensity is about 0.015 % of the funda-
mental 0 0 4 reflection. There are fine structures denoted
by A and B with an integrated intensity ratio of 1:0.20,
which origin will be addressed below. The space group
of CaIrO3 is Cmcm orthorhombic symmetry, where 0 0

2n+1 reflections are forbidden according to the c-glide re-
flection. The polarization analysis indicates the π′ char-
acter of the scattered beam Iσ-σ′/Iσ-π′ = 3 % [inset of
Fig. 2(b)], which also rules out the Thomson scattering
as the origin. The T variation of the integrated inten-
sity well follows that of the weak ferromagnetic moment
[Fig. 1(b)]. Considering also that the anisotropic tensor
of susceptibility (ATS) scattering is prohibited in this ge-
ometry as discussed later, we conclude that the observed
reflection originates from a commensurate antiferromag-
netic order. Importantly, the 0 0 5 reflection cannot be
detected within an experimental accuracy at the L2 edge
∼12.82 keV, IL2

/IL3
< 0.3%. At the L3 edge, we also

observed magnetic reflections at 0 0 l with l = 1, 3, 7, and
9.

The observed magnetic reflections at 0 0 2n + 1 are
well accounted for by considering an antiparallel arrange-
ment of two Ir spins [labeled 1 and 2 in Fig. 1(a)] in a
primitive unit cell. In principle, one can also determine
the spin direction experimentally by the ψ dependence
of the magnetic signal: Imag ∝ sin2 ψ, cos2 ψ, and 1 for
the spin direction along the a, b, and c axes, respectively
[16]. However, the needle-like crystal morphology along
the a axis prevents us from performing such an analysis.
We therefore employed the representation analysis, the
results of which are summarized in Table I. We note that
the crystallographic space group for the magnetic phase
below TN has been revealed to be Cmcm by oscillation
photographs obtained at BL02B1. Considering the para-
sitic ferromagnetism along the b-axis [Fig. 1(b)] together
with the second order nature of the magnetic transition,
we conclude that the Γ3g representation with the antifer-
romagnetic moments along the c-axis is realized. The ob-
tained magnetic structure is schematically drawn in Fig.
1(a). It is a stripe-type order with a parallel alignment
along the a-axis and an antiparallel alignment along the
c-axis. This markedly contrasts with the checkerboard
spin arrangement on the IrO2 plane in Sr2IrO4 [2].

We move to the wavefunction of a t2g hole. When the
tetragonal crystal field ∆ (> 0 for the compressed oc-
tahedron) and the spin-orbit coupling ζ are present, the
sixfold degenerated t2g orbitals are split into three dou-

TABLE I: The magnetic structures of the irreducible repre-
sentations (Γi) for the Cmcm space group. M denotes the
magnetic point group, where 1 stands for the time-reversal
operation. a, b, and c represent the spin directions. AF and F
denote the antiferromagnetic and ferromagnetic arrangement
of spins at two Ir sites in a unit cell.

Γi M generators a b c
Γ1g mmm 2x, 2y , 1 AF · ·
Γ2g mmm 2x, 2y , 1 F · ·

Γ3g mmm 2x, 2y , 1 · F AF
Γ4g mmm 2x, 2y , 1 · AF F

K. Ohgushi et al., 2013, 2014

Candidate materials
3D hyper-honeycomb

whether it is possible to approach the Kitaev limit in
honeycomb α-Na2IrO3 and α-Li2IrO3.
The two honeycomb iridates have been so far the sole

playground for the realization of the Kitaev model. In the
search for a new platform for Kitaev physics, we discovered
a new form of Li2IrO3, β-Li2IrO3, consisting of a three-
dimensional analogue of the honeycomb lattice of Ir4þ ions
which we call the “hyperhoneycomb” lattice. The magnetic
susceptibility χðTÞ of β-Li2IrO3 evidences the dominant
ferromagnetic coupling, very likely representing the
Kitaev-type interaction. A noncollinear magnetic ordering
is observed at 38 K, which turns into a ferromagnetic state
of Jeff ¼ 1=2 moments under magnetic fields above 3 T.
Theoretical studies on an extended Kitaev model for a
hyperhoneycomb lattice demonstrated that the ground state
should be also a quantum spin liquid [15]. We argue that the
above results place β-Li2IrO3 in close proximity to the
three-dimensional Kitaev spin liquid.
The polycrystalline samples of β-Li2IrO3 were syn-

thesized by a solid state reaction from Li2CO3, IrO2 and
LiCl in a molar ratio of 10∶1∶100. The mixture was pressed
into a pellet, and heated at 1100 °C for 24 h, cooled to
700 °C at a rate of 30 K=h and furnace cooled to room
temperature. The sample was rinsed with distilled water to
remove excess LiCl. The obtained powder product was
found to consist of a new phase and a small trace of
IrO2 from the powder x-ray diffraction pattern [16].
The new phase was revealed to be a new form of
Li2IrO3, β-Li2IrO3, isostructural to β-Na2PtO3 [23]. The
detailed structure was then refined by single crystal x-ray
analysis using 50 μm-size crystal grains. The result of the
refinement is summarized in Table I.
The crystal structure of β-Li2IrO3 is illustrated in

Fig. 1(a). It can be described as a distorted cubic close
packed arrangement of oxygen atoms with iridium and
lithium atoms occupying all octahedral holes in a specific
ordered manner. The local structure around an iridium atom
is closely related to that of honeycomb α-Li2IrO3. Each
IrO6 octahedron is connected with three neighboring IrO6

octahedra by sharing its three edges [Fig. 1(b)], which gives
rise to three Ir-O2-Ir planar bonds with their planes almost

orthogonal to each other. When Ir ions have a Jeff ¼ 1=2
moment, the exchange interaction via Ir-O2-Ir paths very
likely gives rise to anisotropic ferromagnetic coupling [5].
The network of iridium ions in β-Li2IrO3, depicted in
Fig. 1(c), is closely linked to a honeycomb lattice. The 2D
honeycomb lattice can be viewed as planar zigzag chains
connected at the corners with bridging bonds. In the Ir
sublattice of β-Li2IrO3, the zigzag Ir chains are connected
by the bridging bonds parallel to the c axis. In contrast to
the 2D honeycomb lattice, however, the zigzag chains are
alternately rotated by 69.9° about the c axis [pink and blue
chains in Fig. 1(c)] and connected to the bridging bonds in
the layers above and below. Because of the close link to
honeycomb structure, the Ir sublattice in β-Li2IrO3 may be
called hyperhoneycomb. In the hyperhoneycomb Ir sub-
lattice, all the angles between the three Ir-Ir bonds are very
close to 120°, and the distances between Ir atoms are almost
equivalent (only ∼0.2% difference).
As an extension of the Kitaev model, the lattice equiv-

alent to hyperhoneycomb lattice, with competing ferro-
magnetic polarizations between the three bonds, was
studied theoretically [15]. The model could be mapped
onto the Kitaev model and is exactly solvable. The ground
state is a spin-liquid state as in the original Kitaev model.

TABLE I. Structural parameters of β-Li2IrO3. The space group
is Fddd (No. 70) and Z ¼ 16, and the lattice constants are
a ¼ 5.9104ð3Þ Å, b ¼ 8.4562ð4Þ Å, and c ¼ 17.8271ð9Þ Å. g
and Uiso denote site occupancy and the isotropic displacement
parameter, respectively. The final R indices are R ¼ 0.027 and
wR ¼ 0.0480.

Atom Site g x y z UisoðÅ2Þ
Ir 16g 1 1=8 1=8 0.70854(2) 0.00560(4)
O(1) 16e 1 0.8572(5) 1=8 1=8 0.0078(4)
O(2) 32h 1 0.6311(5) 0.3642(3) 0.0383(1) 0.0094(3)
Li(1) 16g 1 1=8 1=8 0.0498(5) 0.0051(11)
Li(2) 16g 1 1=8 1=8 0.8695(7) 0.0155(18)

FIG. 1 (color online). (a) Crystal structure of β-Li2IrO3. Green,
gray, and blue spheres represent lithium, iridium, and oxygen
atoms, respectively. (b) Local lattice network of IrO6 octahedra in
β-Li2IrO3 [24], displaying Ir-O bond lengths and two different Ir-
O-Ir angles obtained from the single crystal analysis [16].
(c) Hyperhoneycomb lattice of Ir ions in β-Li2IrO3. The pink
and blue lines show the twisted zigzag chains alternating along
the c axis. The black dotted lines are the bond bridging the zigzag
chains. The numbers indicated are Ir-Ir distances and the angles
between Ir atoms.
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Quantum spin systems are characterized by a spin that is
decoupled from the crystal lattice, in contrast to Ising-like
spin systems that often apply to higher spin states. In the

Heisenberg model describing spin-isotropic exchange between
neigbouring spins, spatial anisotropies of the exchange suppress
long-range order1, but do not lead to anisotropy of the magnetic
susceptibility. Striking examples of this are quasi-one- and two-
dimensional systems, where the exchange differs by orders of
magnitude for neighbours along distinct crystallographic
directions2,3. The spin–orbit interaction introduces magnetic
anisotropy by coupling the spin to the symmetry of the local
orbital environment. Although in spin-½ systems the crystal field
does not introduce single-ion anisotropy (due to Kramer’s
protection of the spin-½ doublet), it can—via spin–orbit—
introduce spin-anisotropies in the g-factor and in the exchange
interactions. The strength of the spin–orbit coupling varies by
orders of magnitude between the 3d and 5d transition metals. In
the former, quenching of the orbital moment decouples the
orbital wavefunction from the spin, giving a g-factor anisotropy
that is typically small and an even smaller spin-anisotropy. For
example, spin-½ copper in a tetragonal crystal field has a g-factor
anisotropy of order 10%, whereas the spin-anisotropy of
exchange is of the order of 1% (ref. 3).

