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Introduction
Many open questions in deep learning today.

“Vanilla” supervised learning setup:
--Training data drawn from some fixed distribution D
--Choose an architecture, unknown parameters.
--Run an algorithm for learning.
--Hyperparameters that can be further tuned.
--Ultimately: performance on test set (unseen, drawn from same distribution).

At present, not a lot is understood.
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Introduction
Just a sampling of open questions in deep learning theory:

--What are the conditions that yield good trainability and generalization (ultimate performance)? 
--How to select an architecture (massive design space)? How to reduce hyperparameter search?
--Can we learn with less data, smaller networks?
--What role does the (complexity, structure of the) task itself play?

And *many* others….

Pieces of the problem are intimately entangled with one another.

Combination of a scientific, engineering, and design problem. 

On the other hand, maybe not as experimentally limited as in the (biological, physical) sciences.

As always, a difficulty is to maintain balance between simplifying problem enough, but danger of making the 
problem too simple.

Where to begin?

Deep neural network 
black box
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Which regimes appear to be important to understand? 

Networks trained with stochastic optimization: 
best achievable test performance improves 
with width. 

Generalization gap for 5 hidden layer fully-connected 
networks on CIFAR-10 (fixed depth, increasing width). 
Filtered for 100% classification training accuracy. 

Observation: why do “large” networks generalize well? Why aren’t you plagued with overfitting when 
you add more parameters?(*)

Unexplained by older, classical results in statistical learning theory.

What happens in limit of infinite width?

See also B. Neyshabur, et al. NeurIPS 2017. (*)Though won’t be 
answering this question in 
this talk.
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Talk Outline

I. Correspondence between infinitely wide fully-connected neural networks 
and Gaussian processes
A. Focus on Bayesian inference
B. Brief snapshot of recent results on evolution under gradient descent 

II. Correspondence between infinitely wide convolutional neural networks and 
Gaussian processes
A. Empirical results on Bayesian inference vs. gradient descent training
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Review: Gaussian Processes (GPs)

Recall the definition:

For instance, for the RBF kernel: 

Samples from GP with RBF Kernel
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Review: Approaches to Inference (+ Notation)

posterior prior
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Discussion in deep learning has mostly focused on parametric point of view.  

But parameters in a neural network might lack direct meaning. What we really care about, and possibly might 
have a better sense for, are the functions realized by the network (nonparametric perspective).

Instead, integrate over the distribution of functions that corresponds to this (e.g., see “Bayesian field theory”).

Radford Neal, “Priors for Infinite Networks,” 1994:
Given some distribution (in this case, the prior) over parameters of the neural network, what distribution over 
functions is induced by the network?

A shift in perspective
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Shallow Neural Networks and GP Priors

Given some distribution (in this case, the prior) over parameters of the network, what is the distribution over 
functions computed by the network?

Neal answered this for single-hidden layer networks.

Specifically, consider a NN which:

● has a single hidden layer
● is fully-connected
● has i.i.d. prior over parameters (such that it give a sensible limit)

Claim: the distribution on its output converges to a Gaussian Process (GP) in the limit of infinite layer width.

Radford Neal, “Priors for Infinite Networks,” 1994.
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Shallow Neural Networks and GP Priors 
Follows from the Central Limit Theorem.

In the infinite width limit, every finite collection of                                will have a joint multivariate Normal 
distribution.

Let’s suppose e.g.:

The parameters of the GP are: 

(Note that outputs are independent because have Normal joint and zero covariance.)

Radford Neal, “Priors for Infinite Networks,” 1994.
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Deep Neural Networks and GP Priors
What is the prior over functions implied by the prior over parameters, for deep neural networks?

Consider a network which:
● is deep (L layers)
● is fully-connected
● has i.i.d. prior over parameters (such that it give a sensible limit)

Then the distribution on its output is also a GP in the limit of infinite layer width.

Suppose (from induction), that                     and recall that different units j are independent.  
                        
Then similarly, from Central Limit Theorem: 

J. Lee*, YB*, R. Novak, S. Schoenholz, J. Pennington, J. Sohl-Dickstein. “Deep Neural Networks as Gaussian Processes.” ICLR 
2018.
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Deep Neural Networks and GP Priors

The calculation of the expectation is a 2D Gaussian integral: 

As a result:

Base case in the recursion:
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Deep Neural Networks and Gaussian Process Priors
Altogether, for a depth L network, we summarize this:

Samples from a GP neural network prior with depth 10.
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Properties of the GP corresponding to a deep network
Recall the defining recursion relation for the covariance function:

For some nonlinearities, can compute F𝜙 exactly, such 
as for ReLU:1

ReLU kernel for various depths (flatter 
curves with larger depths).[1]. Cho and Saul, “Kernel Methods for Deep Learning,” 2009.
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Bayesian inference with a GP prior 

● Bayesian inference in function space:

For regression (specialize to this case in this talk), can do Gaussian integrals exactly. Obtain 
result:

Reduces inference to linear algebra.

