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Machine learning (with artificial neural network)

…

(1) Powerful, non-linear representation

(2) Efficient regression algorithm

Learning a digit-recognition neural network from data
= the least cross-entropy cost (most answers correct)

2



Machine learning Condensed Matter 
Phases of Matter 

Many-body state Phase

Liquid

or

Solid

…

Image Category
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Machine learning Condensed Matter 
Phases of Matter 

 Machine learning phases of matter and phase 
transitions

What do we use as data?

Snapshots of the order parameter field for the 2D Ising
model

J. Carrasquilla and R.G. Melko (2016)
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Machine learning for quantum systems?

 Local order parameter or conservation
J. Carrasquilla, R.G. Melko (2016); L. Wang (2016); etc.

 Entanglement
E. P. L. van Nieuwenburg*, Ye-Hua Liu, Sebastian D. Huber; 

Frank Schindler, Nicolas Regnault, Titus Neupert (2017); etc.

 Correlation
P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst (2017); etc.

Generic quantum systems Machine learning architecture
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MACHINE LEARNING 
WITH QUANTUM 
LOOP TOPOGRAPHY
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Quantum operators for machine learning 
quantum systems

‘Informative’ operatorsQuantum system Machine learning algorithm

YZ, E.-A. Kim (2017)

1. Physics inspired selections: 

e.g. physical transport

2. Interpretability – guiding principles
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• Training: using known, well-controlled examples to optimize 

the neural network

Information flow

Machine learning with quantum loop topography
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Machine learning with quantum loop topography

• Application: using the optimized neural network to identify the 

phases of the samples in question

Information flow
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Example #1: quantum Hall phases
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Raffaello Bianco and Raffaele Resta (2011).

Physics intuition on quantum Hall phases

 Q1. What is characteristic for the quantum Hall phases?
 A1. Hall transport! 

 Q2. What are the related operators?
 A2. Kubo formula
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Example: a non-interacting tight-binding model

Gap changes sign
at phase transition

YZ, E.-A. Kim (2017)

QH insulatorNormal insulator

0 1.00.5
Tuning parameter κ:
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Machine learning QH insulator

Triangular loops for 
Hall response

QH insulatorNormal insulator

0 1.00.5
Tuning parameter κ:
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Machine learning QH insulator

…     …      …

0 1.00.5
Tuning parameter κ:

Triangular loops for 
Hall response
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Phase diagram by machine learning

Quantum Hall 
insulator

Normal 
insulator

use the electron 
number operators

𝑛𝑛𝑟𝑟 = 𝑐𝑐𝑟𝑟
†𝑐𝑐𝑟𝑟
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Also work for fractional QH phases

Benchmark

Fractional 
QH insulator

Normal insulator

Also, correctly distinguish different topological phases (e.g. fractional 
vs integer QH insulators), and topological indices (e.g. ν=1 vs ν =-1).

YZ, E.-A. Kim (2017) 16



Example #2: superconducting fluctuations
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Physics intuition on longitudinal transport

 Dissemble current-current correlations:

 Let’s compare QLT and CNN side by side:

YZ, C. Bauer, P. Broecker, S. Trebst, E.-A. Kim (2018)

Direct input of MC samples 
of two-point correlations P:
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The negative-U Hubbard model 
phase diagram from machine learning

 DQMC samples:

 KT-type transition 
 sensitive to the onset of 

superconducting fluctuations

 Mean-field ansatz:

 No fluctuations
 Sharp signal when pairing 

gap opens
19



Also work for d-wave superconductivity

YZ, C. Bauer, P. Broecker, S. Trebst, E.-A. Kim (2018) 20



Advantages
 Accuracy

 Efficiency
◦ automated phase-space scan
◦ okay with Monte Carlo samples
◦ okay with simpler machine learning scheme

 Versatility
◦ lattice
◦ symmetries and disorders
◦ systematic ansatz
◦ partial information
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QUANTUM LOOP 
TOPOGRAPHY 
PHILOSOPHY
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The ‘good’ versus the ‘not-so-good’

Exactly solvable
lattice model:

Lattice model reality:
• Discrete lattice
• Finite correlation
• Cut off, fluctuation 

and uncertainty

B

Topological quantum
field theory:

Exactly solvable
lattice model:

 The ‘good’:

 The ‘not-so-good’:
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The ‘good’ versus the ‘not-so-good’

B

 The ‘good’: pristine data

 The ‘not-so-good’: noisy data

1

2

3
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Option #1: suppress the noise

B

1

2

3
• Get rid of the noise and compare with existing 

knowledge

• However, sometimes expensive or unable
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Option #2: learn from the noise

B

1

2

3

• Offer guidance – QLT

• Train with the noise to deal with 
the noise

YZ, R. G. Melko, E.-A. Kim (2017) 26



INTERPRETING THE 
PHYSICS 
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The physics underlying a phase
 First, make sure the trained machine learning architecture 

reflects the universality of the phase
◦ e.g. phase diagram matches

 Then, ‘reverse engineer’ the architecture to formulate the 
function from input to output
◦ Taylor expansion (sigmoid neurons) 
◦ Trace RELU firing (rectified linear neurons)

28
f(x)  =  y



Interpreting the QH insulator criteria

−4.84 × 𝑚𝑚𝑚𝑚𝑚𝑚 0.208 �
𝑑𝑑𝑐𝑐=1

iPjkPklPlj + 3.73,0 + 9.03 > 0

1
𝑁𝑁 �

𝑑𝑑𝑐𝑐=1

2𝜋𝜋iPjkPklPlj > 0.4
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Firing condition of the output neuron:

Weights of the imaginary parts of 
the four smallest loops

Weights of the rest

In comparison with:

S=1/2 for dc=1



Example #3: quantum spin Hall insulator
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C.L. Kane, E.J. Mele (2005)

Intuition from spin Hall transport:

tr P P,xs⃗ P,y

versus Hall transport: tr P P,x P,y

𝑆𝑆

Include sx , sy and sz



Phase diagram from machine learning
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C.L. Kane, E.J. Mele (2005)
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Phase diagram from neural outputs
Map out the firing condition 
of the output neuron:

From the 1st and 2nd smallest triangles

Calculated expectation value

�
𝑑𝑑=𝑥𝑥,𝑦𝑦,𝑧𝑧

�𝐼𝐼𝐼𝐼 𝑠𝑠𝑗𝑗𝑑𝑑𝑃𝑃𝑗𝑗𝑗𝑗𝑃𝑃𝑘𝑘𝑘𝑘𝑃𝑃𝑙𝑙𝑗𝑗𝑆𝑆∆𝑗𝑗𝑗𝑗𝑗𝑗
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Interface between experiments and 
hypothetical theories
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YZ, A. Mesaros, K. Fujita, S.D. Edkins, M.H. Hamidian, K. Ch'ng, H.
Eisaki, S. Uchida, J.C. Séamus Davis, E. Khatami, E.-A. Kim (2018)
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Summary

Quantum systems Machine learningQuantum loop topography

‘Noisy’ data Informative ‘operators’
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