The stronger spin–orbit coupling of the 5d transition metals is
known to give rise to larger magnetic anisotropies. In materials
with edge-shared IrO6 octahedra, spin-anisotropy of the exchange
between neighbouring effective spin-½ states is enhanced by the
interference of the two exchange paths across the planar Ir–O2–Ir
bond. Jackeli and Khaliullin (JK)4 suggested that in the
honeycomb iridates this may lead to extreme spin-anisotropy of
the exchange coupling, where in the limiting case, the only
non-vanishing interaction is for the spin component normal to
the Ir–O2–Ir plane4–6. In the honeycomb lattice, such an
interaction couples different orthogonal spin components for

the three nearest neighbours; no single exchange direction can be
simultaneously satisfied, leading to strong frustration. It is the
possibility of engineering spin-anisotropy coupled to spatial
exchange pathways that has spurred intense scientific research,
particularly in connection to the search for quantum spin-
liquids4–7. However, whether the spin–anisotropic exchange
interaction that is coupled to the Ir–O2–Ir bonding plane is
realized in such materials remains an intense subject of scientific
debate6,8–10, highlighting the need for the discovery of new
materials with related structures and strong anisotropic exchange
interactions.

We have synthesized single crystals of a new polytype of
Li2IrO3 in which we reveal the effect of the spin-anisotropy of
exchange from the temperature dependence of the anisotropic
magnetic susceptibility.

Results
Crystal structure. Single crystals of Li2IrO3 were synthesized as
described in Methods. As shown in Fig. 1a, the crystals are clearly
faceted and typically around 100! 100! 200mm3 in size. In
contrast to the monoclinic structure of the layered iridate, we find
that these materials are orthorhombic and belong to the
non-symmorphic space group Cccm, with lattice parameters
a¼ 5.9119(3) Å, b¼ 8.4461(5) Å and c¼ 17.8363(10) Å (see
Supplementary Discussion and Supplementary Data 1 for details
of the crystallography). The structure (shown in Fig. 1b,c)
contains two interlaced honeycomb planes, the orientation
of which alternate along the c axis. The X-ray refinement
(see Supplementary Discussion; Supplementary Figs 1–4;
Supplementary Table 1) is consistent with fully stoichiometric
Li2IrO3. In this case the Ir oxidation state is Ir4þ (5d5), fixing the
effective Ir local moment Jeff¼½, which is consistent with the
magnetic properties of our crystals (see Fig. 2). In addition, highly

b

a
a

c

b

100 µm

Figure 1 | Single crystal of H/1S-Li2IrO3 and the Ir lattice structure.
(a) Single crystal oriented to be parallel to the crystallographic axes shown
in (c), (b) three-dimensional view and (c) projection in the ab plane.
In b, the grey shading emphasizes the Ir (purple balls) honeycomb rows
that run parallel to the a±b diagonals, alternating upon moving along the
c axis. For simplicity only Li ions (grey balls) located in the center of Ir
honeycombs are shown. In b,c the rectangular box indicates the unit cell.
Comparing a with c we note that the B70! angle between honeycomb
rows is evident in the crystalline morphology.
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Figure 2 | The temperature dependence of the single-crystal magnetic
susceptibility along the three principal crystalline directions. The inset
shows 1/w for all three axes wa, wb and wc. The dashed line indicates the
slope of the inverse Curie–Weiss susceptibility for a paramagnet with
effective moment of meff¼ 1.6 mB, close to that expected of an Ir Jeff¼½
state if the g-factor anisotropy is ignored. All three components of
susceptibility show strong deviation from the Curie–Weiss behaviour as a
function of temperature.
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(a) (b)

Figure 1. (a) Ir honeycomb layer in Na213, idealized model with cubic IrO6 and NaO6
octahedra of equal size and 90� Ir–O–Ir bonds. (b) Low-lying energy levels for two
NN octahedra and GS density profiles for the effective spin–orbit j = 1/2 states at
each Ir site. The d-level splittings are not to scale, notations as in table 1. The (x, y, z)
coordinate frame used to express the KH Hamiltonian [2] is also drawn for one of the
Ir–Ir links. For each Ir2O2 plaquette in the actual C2/m structure [8], due to trigonal
squashing of the IrO6 octahedra (normal to the Ir honeycomb plane), the apical like
Ir–O bonds are not along the corresponding Kitaev axis.

The fact that Y and Z are not C2 axes is related to the configuration of the four adjacent Ir
sites—two of those are below and two above the XY plane, with no inversion center—and
the trigonal squashing of the IrO6 octahedra [8]. The KH Hamiltonian is however expressed
in a (x, y, z) coordinate frame that has the (x, y) coordinates rotated by 45� about the Z = z

axis [2, 13], as compared to (X, Y ), see figure 1, and � then becomes
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(see appendix B for details).
For a more transparent picture and better insight into the nature of the NN magnetic

couplings, it is instructive to first consider two-octahedra clusters taken from an idealized
crystalline model without trigonal distortions and with all adjacent Ir and Na sites modeled as
identical point charges. In this case, the overall symmetry is D2h and all off-diagonal couplings
cancel by symmetry, in the (X, Y, Z) coordinate system with X along the Ir–Ir link. For an
idealized [Ir2O10] unit displaying D2h

symmetry C = 0 and the spin Hamiltonian reduces to
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, (4)

where K = � 3
2(A + B), J = J0 � K/3 and D = 1

2(A � B). The off-diagonal xy coupling, last
term in (4), is allowed by symmetry even for ideal octahedra at 90� Ir–O–Ir bonding but has
been neglected in earlier studies on Na2IrO3 [2, 13, 14, 16, 31].

Results of spin–orbit calculations, both at the CASSCF (CAS+SOC) and MRCI
(MRCI+SOC) levels, are listed for idealized [Ir2O10] D2h model clusters in table 1. Such a
cluster is highly charged, 12�. To ensure charge neutrality, we assigned to each of the 26

4

2D honeycomb

Na2IrO3, Li2IrO3,...
M. J. O’Malley et al., 2008 
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hyper-kagome

hyperkagome lattice is also realized in the A sublattice of
the garnet A3B5O12 but in these it is distorted. It might be
interesting to infer here that there exists a chirality in this
hyperkagome lattice and that the two structures P4132
[Fig. 1(c)] and P4332 [Fig. 1(d)] have different degenerate
chiralities. Na1:5 in Na1:5!Ir3=4;Na1=4"2O4 occupies the oc-
tahedral A site rather than the tetrahedral A site normally
occupied in a conventional spinel structure [10]. We re-
fined the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75% occupation follow-
ing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4# to have a
low spin (t2g

5) state with S $ 1=2. The electrical resistivity
! of a ceramic sample at room temperature was
%10 ! cm, followed by a thermally activated increase

with an activation energy of 500 K with decreasing tem-
perature. This, together with the magnetic properties de-
scribed below, indicates that Na4Ir3O8 is a S $ 1=2 Mott
insulator formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
"!T", shown in Fig. 2(a), indicates that Na4Ir3O8 is indeed
a frustrated S $ 1=2 system with a strong antiferromag-
netic interaction. In the "&1 vs T plot in Fig. 2(a), Curie-
Weiss like behavior can be seen. The Curie-Weiss fit
around room temperature yields a large antiferromagnetic
Curie-Weiss constant #W % 650 K and an effective mo-
ment peff $ 1:96$B, which is slightly larger than those
expected for S $ 1=2 spins. In geometrically frustrated
antiferromagnets, it is known that the Curie-Weiss behav-
ior expected above T $ #W persists even below #W . The
observed Curie-Weiss behavior of "!T" below #W is con-
sistent with the presence of the S $ 1=2 antiferromagnetic
spins on a frustrated hyperkagome lattice. The large anti-
ferromagnetic interaction inferred from #W is supported by

FIG. 1 (color online). (a) Crystal structure of Na4Ir3O8 with
the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.
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FIG. 2 (color online). Temperature dependence of the inverse
magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
shifted by 3, 2, and 1' 10&4 emu=mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Cm=T vs T of Na4Ir3O8 in various fields up
to 12 T. Broken lines indicate Cm proportional to T2 and T3,
respectively.

TABLE I. Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a $ 8:985 "A. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)

Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6
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How to compute thermodynamics?
Conventional quantum Monte Carlo (QMC) 

on the basis of the world-line technique does not work 
due to the negative sign problem...
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QMC on the basis of Majorana fermion representation

New QMC method

interacting S=1/2 spins

free Majorana fermions coupled to thermally-fluctuating Z2 fields

unbiased QMC free from negative-sign problem!

H.-D. Chen and J. Hu, 2007
X.-Y. Feng et al., 2007
H.-D. Chen and Z. Nussinov, 2008

Majorana fermion representation

Jordan-Wigner transformation 

formally, similar to the double-exchange model with Ising spins

Si
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quantum
spin
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= ±1



Thermal fractionalization of 
S=1/2 into Majorana fermions: 
diagnostic in physical observables

J. Nasu, M. Udagawa, and Y. Motome, preprint (arXiv:1504.01259)



two crossovers: successive release of 1/2(log2) entropy

Specific heat and entropy
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Figure 3: Finite-temperature phase diagram of the 3D Kitaev model. (A) Cut of the phase
diagram along the line from a vertex (α = 0) through the center of the triangle (α = 1), and
the line along the phase boundary between the gapped and gapless phases in the ground state,
as shown in the insets. Log-scale plot for (A) is shown in (B). The solid (dashed) line is the
α dependence of Tc obtained by the perturbation expansion in terms of J/Jz (Jz/J), where
J = Jx = Jy. (C) 3D plot of the phase diagram in the whole parameter space. Bottom triangle
represents the ground state phase diagram shown in Fig. 1C.
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DOS for itinerant Majorana fermions

Thermal fluctuations of the fluxes disturb the Majorana DOS.

Dirac semimetal → “metal” above the low-T crossover
by thermal fluctuations in fluxes (localized Majorana)
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FIG. 1: (color online). (a)-(d) T dependences of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the
several clusters with 2 × L2 spins. Here, we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)-(h) T
dependences of the entropy per site, S, and the thermal average of the density of the fluxWp,W . (i)-(l) T dependences of the equal-time spin
correlations, Sll; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are calculated analytically [16],
and the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T . (m)-(o) The DOS of Majorana fermions at (m) α = 1.0, (n)
α = 0.8, and (o) α = 0.75. Except the results at T = 0 and T = ∞, the DOS are calculated by QMC for the 10 × 10 superlattice of the
L = 12 cluster. (p) The excitation gap for the Majorana fermions at T = 0 (blue solid line) and T = ∞ (red symbols) as a function of α. The
inset indicates the gapped-gapless boundaries on the plane of Jx + Jy + Jz = 1. The blue solid lines represent the phase boundaries in the
ground state, while the red dashed lines represent the boundaries obtained from the DOS at T = ∞. See the text for details.

the Kitaev model is reduced to the effective model Heff =
−Jeff

∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [5]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. This asymptotic behavior well
explains TL in the small α region (see also Fig. 2).

