

Yi Zhang (Frank) Cornell University

Motivated and enlightened @ KITP two years ago...

PRL **118,** 216401 (2017)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 26 MAY 2017

Quantum Loop Topography for Machine Learning

Yi Zhang^{*} and Eun-Ah Kim[†]

Department of Physics, Cornell University, Ithaca, New York 14853, USA

and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

KITP 2019

Machine learning (with artificial neural network)

Learn a function from data
(linear regression = least squares fit)

Learning a digit-recognition neural network from data = the least cross-entropy cost (most answers correct)

- (1) Powerful, non-linear representation
- (2) Efficient regression algorithm

Machine learning Condensed Matter Phases of Matter

Category Image 222 X 3 **3** 3 3 Many-body state Phase Liquid

Machine learning Condensed Matter Phases of Matter

Machine learning phases of matter and phase transitions

What do we use as data?

Snapshots of the <u>order parameter field</u> for the 2D Ising model

J. Carrasquilla and R.G. Melko (2016)

Machine learning for quantum systems?

Generic quantum systems Machine learning architecture

Local order parameter or conservation

J. Carrasquilla, R.G. Melko (2016); L. Wang (2016); etc.

Entanglement

E. P. L. van Nieuwenburg*, Ye-Hua Liu, Sebastian D. Huber; Frank Schindler, Nicolas Regnault, Titus Neupert (2017); etc.

Correlation

P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst (2017); etc.

MACHINE LEARNING WITH QUANTUM LOOP TOPOGRAPHY

Quantum operators for machine learning quantum systems

1. Physics inspired selections:

e.g. physical transport

Quantum system 'Informative' operators Machine learning algorithm

2. Interpretability – guiding principles

Machine learning with quantum loop topography

 Training: using known, well-controlled examples to optimize the neural network

Machine learning with quantum loop topography

 Application: using the optimized neural network to identify the phases of the samples in question

Example #1: quantum Hall phases

- Q1. What is characteristic for the quantum Hall phases?
- A1. Hall transport!
- Q2. What are the related operators?
- A2. Kubo formula

$$\sigma_{xy} = \frac{ie^2\hbar}{N} \left[\sum_{n \neq 0} \frac{\langle \Phi_0 | v_y | \Phi_n \rangle \langle \Phi_n | v_x | \Phi_0 \rangle - x \leftrightarrow y}{(E_n - E_0)^2} \right]$$

$$H' = -\Delta P$$
 $P = \sum_{m \in v} |m\rangle \langle m|$ $P_{ij} \equiv \langle c_i^{\dagger} c_j \rangle$

$$\sigma_{xy} = \frac{e^2}{h} \cdot \frac{1}{N} \sum 4\pi i P_{jk} P_{kl} P_{lj} S_{\triangle jkl}$$

Raffaello Bianco and Raffaele Resta (2011).

Example: a non-interacting tight-binding model

$$H(\kappa) = \sum_{\vec{r}} (-1)^{y} c_{\vec{r}+\hat{x}}^{\dagger} c_{\vec{r}} + [1 + (-1)^{y} (1 - \kappa)] c_{\vec{r}+\hat{y}}^{\dagger} c_{\vec{r}}$$
$$+ (-1)^{y} \frac{i\kappa}{2} [c_{\vec{r}+\hat{x}+\hat{y}}^{\dagger} c_{\vec{r}} + c_{\vec{r}+\hat{x}-\hat{y}}^{\dagger} c_{\vec{r}}] + \text{H.c.},$$

Gap changes sign at phase transition

Tuning parameter κ:

YZ, E.-A. Kim (2017)

Machine learning QH insulator

Machine learning QH insulator

Phase diagram by machine learning

Also work for fractional QH phases

Also, correctly distinguish different <u>topological phases</u> (e.g. fractional vs integer QH insulators), and <u>topological indices</u> (e.g. v=1 vs v=-1).

YZ, E.-A. Kim (2017)

Example #2: superconducting fluctuations

Physics intuition on longitudinal transport

Dissemble current-current correlations:

$$L_{ijkl} = [P_{ij}P_{jk}P_{kl}P_{li}]$$

$$L'_{jkl} = [P_{jk}P_{kl}P_{lj}]$$

$$L_{123}$$

$$L_{1234}$$

$$L_{1423}$$

$$L_{1342}$$

Let's compare QLT and CNN side by side:

Direct input of MC samples of two-point correlations *P*:

The negative-U Hubbard model phase diagram from machine learning

$$H = -\sum_{\langle ij\rangle,s} \left(c_{j,s}^{\dagger} c_{i,s} + c_{i,s}^{\dagger} c_{j,s} \right) - \mu \sum_{i} \left(n_{i,\uparrow} + n_{i,\downarrow} \right) + U \sum_{i} \left(n_{i,\uparrow} - \frac{1}{2} \right) \left(n_{i,\downarrow} - \frac{1}{2} \right)$$

DQMC samples:

- KT-type transition
- sensitive to the onset of superconducting fluctuations

Mean-field ansatz:

- No fluctuations
- Sharp signal when pairing gap opens

Also work for d-wave superconductivity

$$S_{\psi} = -\int_{\tau, \mathbf{r}, \mathbf{r}'} \sum_{s, \alpha} \left[(\partial_{\tau} - \mu) \, \delta_{\mathbf{r}\mathbf{r}'} - t_{\alpha \mathbf{r}\mathbf{r}'} \right] \psi_{\alpha \mathbf{r}s}^{\dagger} \psi_{\alpha \mathbf{r}'s}$$

$$S_{\lambda} = \lambda \int_{\tau, \mathbf{r}} e^{i\mathbf{Q} \cdot \mathbf{r}_{\mathbf{i}}} \vec{\varphi}_{\mathbf{r}} \cdot \left(\psi_{a \mathbf{r}s}^{\dagger} \vec{\sigma}_{ss'} \psi_{b \mathbf{r}s'} + \text{h.c.} \right)$$

$$S_{\varphi} = \int_{\tau, \mathbf{r}} \frac{1}{2c^{2}} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + (\nabla \vec{\varphi})^{2} + \frac{r}{2} \vec{\varphi}^{2} + \frac{u}{4} (\vec{\varphi}^{2})^{2}$$

Advantages

- Accuracy
- Efficiency
 - automated phase-space scan
 - okay with Monte Carlo samples
 - okay with simpler machine learning scheme
- Versatility
 - lattice
 - symmetries and disorders
 - systematic ansatz
 - partial information

Disadvantages?

QUANTUM LOOP TOPOGRAPHY PHILOSOPHY

The 'good' versus the 'not-so-good'

• The 'good':

Topological quantum field theory:

Exactly solvable lattice model:

• The 'not-so-good':

Lattice model reality:

- Discrete lattice
- Finite correlation
- Cut off, fluctuation and uncertainty

Exactly solvable lattice model:

The 'good' versus the 'not-so-good'

The 'good': pristine data

2

3

The 'not-so-good': noisy data

Option #1: suppress the noise

2

3

- - Get rid of the noise and compare with existing knowledge
 - However, sometimes expensive or unable

Option #2: learn from the noise

- Offer guidance QLT
- Train with the noise to deal with the noise

INTERPRETING THE PHYSICS

The physics underlying a phase

- First, make sure the trained machine learning architecture reflects the universality of the phase
 - e.g. phase diagram matches
- Then, 'reverse engineer' the architecture to formulate the function from input to output
 - Taylor expansion (sigmoid neurons)
 - Trace RELU firing (rectified linear neurons)

$$f(x) = y$$

Interpreting the QH insulator criteria

Firing condition of the output neuron:

Weights of the imaginary parts of the four smallest loops

Weights of the rest

$$-4.84 \times max \left[0.208 \sum_{dc=1}^{\infty} i P_{jk} P_{kl} P_{lj} + 3.73,0 \right] + 9.03 > 0$$

$$\frac{1}{N} \sum_{dc=1} 2\pi i \mathsf{P}_{\mathsf{jk}} \mathsf{P}_{\mathsf{kl}} \mathsf{P}_{\mathsf{lj}} > 0.4$$

In comparison with:
$$\sigma_{xy} = \frac{e^2}{h} \cdot \frac{1}{N} \sum 4\pi i P_{jk} P_{kl} P_{lj} S_{\triangle jkl}$$

Example #3: quantum spin Hall insulator

$$H = t \sum_{\langle ij \rangle} c_i^{\dagger} c_j + i \lambda_{SO} \sum_{\langle \langle ij \rangle \rangle} \nu_{ij} c_i^{\dagger} s^z c_j + i \lambda_R \sum_{\langle ij \rangle} c_i^{\dagger} (\mathbf{s} \times \hat{\mathbf{d}}_{ij})_z c_j + \lambda_v \sum_i \xi_i c_i^{\dagger} c_i$$

C.L. Kane, E.J. Mele (2005)

Intuition from spin Hall transport:

$$tr(P[P,x\vec{s}][P,y])$$

versus Hall transport: tr(P[P,x][P,y])

Include s_x , s_y and s_z

Phase diagram from machine learning

Phase diagram from neural outputs

Map out the firing condition of the output neuron:

$$\sum_{d=x,y,z} \left(\sum_{l} Im[s_j^d P_{jk} P_{kl} P_{lj} S_{\Delta jkl}] \right)^2$$

From the 1st and 2nd smallest triangles

Calculated expectation value

Acknowledgement

Eun-Ah Kim

Simon Trebst

Peter Broecker

Carsten Bauer

Michael Matty

Jordan Venderley

Paul Ginsparg

Interface between experiments and hypothetical theories

YZ, A. Mesaros, K. Fujita, S.D. Edkins, M.H. Hamidian, K. Ch'ng, H. Eisaki, S. Uchida, J.C. Séamus Davis, E. Khatami, E.-A. Kim (2018)

J.B. Goetz, YZ, M.J. Lawler (2019)

Summary

'Noisy' data

Informative 'operators'

2 2 2 2 3 **3** 3 3

Quantum systems 🛑 Qua

Quantum loop topography

Machine learning