The crossover behavior is summarized in Fig. 2. As men-
tioned above, the high-T crossover temperature TH is almost
constant ∼ 0.511 (the dashed-dotted line) independent of
α. On the other hand, the low-T crossover temperature TL

strongly depends on α. The behavior in the small α region
well agrees with the asymptotic form obtained in the toric
code limit (the dashed curve). Thus, the phase diagram is
divided into three regions: the high-T paramagnetic region
for T ! TH, the intermediate-T region for TL " T " TH

where quantum spins develop short-range correlations while
the fluxes remain disordered, and the low-T region for T "
TL where fluxes are aligned uniformly.

Since the Z2 variables ηr couple with the itinerant Majo-
rana fermions, we expect that the enhanced fluctuations of
fluxes near TL affect the nature of itinerant Majorana fermions
considerably. In order to elucidate such behavior, we calcu-
late the DOS of itinerant Majorana fermions. The DOS with
a given configuration of ηr is calculated by D(ω, {ηr}) =

∑

n δ(ω−En({ηr})), whereEn is the one-particle energy of
the fermion fn which is introduced so as to diagonalize the
Hamiltonian as H({ηr}) =

∑

n En({ηr})
(

f †
nfn − 1

2

)

. The
thermal averages of the DOS, ⟨D(ω)⟩, are calculated for {ηr}
generated in the QMC simulation. Note that ⟨D(ω)⟩ do not
contain the T dependence of the Fermi distribution function;
we only take into account the effect of thermal fluctuations
of ηr. The calculations were done for the 10 × 10 supercell,
where the L = 12 cluster obtained by the MC simulation is
regarded as a unit cell. The calculations at T = 0 (T = ∞)
are performed for a L = 6, 000 (L = 60) cluster. In the cal-
culation at T = ∞, we take a simple average over 10,000
random configurations of {ηr}.

Figure 1(m) shows the DOS of the itinerant Majorana
fermion cj for the isotropic case Jx = Jy = Jz . The QMC
data are shown near TL, together with the results at T = 0 and
T = ∞. In this gapless QSL region, at T = 0, the DOS shows
semimetallic behavior D(ω) ∝ ω for small ω, reflecting the
Dirac dispersion. While increasing T above TL, however, the
semimetallic dip of DOS is filled rapidly, leading to “metallic”
behavior, ⟨D(ω = 0)⟩ ≠ 0. The result clearly indicates that
the thermal fluctuations of fluxes near TL significantly affect
the low-energy spectrum of itinerant Majorana fermions.

This significant change in the DOS results in a peculiar T

↵ = 1.0  � all ⌘r = +1

 � random ⌘r

 � ⇠ low-T crossover
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FIG. 1: (color online). (a)-(d) T dependences of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the
several clusters with 2 × L2 spins. Here, we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)-(h) T
dependences of the entropy per site, S, and the thermal average of the density of the flux Wp, W . (i)-(l) T dependences of the equal-time spin
correlations, Sll; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are calculated analytically [16],
and the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T . (m)-(o) The DOS of Majorana fermions at (m) α = 1.0, (n)
α = 0.8, and (o) α = 0.75. Except the results at T = 0 and T = ∞, the DOS are calculated by QMC for the 10 × 10 superlattice of the
L = 12 cluster. (p) The excitation gap for the Majorana fermions at T = 0 (blue solid line) and T = ∞ (red symbols) as a function of α. The
inset indicates the gapped-gapless boundaries on the plane of Jx + Jy + Jz = 1. The blue solid lines represent the phase boundaries in the
ground state, while the red dashed lines represent the boundaries obtained from the DOS at T = ∞. See the text for details.

cluster obtained by the MC simulation is regarded as a unit
cell. The calculations at T = 0 (T = ∞) are performed for
a L = 6, 000 (L = 60) cluster. In the calculation at T = ∞,
we take a simple average over 10,000 random configurations
of {ηr}.

Figure 1(m) shows the DOS of the itinerant Majorana
fermion cj for the isotropic case α = 1.0 (Jx = Jy = Jz).
The QMC data are shown near TL, together with the results at
T = 0 and T = ∞. In this gapless QSL region, at T = 0,
the DOS shows semimetallic behavior D(ω) ∝ ω for small ω,
reflecting the Dirac dispersion. While increasing T above TL,
however, the semimetallic dip of DOS is filled rapidly, leading
to “metallic” behavior, ⟨D(ω = 0)⟩ ̸= 0. The result clearly
indicates that the thermal fluctuations of fluxes near TL signif-
icantly affect the low-energy spectrum of itinerant Majorana
fermions.

The significant change leads to peculiar behavior in the
intermediate-T range between the two crossovers. One
is found in the transport property. We here show it by
computing the optical conductivity of itinerant Majorana
fermions as follows. First, we introduce the Fourier rep-
resentation of the Hamiltonian as H =

∑
k c

†
kHkck =∑

n:Enk>0

∑
k Enk(f

†
nkfnk − 1/2), where ck is a set of the

Fourier transforms of cj and the L × L cluster is regraded

as a unit cell. The Bloch Hamiltonian Hk is diagonalized
by introducing a set of fermions fnk belonging to n-th band
with the energy Enk. Then, the conductivity tensor is calcu-
lated by σµν(ω) = 1

L

∫∞
0 dtei(ω+iδ)t

∫ β
0 dλ⟨Jν(−iλ)Jµ(t)⟩,

where δ is an infinitesimal positive number, O(t) =
eiHtOe−iHt, and the current operator is defined as Jµ =∑

kn c
†
knckn′⟨ukn|∂Hk/∂kµ|ukn′⟩ with the Bloch state

|ukn⟩. We use the 1 × 1 supercell for the k mesh. The in-
set of Fig. 3 shows the results at several T for α = 1.0. The
incoherent component at finite ω increases with decreasing T
below TH. To clarify the contribution to coherent transport,
we calculate the Drude weight by using the sum rule given
as Dx = 1

2L

∑
⟨ij⟩′x

⟨Jxσx
i σ

x
j ⟩ − 1

π

∫∞
0 σxx(ω)dω, where the

summation
∑

⟨ij⟩′x
is taken only for the NN x bonds on the

boundary. Figure 3 shows the T dependence of Dx. While de-
creasing T , the Drude weight gradually increases below TH,
and sharply decreases to zero below TL cyanafter showing a
peak near TL. The result suggests that the transport quantities,
such as the thermal conductivity, have sizable values between
the two crossovers.

The significant change in the DOS also results in a peculiar
T dependence of the specific heat Cv . In the gapless QSL re-
gion, the low-T specific heat is expected to be proportional to
T 2 because of the Dirac semimetallic dispersion for aligned



Apparent T-linear specific heat

Above the low-T crossover, the DOS becomes metallic, leading to apparent 
T-linear behavior in the specific heat, although T2 behavior is expected for 
the Dirac semimetallic spectrum at T=0.
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dependence of the specific heat Cv. In the gapless QSL re-
gion, the low-T specific heat is expected to be proportional to
T 2 because of the Dirac semimetallic dispersion for aligned
fluxes (ηr = +1 for all r). However, Cv calculated by as-
suming all ηr = +1 largely deviates from our QMC data, as
shown for α = 1.2 in Fig. 3. This indicates that the asymp-
totic T 2 behavior will be limited only in the low T region
much lower than TL. Instead, we find that the QMC data are
well explained by the result for random {ηr} in a wide range
of T ! TL. Consequently, Cv exhibits apparent T -linear be-
havior between TL and TH, originating from the “metallic”
DOS caused by thermally fluctuating fluxes above TL. Thus,

we find that the specific heat of the Kitaev model in Eq. (1) be-
haves like T -linear, not T 2 as expected, as a consequence of
the thermal fractionalization of quantum spins. Interestingly,
the apparent T -linear behavior is observed in the region where
the short-range spin correlations are well developed.
Whereas the T -linear behavior is observed widely in the

region where the ground state is gapless, it is disturbed in
the vicinity of the gapped-gapless boundary at α = 0.75.
Figures 1(n) and 1(o) show the DOS of the itinerant Majo-
rana fermions at α = 0.8 and α = 0.75, respectively. At
these parameters, the system develops an energy gap with in-
creasing T in the vicinity of TL, in sharp contrast to the gap
filling in Fig. 1(m). The results indicate that there is an in-
termediate region where the thermal fluctuation of ηr gaps
out the low-energy excitation of itinerant Majorana fermions.
The intermediate region is identified by calculating the mag-
nitudes of the gaps at T = 0 and T = ∞, as presented in
Fig. 1(p). The schematic phase diagram determined by the
DOS at T = ∞ is presented in the inset. Remarkably, the
gapped-gapless boundary is similar to that in the dynamical
phase diagram [18], suggesting a relation between thermal
and quantum fluctuations. We also note that the boundary is
similar to the result for the full flux state [19]. The modifica-
tion of the boundary at finite T implies that effective exchange
couplings are renormalized in an anisotropic way by the ther-
mal fluctuation of localized Majorana fermions. Indeed, the
anisotropy of spin correlations is slightly enhanced near TL

while increasing T , as shown in Figs. 1(j) and 1(k).
In summary, we have investigated the thermal fractionaliza-

tion of quantum spins into Majorana fermions in the Kitaev
model by using the QMC simulation. We clarified that the
fractionalization appears as two crossovers, both of which are
physically observable in the thermodynamics. The higher-T
crossover is identified by the development of short-range spin
correlations, which will be observed in, e.g., neutron scatter-
ing experiments. Meanwhile, the low-T one induces a pecu-
liar T linear behavior in the specific heat above the crossover
temperature. We also showed that the thermal fractionaliza-
tion affects the gapped-gapless phase boundary by renormal-
izing the spin anisotropy. The present results complete how
the fractionalization of quantum spins into Majorana fermions
occurs while changing temperature in the ideal case. This pro-
vides a useful reference to the experimental exploration of
QSLs in, e.g., iridium oxides [20–24] and ruthenium com-
pounds [25–28], where Kitaev-type interaction is expected.
This work is supported by Grant-in-Aid for Scientific

Research, the Strategic Programs for Innovative Research
(SPIRE), MEXT, and the Computational Materials Science
Initiative (CMSI), Japan. Parts of the numerical calculations
are performed in the supercomputing systems in ISSP, the
University of Tokyo.
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FIG. 3: (added)(color online). T dependence of the Drude weight of
itinerant Majorana fermions at α = 1.0. The inset shows the optical
conductivity at α = 1.0 on the L = 12 cluster at several T .

fluxes. However, Cv calculated by assuming all ηr = +1
largely deviates from our QMC data, as shown for α = 1.2 in
Fig. 4. This indicates that the asymptotic T 2 behavior will be
limited only in the low T region much lower than TL. Instead,
we find that the QMC data are well explained by the result for
random {ηr} in a wide range of T ! TL. Consequently, Cv

exhibits apparent T -linear behavior between TL and TH, orig-
inating from the “metallic” DOS caused by thermally fluctu-
ating fluxes above TL. Thus, we find the apparent T -linear
behavior, not T 2, as a consequence of the thermal fractional-
ization of quantum spins in the region where the short-range
spin correlations are well developed.

Whereas the coherent transport and the T -linear behavior
are observed widely in the region where the ground state is
gapless, it is disturbed in the vicinity of the gapped-gapless
boundary at α = 0.75. Figures 1(n) and 1(o) show the DOS
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FIG. 4: (color online). T dependence of the specific heat Cv at α =
1.2 in the L = 12 cluster. For comparison, the results calculated by
fixing all ηr to +1 and by assuming random {ηr} are shown as the
solid and dashed curves, respectively. The semilog plot of Cv/T is
also shown in the inset.

of the itinerant Majorana fermions at α = 0.8 and α = 0.75,
respectively. At these parameters, the system develops an en-
ergy gap with increasing T in the vicinity of TL, in sharp con-
trast to the gap filling in Fig. 1(m). The schematic phase dia-
gram, determined by the gaps at T = 0 and T = ∞, is pre-
sented in Fig. 1(p). Remarkably, the gapped-gapless boundary
is similar to that in the dynamical phase diagram [18] and for
the full flux state [19]. The modification of the boundary at
finite T implies that effective exchange couplings are renor-
malized in an anisotropic way by the thermal fluctuation of
localized Majorana fermions. Indeed, the anisotropy of spin
correlations is slightly enhanced near TL while increasing T ,
as shown in Figs. 1(j) and 1(k).

In summary, we have clarified that the thermal fractional-
ization of quantum spins into Majorana fermions in the Kitaev
model manifests itself in experimentally measurable quan-
tities, such as spin correlations, specific heat, and transport
properties. The present results will stimulate the experimen-
tal hunting for Majorana fermions in quantum magnets, e.g.,
iridium oxides [20–24] and ruthenium compounds [25–28],
where Kitaev-type interaction is expected.
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are performed in the supercomputing systems in ISSP, the
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FIG. 5: (Color online) (a) Inverse magnetic susceptibility
1/χ = H/M versus temperature T for a collection of ran-
domly oriented single crystals of Na2IrO3 in a magnetic field
H = 2 T. The solid curve through the data is a fit by the
expression χ = χ0 + C/(T − θ) and the dashed curve is an
extrapolation to T = 0. (b) the anisotropic magnetic suscep-
tibilities χc and χab versus T . The powder average suscep-
tibility (χc + 2χab)/3, and the polycrystalline susceptibility
χpoly are also shown. The solid curve through the χpoly data
is the Curie-Wiess fit. The inset shows the low T χc(T ) data
to highlight the broad maximum at T ≈ 23 K. The arrow in-
dicates the onset temperature TN = 15 K for the long-ranged
antiferromagnetic ordering.

is also shown as the solid line through the χpoly data in
Fig. 5(b). As mentioned before, the data deviate from the
CW behavior below about T = 100 K and passes over a
broad maximum at about 23 K before dropping abruptly
below T ≈ 15 K. This can be seen from Fig. 5(b) in-
set which shows the χc(T ) data below T = 40 K on an
expanded scale. The sharp drop below TN ≈ 15 K is as-
sociated with the onset of long-ranged antiferromagnetic
ordering in Na2IrO3 while the broad maximum above the
ordering is most likely associated with short-ranged or-
der seen commonly in low-dimensional magnetic materi-
als. This is supported by our heat capacity measurements

presented below.

E. Heat Capacity

Figure 6(a) shows the heat capacity divided by temper-
ature C/T versus temperature T data measured between
T = 2 K and 40 K in a zero applied magnetic field H .
The heat capacity of a polycrystalline sample of Na2SnO3

is also shown in the same figure as an approximate es-
timation of the lattice contribution to the heat capacity
of Na2IrO3. The lambda-like anomaly at TN = 15 K for
Na2IrO3 confirms the bulk nature of the antiferromag-
netic ordering observed in the χ data in Fig. 5 above.
Figure 6(a) inset shows the C/T versus T data between
T = 12 K and 19 K, measured in H = 0 and H = 7 T.
The slight depression of TN in an applied magnetic field
indicates the antiferromagnetic nature of the ordering.
Figure 6(b) shows the difference heat capacity

∆C(T ) = C(T ) − Clattice(T ) and the difference entropy
∆S(T ) obtained by integrating the ∆C(T )/T versus T
data. The ∆C data shows a sharp peak at TN = 15 K
and a broad tail which extends to higher T . This sug-
gests the presence of short-ranged order above the bulk
three-dimensional ordering which occurs at TN. This is
supported by the fact that the entropy just above TN is
∆S(17K) ≈ 1.2 J/mol K which is only about 20% of the
value Rln(2) = 5.76 J/mol K expected for ordering of
S = 1/2 moments. ∆S also continues to increase upto
the highest T of our measurements.

IV. SUMMARY AND DISCUSSION

Single crystals of Na2IrO3 have been grown and their
structural, electrical transport, magnetic, and thermal
properties investigated. Na2IrO3 possesses a layered
structure where pure Na layers are stacked alternately
with NaIr2O6 slabs along the c axis of the monoclinic unit
cell. Within the NaIr2O6 layers, the Ir4+ moments sit on
a hexagonal lattice. Electrical transport within the ab
plane shows insulating behavior. Magnetic susceptibility
measurements provide evidence that the Ir atoms carry
effective Seff = 1/2 moments and they have strong an-
tiferromagnetic interactions as evidenced by a large and
negative Weiss temperature θ = −116(3) K. The mag-
netic susceptibility is slightly anisotropic with χc being
the easy axis of magnetization.
The χ(T ) deviates from Curie-Wiess behavior be-

low T ∼ 100 K and passes over a broad maximum
around T = 23 K before decreasing strongly below the
three-dimensional antiferromagnetic ordering tempera-
ture TN = 15 K. At the lowest T = 1.8 K, χ(T ) saturates
to a large and finite value. This indicates that the mag-
netic ordering is most likely non-collinear. It is difficult
to decide the ordering direction from our measurements.
The reduction in the absolute value of χ is larger for χc

but the change of slope at TN is stronger for χab.
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FIG. 6: (Color online) (a) The heat capacity divided by tem-
perature C/T versus T data between T = 1.8 K and 40 K for
single crystals of Na2IrO3 and the heat capacity of Na2SnO3

as the lattice contribution Clattice/T versus T . The inset
shows the C/T versus T data in H = 0 and 7 T applied
magnetic field. (b) The difference heat capacity ∆C and dif-
ference entropy ∆S versus T data between T = 1.8 K and
40 K.

A much smaller TN compared to the Wiess temper-
ature θ = −116(3) K indicates frustrated magnetic in-
teractions in Na2IrO3. This is consistent with a recent
theoretical study which has made estimates of the ra-
tio between the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) magnetic interactions and find that
JNNN

JNN
= 0.47, indicating strongly frustrated magnetic

interactions.11 The maximum in χ(T ) above the long-
ranged ordering temperature TN is commonly observed in
low dimensional materials where short ranged magnetic
order develops (within the NaIr2O6 layers in Na2IrO3 for
example) well above TN and long-ranged magnetic order

only occurs when the interplanar interactions become im-
portant. The presence of short-ranged magnetic order is
also supported by our heat capacity measurements. The
C(T ) shows a sharp lambda-like anomaly at TN = 15 K
indicating bulk magnetic ordering. However, the differ-
ence heat capacity ∆C(T ) shows a broad tail extending
to much higher T above TN and the difference entropy
∆S just above TN is only about 20% of what is expected
for ordering of spin S = 1/2 moments. The ∆S(T ) also
continues to increase upto the highest T of our measure-
ments. An incorrect estimation of the lattice contribu-
tion to C(T ) can lead to a reduced ∆S(T ). However, if
we estimate the entropy by integrating the total C(T )/T
versus T data without any lattice subtraction, we still
end up with only ≈ 30%Rln(2) at TN suggesting that the
reduced entropy is intrinsic to Na2IrO3 and most likely
occurs due to the developement of short-ranged magnetic
order well above TN.
There has been a lot of recent theoretical inter-

est in Na2IrO3 with suggestions of a topological band
insulator10 or a magnetically ordered Mott insulator11

being possible ground states for this system. Our elec-
trical transport results indicate insulating behavior con-
sistent with the above predictions. However, our mag-
netic measurements indicate local moment magnetism
and long-range antiferromagnetic ordering which is not
consistent with the topological band insulator picture
above.
Further experiments will be needed to investigate the

importance of spin-orbit interactions and the strength of
electronic correlations in Na2IrO3 as has been suggested
in previous theoretical work.10,11 The magnetic structure
and the nature of the magnetic interactions will also need
further work to compare with the various proposed mag-
netic ground states although the spin-liquid phase near
the Kitaev limit can be ruled out from our results .19

To summarize, single crystals of Na2IrO3 have been
synthesized. From magnetic, thermal, and transport
measurements we conclude that this is a quasi-low-
dimensional, magnetically frustrated material which un-
dergoes long-ranged antiferromagnetic ordering below
TN = 15 K into most likely a non-collinear magnetic
structure. The in-plane electrical transport properties
together with the local moment magnetism indicate that
Na2IrO3 is a Mott insulator.
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FIG. 1. (Color online) (a) Temperature dependence of magnetic
susceptibilities with a field of 0.5 T applied parallel to the c axis and
within the ab plane. Inset shows a photograph of a typical single
crystal sample used in our studies. (b) Inverse susceptibility in both
directions. Also plotted is the inverse of powder average susceptibility
χave ≡ (2χab + χc)/3.

measurement system (PPMS) with fields up to 14 Tesla.
Specific heat measurements were also carried out using the
PPMS in zero applied field. Neutron diffraction measurements
were carried out using the multiaxis crystal spectrometer
(MACS) [40] and the BT-7 triple axis spectrometer at the NIST
Center for Neutron Research (NCNR). The measurements
on MACS were conducted using a collection of 35 single
crystal samples mounted together with a mosaic width of about
10 deg and total mass of 62 mg. Incident neutron energy was
5 meV, and the sample was mounted in the (H0L) plane. The
BT-7 data were collected using a similar crystal array of 60
crystals, with a mass of 70 mg. The incident neutron energy
was 14.7 meV, and measurements were conducted in both the
(H0L) and (HHL) planes. Throughout this paper we use the
hexagonal notation of a = 5.96 Å and c = 17.2 Å [31].

The temperature dependence of the magnetic susceptibility
measured with a 0.5 Tesla field is shown in Fig. 1(a). Here
we use the notation χc to denote susceptibility measured
with field applied perpendicular to the honeycomb plane, and
χab for susceptibility measured with in-plane field. The χab

data exhibit a peak around 15 K, in agreement with earlier
reports on powder samples [37,38]. The susceptibility is highly
anisotropic; χab is almost an order of magnitude larger than
χc at low temperatures. The Curie-Weiss temperatures also
differ significantly in the two directions. In Fig. 1(b) the
inverse susceptibility data are fitted with Curie-Weiss behavior

above 200 K. The Curie-Weiss temperatures are "c ≈ −145 K
and "ab ≈ 68 K. The effective paramagnetic moments in-
ferred from the Curie constant fit of the susceptibility are
µeff ≈ 2.0µB and µeff ≈ 2.3µB for χab and χc, respectively.
These values for paramagnetic moments are consistent with
earlier reports, and are larger than the spin-only value of
1.73µB for the low-spin state (S = 1/2) for Ru3+, which
probably indicates a significant contribution from the orbital
moment. Although the Curie-Weiss temperatures obtained
in our study are different from the values reported earlier,
when we fit the powder average [χave ≡ (2χab + χc)/3], we
obtain Curie-Weiss temperature of about 40 K, more in
line with earlier studies [37,38]. The observed anisotropy
of Curie-Weiss temperature has an interesting implication in
view of the J -K-# model. According to the high temperature
expansion formula introduced in Ref. [19], the Curie-Weiss
temperature anisotropy satisfies ("c − "ab)/("c + 2"ab) =
#/(3J + K). Since we find "c ≈ −2"ab, and we assume
that # is not infinitely large, we can estimate that J ∼ −K/3
in this compound. This is quite different from Na2IrO3, for
which #/(3J + K) ∼ −0.3 [19,21]. We also note that the
susceptibility anisotropy of α-RuCl3 is opposite to that of
Na2IrO3; that is, χab < χc in Na2IrO3.
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FIG. 1. (Color online) (a) Temperature dependence of magnetic
susceptibilities with a field of 0.5 T applied parallel to the c axis and
within the ab plane. Inset shows a photograph of a typical single
crystal sample used in our studies. (b) Inverse susceptibility in both
directions. Also plotted is the inverse of powder average susceptibility
χave ≡ (2χab + χc)/3.

measurement system (PPMS) with fields up to 14 Tesla.
Specific heat measurements were also carried out using the
PPMS in zero applied field. Neutron diffraction measurements
were carried out using the multiaxis crystal spectrometer
(MACS) [40] and the BT-7 triple axis spectrometer at the NIST
Center for Neutron Research (NCNR). The measurements
on MACS were conducted using a collection of 35 single
crystal samples mounted together with a mosaic width of about
10 deg and total mass of 62 mg. Incident neutron energy was
5 meV, and the sample was mounted in the (H0L) plane. The
BT-7 data were collected using a similar crystal array of 60
crystals, with a mass of 70 mg. The incident neutron energy
was 14.7 meV, and measurements were conducted in both the
(H0L) and (HHL) planes. Throughout this paper we use the
hexagonal notation of a = 5.96 Å and c = 17.2 Å [31].

The temperature dependence of the magnetic susceptibility
measured with a 0.5 Tesla field is shown in Fig. 1(a). Here
we use the notation χc to denote susceptibility measured
with field applied perpendicular to the honeycomb plane, and
χab for susceptibility measured with in-plane field. The χab

data exhibit a peak around 15 K, in agreement with earlier
reports on powder samples [37,38]. The susceptibility is highly
anisotropic; χab is almost an order of magnitude larger than
χc at low temperatures. The Curie-Weiss temperatures also
differ significantly in the two directions. In Fig. 1(b) the
inverse susceptibility data are fitted with Curie-Weiss behavior

above 200 K. The Curie-Weiss temperatures are "c ≈ −145 K
and "ab ≈ 68 K. The effective paramagnetic moments in-
ferred from the Curie constant fit of the susceptibility are
µeff ≈ 2.0µB and µeff ≈ 2.3µB for χab and χc, respectively.
These values for paramagnetic moments are consistent with
earlier reports, and are larger than the spin-only value of
1.73µB for the low-spin state (S = 1/2) for Ru3+, which
probably indicates a significant contribution from the orbital
moment. Although the Curie-Weiss temperatures obtained
in our study are different from the values reported earlier,
when we fit the powder average [χave ≡ (2χab + χc)/3], we
obtain Curie-Weiss temperature of about 40 K, more in
line with earlier studies [37,38]. The observed anisotropy
of Curie-Weiss temperature has an interesting implication in
view of the J -K-# model. According to the high temperature
expansion formula introduced in Ref. [19], the Curie-Weiss
temperature anisotropy satisfies ("c − "ab)/("c + 2"ab) =
#/(3J + K). Since we find "c ≈ −2"ab, and we assume
that # is not infinitely large, we can estimate that J ∼ −K/3
in this compound. This is quite different from Na2IrO3, for
which #/(3J + K) ∼ −0.3 [19,21]. We also note that the
susceptibility anisotropy of α-RuCl3 is opposite to that of
Na2IrO3; that is, χab < χc in Na2IrO3.
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FIG. 2. (Color online) (a) Detailed view of low temperature
region of the parallel and perpendicular susceptibilities shown in
Fig. 1(a). χc values are multiplied by 10 to fit on the same scale.
Also shown is the temperature dependence of heat capacity. (b) The
nonmonotonic part of the heat capacity, obtained by subtracting a
smooth polynomial background [i.e., the solid line in (a)] from the
raw data. The entropy change %Sm was obtained by integration:
%Sm =

∫ T

0 (%Cp/T )dT .
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FIG. 1. (Color online) (a) Temperature dependence of the mag-
netic susceptibility (χ∥ and χ⊥) of α-RuCl3 measured in H = 100 Oe.
(b) Inverse susceptibilities and Curie-Weiss fit (straight lines).

the spin-echo time fast Fourier transform spectra measured
typically in 0.2 MHz steps. In general, the zero-field spectra
originate from the anisotropic hyperfine field transferred from
the Ru 4d5 moments.

Figure 1(a) shows the susceptibility as a function of
temperature for the two directions (in-plane and perpendicular
to the plane) in α-RuCl3. For H∥c there are clear signatures
of two phase transitions at 14 and 8 K, whereas for H⊥c
between 14 and 8 K a plateaulike behavior is found, followed
by a sharp decrease of the susceptibility. This decrease points
towards a sort of spin compensation (e.g., an antiferromagnetic
transition or an effective dimerization in the ab plane). Below
300 K, the in-plane susceptibility χ⊥ is larger than the
out-of-plane component χ∥ (χ⊥/χ∥ ≈ 2.5 at 60 K). The inverse
susceptibility is shown in Fig. 1(b). The Curie-Weiss fit of
the inverse susceptibility clearly yields dissimilar effective
coupling constants for the two field directions: (i) for H⊥c a
Curie-Weiss temperature of +37 K evidences an effective fer-
romagnetic exchange (J/KB = 37 K) and an effective moment
of 2.14µB /Ru and (ii) for H∥c a Curie-Weiss temperature of
−150 K which evidences a strong antiferromagnetic effective
exchange and an effective moment of 2.7µB . So far no single-
crystal data for magnetization are available in the literature.
From powder results a positive Curie-Weiss temperature
θ = 23−40 K was determined [10] and the moments calcu-
lated are around 2.3µB . This is approximately what we found
for the in-plane contribution in our single crystal and it is most
likely that the powder average is dominated by this in-plane
contribution. Nonetheless, our single-crystal studies clearly
reveal the anisotropic nature of the magnetic exchange and give
clear evidence for an effective antiferromagnetic exchange
interaction with a larger effective moment of 2.7µB when
the field is applied along the c direction. This is well above
the spin-only value for the S = 1/2 low spin configuration of
Ru (1.73µB ) which points towards a prominent SOC. This is
supported by our field-dependent susceptibility studies shown
in Fig. 2(a). In the c direction, the susceptibility and the steplike
transitions at 14 and 8 K remain unaffected in fields up to 7 T. In
contrast to that, the in-plane susceptibility is strongly affected
by magnetic fields for T < 50 K. Upon applying fields up to

FIG. 2. (Color online) χ for H⊥c and H∥c at different magnetic
fields, (C/T ) versus T 2 at different magnetic fields for H⊥c and
H∥c.

14 T the phase transitions are shifted towards lower tempera-
tures and the susceptibility is enhanced. This is not expected
because of the effective ferromagnetic coupling evidence from
the Curie-Weiss fit. The reduction of χ⊥ with field evidences
admixed antiferromagnetic correlations which supports the
scenario of dissimilar exchange interaction (Heisenberg type
versus Kitaev type) being present in the honeycomb layer.

To study the complex phase transitions and the effect of
the magnetic field for both directions, we conducted specific
heat measurements (Fig. 2). In Fig. 2(b), the quotient of
specific heat and temperature is plotted as a function of T 2

between 2 and 20 K in fields up to 14 T and for the H⊥c
configuration. At zero field, the two phase transitions at 14 and
8 K could be clearly identified. The high-temperature transition
is somewhat broader than the low-temperature transition. Upon
applying magnetic fields up to 14 T, the complex transition
is monotonously suppressed, which is consistent with our
findings in the susceptibility. At highest fields of 14 T, the onset
of the low-T transition is at about 3 K. Above this transition, the
C/T curve remains smooth and shows a nice C ∼ T 2 [inset
of Fig. 2(b)] power law between 5 and 14 K, which might
indicate a spin-liquid-like behavior. In contrast to that, there
is no such strong field dependence for the H⊥c configuration.
Here, both phase transitions at 14 and 8 K remain unaffected
by the field. Assuming a negligible phonon contribution, we
find an entropy of S ≈ 0.5R ln 2 below 20 K for H = 0 T. So
far we do not have a proper phonon reference to do a more
quantitative specific heat analysis.

As a microscopic probe of the anisotropic magnetic order,
we performed 99,101Ru zero-field NMR on the α-RuCl3 single
crystal. Due to the presence of two isotopes with the higher
(>1/2) spin (5/2 for 99Ru and 5/2 for 101Ru) a complex
zero-field NMR spectrum is expected. Early 99Ru Mossbauer
measurement on the α-RuCl3 powder show the absence
of sizable quadrupolar interaction and provide the powder-
averaged hyperfine field at the Ru site of about 20.9 T [10].
The value of the hyperfine field is in good agreement with the
prediction of Watson and Freeman of about 20 T per unpaired
4d electron (and 11 T per unpaired 3d electron) [11]. For the
Ru3+ 4d5 state in the low-spin configuration (LSC) a hyperfine
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sharp peak growing and becoming 
narrower as the system size increases

broad peak almost independent 
of the system sizes

➡ just a crossover➡ sign of a phase transition
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Phase diagram in 3D

Tc is max for the isotropic case, 
where the frustration is most severe.

➡Frustration stabilizes QSLs, in 
contrast to conventional orders.

➡ no adiabatic connection, qualitatively different from conventional fluids
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All low-T QSLs are separated from high-T para by the phase transition.
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present MC results in the small α region, which strongly
supports that Tc estimated from the anomaly inCv is indeed
the critical temperature between the low-T QSL and high-T
paramagnet. Meanwhile, in the limit of α → 3=2, by using
the perturbation expansion in terms of Jz=J, we find that Tc
is scaled by J4z=J3 [18]. The dashed lines in Figs. 3(a) and
3(b) represent the fitting of MC data by this asymptotic
scaling. It also well explains the MC data, supporting the
phase transition at Tc.
Figure 3(c) summarizes the MC estimates of Tc in the 3D

plot. In the entire parameter space, the low-T QSL is
separated from the high-T paramagnet by the thermody-
namic singularity at Tc. There is no adiabatic connection
between the two states, and the transition always appears
to be continuous within the present calculations. These are
in sharp contrast to the situation in conventional fluids
where liquid and gas are adiabatically connected with each
other beyond the critical end point in the phase boundary
of the discontinuous transition. Thus, the thermodynamics
of the QSLs is not understood by the conventional theory
for liquids.
Interestingly, thevalue ofTc becomesmaximumatα≃ 1:

the QSL phase is most stable against thermal fluctuations

in the isotropic case. The bond-dependent interactions
in the Kitaev model compete with each other; it is not
possible to optimize the exchange energy on the x, y,
and z bonds simultaneously. The frustration becomes
strongest at α ¼ 1. Hence, interestingly, our MC results
in Fig. 3(c) show that the frustration tends to stabilize the
QSL against thermal fluctuations. This frustration effect
is opposite to that on conventional magnetically ordered
states where frustration suppresses the critical temperatures.
In the vicinity of α ¼ 1, the ground state is the gapless

QSL. By decreasing α, the ground state changes into the
gapped QSL at the quantum critical point at α ¼ 3=4, as
shown in Fig. 1(c). However, Tc changes smoothly around
α ¼ 3=4, as shown in Fig. 3. Also, we find no singularity in
the T dependence of Cv around α ¼ 3=4 within the present
precision, except for Tc [e.g., see Fig. 4(a)]. In the low-T
limit, however, there should be some anomaly in Cv,
reflecting the change of low-energy excitations. The results
suggest that such anomaly will happen to be seen at much
lower T than 10−4.
Now let us discuss the reason why the specific heat Cv

exhibits two peaks. We show the T dependence of the
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FIG. 2 (color online). (a) Temperature dependence of the
specific heat in the isotropic case with Jx ¼ Jy ¼ Jz ¼ 1=3
(α ¼ 1). (b) The enlarged view in the vicinity of the low-
temperature peak. The calculations were performed for the
systems on the hyperhoneycomb lattice with N ¼ 4L3 spins
up to L ¼ 6. The inset in (b) shows the peak temperature T 0

c of the
specific heat as a function of the inverse of the system sizeN. The
dotted line represents the linear fit for the three largest N.
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FIG. 3 (color online). Finite-temperature phase diagram of
the 3D Kitaev model. (a) Cut of the phase diagram along the
α and α0 axes shown in the insets. Log-scale plot for (a) is shown
in (b). The solid (dashed) line is the α dependence of Tc obtained
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QSL remains up to Tc>0 
as a stable phase in the 
whole parameter space.



difference from 2D: local conserved quantities Wp form closed objects

What is this phase transition?
Local Constraint in Flux

Original Kitaev model

Wp

Wp

Wp

Wp

= 1WpWpWpWp

Local constraint for Wp in the original Kitaev model

Flipped Wp form a loop.
Topological characterization by Wp-loops.

Wp form a pyrochlore lattice

Wp=-1

Wp=+1

originating from algebra of Pauli matrices
“Quantum-effect-induced rigid constraints”

cf. spin ice (soft constraint)

Number of 
             
    is even.
Wp = �1

Local Constraint in Flux
Original Kitaev model

Wp

Wp

Wp

Wp

= 1WpWpWpWp

Local constraint for Wp in the original Kitaev model

Flipped Wp form a loop.
Topological characterization by Wp-loops.

Wp form a pyrochlore lattice

Wp=-1

Wp=+1

originating from algebra of Pauli matrices
“Quantum-effect-induced rigid constraints”

cf. spin ice (soft constraint)

Number of 
             
    is even.
Wp = �1

Wp Wp Wp Wp =1
“2-in 2-out”, “all-in”, “all-out”

cf.) spin ice: soft constraint, only “2-in 2-out”, no intersection

local constraint
(hard constraint by S=1/2 algebra)

excited states are given by 
emergent loops of flipped Wp

Wp =
Y

r2p

⌘r

where ηr = ic̄bc̄w = ±1 are Z2 variables defined on each z bond (r is the bond index), as the

eigenvalues are ±1. Here, we consider that 1D chains composed of x and y bonds are open

strings, by imposing open boundary conditions along the chain, in order to avoid subtle bound-

ary problem intrinsic to the Jordan-Wigner transformation. If we impose a periodic boundary

condition, a complicated term at the boundary resulting from the Jordan-Wigner transformation

in Eq. (2) will appear. The Hamiltonian in Eq. (10) is a free Majorana fermion system cou-

pled with the Z2 degree of freedom, {ηr}, on each z-bond. Formally, the model is similar to

the double-exchange model with Ising localized spins; in the usual double-exchange models,

localized spins couple with itinerant electron spins via the on-site exchange coupling, but in the

present case, the Ising spins couple with the hopping of fermions along the z bonds. The formal

equivalence allows us to apply the Monte Carlo (MC) simulation used for the double-exchange

models. Here, we adopt the conventional algorithm in which the MC weight for a given config-

uration of {ηr} is obtained by the exact diagonalization of the Majorana fermions, as described

below (4).

The partition function of the system described by the Hamiltonian in Eq. (10) is given by

Z = Tr{ηr}Tr{ci}e
−βH = Tr{ηr}e

−βFf ({ηr}), (11)

where β is the inverse temperature β = 1/T (we set the Boltzmann constant kB = 1). Ff ({ηr})

is the free energy of the Majorana fermion system for a given configuration of {ηr};

Ff ({ηr}) = −T ln Tr{ci}e
−βH({ηr}). (12)

For a given {ηr}, the quadratic Hamiltonian H({ηr}) is easily diagonalized to give

H({ηr}) =
N/2∑

λ

ελ({ηr})
(

f †
λfλ −

1

2

)
, (13)

where fλ (f †
λ) is the annihilation (creation) operator of a spinless fermion. It is worthy noting

that there are N/2 one-body states in the Majorana fermion for the N -site system. Then, the

3



Proliferation of excited loops

observation from QMC snapshot: the phase transition might be related with 
the topological change of emergent loops

Low temperatureZero temperature

Paramagnet
Finite-T phase transition

Spin liquid

High temperature

No loop
Short 
loops

Extended 
loopsShort loops

all Wp = +1

“confinement-deconfinement” type phase transition?

Wp = �1

cf. 3D Z2 lattice gauge theory



Characterization by Wilson loop
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Wilson loop acts as an order parameter in both gapped and gapless regions.



Finite-T phase transition 
in chiral spin liquids

J. Nasu and Y. Motome, preprint (arXiv:1506.01514), accepted by Phys. Rev. Lett.



Chiral spin liquid in Kitaev-type models

Kitaev-type model with odd-sites plaquettes will possess a chiral spin liquid 
ground state with time-reversal symmetry breaking (A. Kitaev, 2006)
exact solution for a variant of the Kitaev model on a decorated honeycomb 
lattice (3-12 star lattice) (H. Yao and S. A. Kivelson, 2007)

topologically nontrivial
(non-Abelian anyons)

topologically trivial
(Abelian anyons)

J 0
z

J 0
x

J 0
y

J
x

Jz

Jy

Wh

Wt

J
x

= J
y

= J
z

= J

J 0
x

= J 0
y

= J 0
z

= J 0

plaquettes. The true ground state is found by identifying
the sector or sectors in which E0 is minimal. In all cases,
the ground state of this model must break TRS, and must
therefore be at least twofold degenerate [20]. To see this,
suppose a set ( ~!, f!pg) which minimizes E0. There must
exist a distinct time-reversed set ( ~!T , f!T

pg) such that
E0! ~!T; f!T

pg" # E0! ~!; f!pg" where ~!T # ~! and !T
p #

!p (!T
p # $!p) on dodecagonal (triangular) plaquettes.

This twofold degeneracy due to TRS is in addition to the
topological degeneracy discussed below.

Uniform fluxes.—To find the global ground state or
ground states, we need to identify the sector in which E0
is minimal. For generic J" and J0", we have not yet ob-
tained an analytic solution to this problem. However, we
have analyzed [21] the problem using degenerate pertur-
bation theory, both in the limit J" % J0" and in the opposite
J" & J0" limit. Although the effective Hamiltonian looks
quite different in these two limits, in both cases, it is
straightforward (but tedious) to show that E0 is minimized
by a uniform flux configuration f!pg # f1g (or the flux
configuration related by T̂). Numerically, we have com-
puted E0 as a function of the ( ~!, f!pg) for a set of finite
size systems with about 104 sites and for various set of J"
and J0". In all cases, we found that E0 is minimized by the
same uniform flux configuration. Thus, the lattice transla-
tional, point group, and spin symmetries [11] are pre-
served. For a finite system with PBC, the energy
difference between ground states with different global
fluxes decays exponentially with the linear dimension of
the system for gapped Majorana fermions. In the thermo-
dynamic limit, for the Abelian CSL phase, the ground state
degeneracy is fourfold coming from the four possible
global fluxes, !x # '1 and !y # '1. However, for the
non-Abelian CSL, the ground state is threefold degenerate
because the projection operator annihilates one global flux
ground state [19,22]. We thus focus on the uniform flux
(ground state) sector. The corresponding free Majorana
Hamiltonian, H UF, is of the same form as Eq. (4) with
all Ûij and F̂m replaced by 1.

H UF can easily be exactly diagonalized. Each site is
labeled by a unit cell index r and a site index " # 1; . . . ; 6
within the unit cell as shown in Fig. 1(b) so

 H UF # i
X

r
(J0x!cr;4cr)e2;1" ) Jx!cr;5cr;6 ) cr;3cr;2"

) J0y!cr;2cr)e1;5" ) Jy!cr;1cr;3 ) cr;6cr;4"
) J0z!cr;3cr;6" ) Jz!cr;1cr;2 ) cr;4cr;5"*; (5)

where e1;2 # x̂=2' ŷ
!!!
3
p

=2 are two unit vectors shown in
Fig. 1(b). We define a 6-component spinor field  "!k" +P

re$ik,rcr;"=
!!!!!!!
2N
p

, whereN is the number of unit cells and
k lies in the first Brillouin zone. Then, H UF #P

k y!k"H!k" !k" with H!k" a 6- 6 Hermitian matrix,
and H.!k" # $H!$k". Since cr;" is a Majorana fermion,
 "!$k" #  y"!k", which means that  satisfies the usual

anticommutation relations: f y"!k";  #!q"g # $kq$"#.
Consequently, the problem is equivalent to a familiar free
fermion problem, with the understanding that we must
identify the states at k and $k to avoid double counting
of states. There are six bands, %n!k", corresponding to six
sites per unit cell. The spectrum is gapped except when
D!k" + Det(H!k"* # 0.

Chern number and edge states.—To simplify the further
discussion, we will henceforth consider the case Jx # Jy #
Jz + J and J0x # J0y # J0z + J0. We note that these condi-
tions are implied if we want the Hamiltonian to respect the
various mirror symmetries of the lattice pictured in
Fig. 1(a).

It is straightforward to show that D!k" # 0 only when
k # !&;$&=

!!!
3
p
" and J0 #

!!!
3
p
J. Thus, there is a quantum

phase transition between two fully gapped phases which
occurs at J0 #

!!!
3
p
J, as shown in Fig. 2(a). These two

phases are topologically distinct as can be seen by directly
computing the Chern number ': for J0 >

!!!
3
p
J, ' # 0,

while for J0 <
!!!
3
p
J, ' # '1. That ' # '1 for J0 <

!!!
3
p
J

can be understood as follows: As J ! 1, the spectrum of
Eq. (5) to first order in J0 is gapless with Dirac-cones, as in
graphene. Terms second order in J0=J generate an effective
Haldane mass term which breaks TRS [21], gaps the Dirac
cone, and gives ' # '1 [23]. The same conclusion can be
reached by computing the edge states of the system on a
cylinder, since they reflect the topological character of the
bulk state [24]. In the small J (topologically trivial) phase,
there is a gap about zero energy in the edge state spectrum,
as well as the bulk. However, in the large J (topologically
nontrivial) phase, there is an edge mode which disperses
through zero energy. This is illustrated in Fig. 2(b), in

(a) (b)

FIG. 2 (color online). (a) Bulk energy gap, " as a function of
J0=J for the symmetric case, J" + J and J0" + J0. The quantum
critical point is at !J0=J"c #

!!!
3
p

. For small J, the phase is a
topologically trivial CSL with Abelian excitations while for
large J, the phase is a topologically nontrivial CSL with vortex
excitations obeying non-Abelian statistics. The J ! 1 spectrum
is Dirac-like, with a mass gap that vanishes as J02=J. There is a
cusp at J0=J # 2

!!!
3
p
=3, where the k with minimum energy

jumps. (b) Energy levels calculated for J # J0 on a cylinder
with approximately 104 sites and with OBC along x̂-direction.
There is one edge state (dotted line) crossing with zero energy,
corresponding to Chern number ' # '1.
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Specific heat and chirality
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Phase diagram
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2

γ bonds in the triangles, ⟨jk⟩γ , while J ′
γ for NN γ′ bonds

connecting the triangles, ⟨jk⟩′γ , as shown in the inset of
Fig. 1. For simplicity, we assume J = Jx = Jy = Jz and
J ′ = J ′

x = J ′
y = J ′

z as in Ref. [13], and introduce the param-
eter α so that J = cosα and J ′ = sinα.

The model in Eq. (1) is exactly solvable for the ground
state [13]. There are two kinds of local conserved quantities:
one is defined for each triangle t, Wt =

∏
j∈t σ

γj

j , and the
other for each dodecagon h, Wh =

∏
j∈h σ

γj

j , where γj de-
notes the bond not included in t or h among three NN bonds
at the site j. Note that Wt changes its sign by the time re-
versal operation as it consists of the three products of Pauli
matrices. The exact ground state is a CSL in which the time
reversal symmetry is broken by a uniform alignment of Wt

as well as Wh. Remarkably, the ground state accommodates
two topologically different CSLs depending on α, as pre-
sented in the bottom of Fig. 1. The critical point is located
at α = αc = π/3: the ground state is a topologically trivial
CSL for α > αc, whereas it becomes topologically nontrivial
for α < αc. The latter phase has the non-Abelian anyons in
the excitation.

In order to compute thermodynamic properties of CSLs in
this model, we adopt a QMC technique developed by the au-
thors and their collaborator recently [15–17]. The method is
based on the Majorana fermion representation of the quan-
tum spins via the Jordan-Wigner transformation [13, 18–20].
In terms of the Majorana fermions, the model in Eq. (1)
is written as H = iJx

∑
⟨jk⟩x cjck − iJy

∑
⟨jk⟩y cjck −

iJz
∑

⟨jk⟩z ηrcjck + iJ ′
x

∑
⟨jk⟩′x

cjck − iJ ′
y

∑
⟨jk⟩′y

cjck −
iJ ′

z

∑
⟨jk⟩′z

ηr′cjck, where j < k. The operator ηr = ic̄j c̄k
defined on each z and z′ bond is regarded as a Z2 variable tak-
ing ±1, because it commutes with the Hamiltonian and η2r =
1 (r is the bond index). Thus, the Hamiltonian describes the
free Majorana fermions coupled with thermally-fluctuating Z2

variables. This representation enables the QMC simulation
without the negative sign problem. We carried out 40,000 MC
steps for measurement after 10,000 MC steps for thermaliza-
tion. Moreover, we used the parallel tempering algorithm to
avoid the slowing down at low T [21]: we prepared 16 repli-
cas in each simulation. We calculated the 6L2-site clusters up
to L = 10 with the twisted boundary condition [15].

Figure 1 shows the phase diagram obtained by the QMC
simulation. We find that the model in Eq. (1) exhibits a phase
transition at a finite T , as expected for the discrete chiral sym-
metry breaking in the CSL phases. The critical temperature
Tc is determined by the specific heat Cv and the chirality κ, as
described below. In addition to the transition, we find several
crossovers as shown in the phase diagram; we will return to
this point later.

QMC data for Cv at α/π = 0.3 and 0.4 are shown in
Figs. 2(a) and 2(d), respectively. There is a sharp peak that
grows with increasing the system size, indicating the phase
transition. We also show the data for the mean squares of the
chirality defined as κ = 2

L2

∑
t Wt in Figs. 2(b) and 2(e).

This quantity develops rapidly with decreasing T at the peak
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FIG. 1: (color online). Finite-T phase diagram of the Kitaev model
on a decorated honeycomb lattice. The ground-state phase diagram
is also presented in the bottom of the figure. The lattice structure
is depicted in the inset. The circles represent the phase transition
temperature Tc. The deduced location of the tricritical point is also
shown; for larger (smaller) α, the transition is continuous (discon-
tinuous). The triangles, squares, diamonds, and inverted triangles
represent the crossover temperatures, T ∗, T ∗∗, T ∗

L , and T ∗
H, respec-

tively. The solid and dotted lines in the large α region represent Tc

and T ∗∗, respectively, determined by the MC simulation for the ef-
fective model for J ′/J ≫ 1. The solid, dashed, and dashed-dotted
lines in the small α region represent Tc, T ∗

L , and T ∗
H, respectively,

obtained from the effective model for J ′/J ≪ 1. See the text for
details.

temperature of Cv , which clearly indicates that the phase tran-
sition is associated with the time reversal symmetry breaking.

Interestingly, Tc changes continuously while changing α as
shown in Fig. 1, despite the topological change in the ground
state at α = αc. We, however, find that the nature of the phase
transition changes in the vicinity of this point. To see this,
we calculate the energy histogram at several T near Tc. Fig-
ure 2(g) shows the data at α/π = 0.3. The histogram shows
a double peak structure, which indicates that the phase transi-
tion is of first order. On the other hand, we cannot find such
behavior at α/π = 0.4. Instead, we show that the finite-size
scaling collapse of ⟨κ2⟩ works well for the L = 6, 8, and 10
clusters as shown in Fig. 2(h), suggesting that the phase tran-
sition is of second order at α/π = 0.4. In the scaling collapse,
the optimization is carried out by the Bayesian scaling analy-
sis [22] and we obtain the critical exponents as 1/ν = 1.09(9)
and η = 0.18(3). These exponents are close to those for the
2D Ising universality class, ν = 1 and η = 1/4 [23]. The
results suggest the existence of the tricritical point between
α/π = 0.3 and 0.4, which is close to αc, as shown in Fig. 1.

To examine the relation between the tricritical point and the
topological nature of CSL phases below Tc, we calculate the
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γbondsinthetriangles,⟨jk⟩γ,whileJ′
γforNNγ′bonds

connectingthetriangles,⟨jk⟩′γ,asshownintheinsetof
Fig.1.Forsimplicity,weassumeJ=Jx=Jy=Jzand
J′=J′

x=J′
y=J′

zasinRef.[13],andintroducetheparam-
eterαsothatJ=cosαandJ′=sinα.

ThemodelinEq.(1)isexactlysolvablefortheground
state[13].Therearetwokindsoflocalconservedquantities:
oneisdefinedforeachtrianglet,Wt=

∏
j∈tσ

γj

j,andthe
otherforeachdodecagonh,Wh=

∏
j∈hσ

γj

j,whereγjde-
notesthebondnotincludedintorhamongthreeNNbonds
atthesitej.NotethatWtchangesitssignbythetimere-
versaloperationasitconsistsofthethreeproductsofPauli
matrices.TheexactgroundstateisaCSLinwhichthetime
reversalsymmetryisbrokenbyauniformalignmentofWt

aswellasWh.Remarkably,thegroundstateaccommodates
twotopologicallydifferentCSLsdependingonα,aspre-
sentedinthebottomofFig.1.Thecriticalpointislocated
atα=αc=π/3:thegroundstateisatopologicallytrivial
CSLforα>αc,whereasitbecomestopologicallynontrivial
forα<αc.Thelatterphasehasthenon-Abeliananyonsin
theexcitation.

InordertocomputethermodynamicpropertiesofCSLsin
thismodel,weadoptaQMCtechniquedevelopedbytheau-
thorsandtheircollaboratorrecently[15–17].Themethodis
basedontheMajoranafermionrepresentationofthequan-
tumspinsviatheJordan-Wignertransformation[13,18–20].
IntermsoftheMajoranafermions,themodelinEq.(1)
iswrittenasH=iJx

∑
⟨jk⟩xcjck−iJy

∑
⟨jk⟩ycjck−

iJz
∑

⟨jk⟩zηrcjck+iJ′
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cjck−iJ′
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∑
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cjck−
iJ′

z

∑
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ηr′cjck,wherej<k.Theoperatorηr=īcj̄ck
definedoneachzandz′bondisregardedasaZ2variabletak-
ing±1,becauseitcommuteswiththeHamiltonianandη2r=
1(risthebondindex).Thus,theHamiltoniandescribesthe
freeMajoranafermionscoupledwiththermally-fluctuatingZ2

variables.ThisrepresentationenablestheQMCsimulation
withoutthenegativesignproblem.Wecarriedout40,000MC
stepsformeasurementafter10,000MCstepsforthermaliza-
tion.Moreover,weusedtheparalleltemperingalgorithmto
avoidtheslowingdownatlowT[21]:weprepared16repli-
casineachsimulation.Wecalculatedthe6L2-siteclustersup
toL=10withthetwistedboundarycondition[15].

Figure1showsthephasediagramobtainedbytheQMC
simulation.WefindthatthemodelinEq.(1)exhibitsaphase
transitionatafiniteT,asexpectedforthediscretechiralsym-
metrybreakingintheCSLphases.Thecriticaltemperature
TcisdeterminedbythespecificheatCvandthechiralityκ,as
describedbelow.Inadditiontothetransition,wefindseveral
crossoversasshowninthephasediagram;wewillreturnto
thispointlater.

QMCdataforCvatα/π=0.3and0.4areshownin
Figs.2(a)and2(d),respectively.Thereisasharppeakthat
growswithincreasingthesystemsize,indicatingthephase
transition.Wealsoshowthedataforthemeansquaresofthe
chiralitydefinedasκ=2

L2

∑
tWtinFigs.2(b)and2(e).

ThisquantitydevelopsrapidlywithdecreasingTatthepeak
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FIG.1:(coloronline).Finite-TphasediagramoftheKitaevmodel
onadecoratedhoneycomblattice.Theground-statephasediagram
isalsopresentedinthebottomofthefigure.Thelatticestructure
isdepictedintheinset.Thecirclesrepresentthephasetransition
temperatureTc.Thededucedlocationofthetricriticalpointisalso
shown;forlarger(smaller)α,thetransitioniscontinuous(discon-
tinuous).Thetriangles,squares,diamonds,andinvertedtriangles
representthecrossovertemperatures,T∗,T∗∗,T∗

L,andT∗
H,respec-

tively.ThesolidanddottedlinesinthelargeαregionrepresentTc

andT∗∗,respectively,determinedbytheMCsimulationfortheef-
fectivemodelforJ′/J≫1.Thesolid,dashed,anddashed-dotted
linesinthesmallαregionrepresentTc,T∗

L,andT∗
H,respectively,

obtainedfromtheeffectivemodelforJ′/J≪1.Seethetextfor
details.

temperatureofCv,whichclearlyindicatesthatthephasetran-
sitionisassociatedwiththetimereversalsymmetrybreaking.

Interestingly,Tcchangescontinuouslywhilechangingαas
showninFig.1,despitethetopologicalchangeintheground
stateatα=αc.We,however,findthatthenatureofthephase
transitionchangesinthevicinityofthispoint.Toseethis,
wecalculatetheenergyhistogramatseveralTnearTc.Fig-
ure2(g)showsthedataatα/π=0.3.Thehistogramshows
adoublepeakstructure,whichindicatesthatthephasetransi-
tionisoffirstorder.Ontheotherhand,wecannotfindsuch
behavioratα/π=0.4.Instead,weshowthatthefinite-size
scalingcollapseof⟨κ2⟩workswellfortheL=6,8,and10
clustersasshowninFig.2(h),suggestingthatthephasetran-
sitionisofsecondorderatα/π=0.4.Inthescalingcollapse,
theoptimizationiscarriedoutbytheBayesianscalinganaly-
sis[22]andweobtainthecriticalexponentsas1/ν=1.09(9)
andη=0.18(3).Theseexponentsareclosetothoseforthe
2DIsinguniversalityclass,ν=1andη=1/4[23].The
resultssuggesttheexistenceofthetricriticalpointbetween
α/π=0.3and0.4,whichisclosetoαc,asshowninFig.1.

Toexaminetherelationbetweenthetricriticalpointandthe
topologicalnatureofCSLphasesbelowTc,wecalculatethe

isolated 
triangles

2nd order

1st order



Topological quantities
|ν

|
|κ

xy
|

T

0.0

0.2

0.4

0.6

0.8

1.0

 0.01  0.012  0.014

L=6
L=8
L=10

0.000

0.001

0.002

0.003

 0.01  0.012  0.014

pi/12.*x
L=6
L=8
L=10

π T/12

“Chern number”

⌫(T ) =
4⇡

V

X

n,k

f(E
nk)

X

m 6=n

Im
hu

nk|vx|umkihumk|vy|unki
("

nk � "
mk)2 + �2

: eigenstate of the Bloch Hamiltonian|unki

10x10 supercell and  γ=0.01

H =
X

k

c†kHkck =
X

n:half

X

k

|"nk|(2f†
nkfnk � 1)

thermal Hall conductance

xy(T ) =
T

V

X

n,k

c2(Enk)
X

m 6=n

Im
hu

nk|vx|umkihumk|vy|unki
("

nk � "
mk)2 + �2

: thermal current

c2(Enk) =

Z 1

Enk

dE(�E)2(�f 0(E))

J. M. Luttinger, 1964; C. L. Kane and M. P. A. Fisher, 1996;
A. Cappelli et al., 2001; T. Qin et al., 2011; 
H. Sumiyoshi and S. Fujimoto, 2013

↵ = 0.3⇡



T

peak peakapparent T-linear 
behavior

release of
1/2(log2)

release of
1/2(log2)

Curie like
saturation to 
T=0 values

0 T ⇤ (high) ⇠ JT ⇤ (low) . J/100

~T2

spin-spin 
correlations

specific heat

entropy

spin liquid with 
well-developed correlations

magnetic 
susceptibility

S(q=0,ω)

Diagnostic of Majorana

broad peak deviation from 
Curie behavior Curie like

low-energy
peak highly incoherent small weight

no notable feature

quantum spins

itinerant 

localized 

Majorana fermions

Kitaev-type localized spin systems may offer 
a good hunting place for Majorana fermions!
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further exploration of Majorana physics in quantum magnets!
๏ more inputs for/from experiments
๏ How universal are our findings?
๏ Any other smoking gun of “Majorana-ness”?

Methodology: further development of new numerical methods for 
quantum spin systems by using Majorana fermion representations
๏ Majorana representation is not unique: many possibilities for each
๏ exchange interactions beyond Kitaev lead to many-body interactions 

between Majoranas → many-body techniques for Majorana fermions?

Perspectives

extension to other Kitaev-type QSLs with different topology
๏ Majorana Fermi surfaces/nodes/Weyl points, ... M. Hermanns and S. Trebst, 2014

M. Hermanns, K. O’Brien, and S. Trebst, 2015
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