[1]. C. K. Williams, “Computing with Infinite 
Networks,” 1997.
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Experiments 

Comparison of:
● Bayesian inference using this GP (corresponding to a fully-connected NN)
● Finite-width deep networks trained with (some variant of) gradient descent 

Treating classification as a regression task on one-hot targets, on MNIST and CIFAR-10.
● Fully-connected architecture, ReLU/Tanh nonlinearities
● Hyperparameter optimized

Kernel computation: either analytic form or using numerical interpolation with some tricks for 
speed-up. 

Bayesian inference requires matrix inversion (cubic time): we do exactly up to full dataset size.
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Performance comparison

Best performing models selected 
on validation set.

How to read entries in table:
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Performance for changing hyperparameters

Higher test accuracy = purple color. depth



Confidential & Proprietary

Phase Diagram for Signal Propagation

In fact, iterating the recursion relation results in fixed points -- “phases” and transitions 
between them as a function of hyperparameters.

S. Schoenholz, et al. “Deep Information Propagation.” ICLR 2017.

Tanh

(𝝃q, 𝝃c are length scales whose form is known.) 
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Phase diagrams: experiments vs. theory

At large depths, structure of covariance function is eroded.

Test accuracy as a function of weight, bias variance hyperparameters. Depth = 50 here. 
Higher accuracy = purple color. 



Confidential & Proprietary

Performance comparison with width and dataset size
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Midway Summary

As a method: more powerful class of GPs (due to the kernel), which correspond to NNs.
● Usefulness for scientific applications? Smaller datasets, principled inference, model selection.

So far: a compact description of deep networks (arbitrary depth) in the infinite width limit, at the level of
● Prior
● Posterior from Bayesian inference

For fully-connected networks, what we found empirically:
● GP performs competitively, often better, than networks trained with stochastic optimization.
● Performance of the finite-width networks → GP with increasing width.

Reference:
J. Lee*, YB*, R. Novak, S. Schoenholz, J. Pennington, J. Sohl-Dickstein. “Deep Neural Networks as Gaussian 
Processes.” ICLR 2018.

Also see: A G. de G. Matthews, et al. ICLR 2018.
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Midway Summary
What about evolution with gradient descent?

Subsequent related work:
Relationship between gradient descent and Bayesian inference when you have a linear model:

● see for instance AGG Matthews, “Sample-then-optimize posterior sampling for Bayesian linear 
models.” NeurIPS Workshop 2017.

In function space, behavior of gradient descent in the infinite width limit recently solved (in a certain 
operational regime): evolution with a fixed kernel.
A. Jacot, et al. “Neural Tangent Kernel.” NeurIPS 2018
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Evolution with gradient descent in infinite width

Exact gradient descent equations (parameters and functions):

Kernel stays constant in the limit of infinite width [1]:

[1]. A. Jacot, et al. “Neural Tangent Kernel.” NeurIPS 2018. 
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Evolution with gradient descent in infinite width
Mapping back:
Given this function space solution, what dynamics occurs in parameter space?
These dynamics are equivalent to linearizing the network about the initial point [1]. (Sneak peek)

For instance, for squared loss can obtain closed-form solution to training dynamics in parameter space: 

[1]. J. Lee*, L. Xiao*, S. Schoenholz, YB, J. Sohl-Dickstein, J. Pennington. “Wide neural networks of any 
depth evolve as linear models under gradient descent.” To appear. 

Substitute 



Confidential & Proprietary

Evolution with gradient descent in infinite width
Further implication: predictive “posterior” distribution in this case is still a GP governed by mean, 
covariance that can be explicitly written.

Comparison of predictive “posterior” 
distribution of NNGP, NTK, and 
ensemble (100 networks) of full-batch 
gradient descent trained finite-width 
networks. MSE, depth = 3, width = 
8912, tanh fully-connected NN, 
training points = 128. 
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Wide, deep neural networks evolve as linear models

NN vs linearized dynamics. Binary CIFAR-10 classification task 
with MSE loss. Tanh conv network with 3 hidden layers, channels 
= 512, global average pooling,  128 training points, momentum 
optimizer. 

NN vs linearized dynamics, trained with SGD. A 
type of wide residual network with MSE loss and 
momentum. BN-Relu-Conv ordering. Channels = 
1024, full CIFAR-10 dataset (50k), 10-class output.

J. Lee*, L. Xiao*, et al. To appear. 

Can describe the dynamics of some real networks well.
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Remarks

Gaussian process prior was a useful starting point.
● Characterizes the Bayesian description.
● Plays a role in the evolution with gradient descent.

Function space/nonparameteric perspective was useful for both of these, arguably easier for 
exposing the simplification.

Mapping back to parameter space corresponds to a linear model using particular random features 
(the gradients).

Empirically this can describe real-world networks in a certain operating regime well.
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Deep Convolutional Networks with (Infinitely) 
Many Channels
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Wide, deep convolutional neural networks

Can play the same game with other models where some relevant dimension is taken to be infinite.

Signal propagation in ultra-deep CNNs (covariance function of pure CNN-GP and the fixed points of the 
recursion relation with depth)

L. Xiao, YB, J. Sohl-Dickstein, S. Schoenholz, J. Pennington. “Dynamical Isometry and a Mean Field Theory 
for CNNs: How to Train 10k-Layer Vanilla CNNs.” ICML 2018.

Convolutional NN:GP correspondence

R. Novak*, L. Xiao*, J. Leeተ, YBተ, G. Yang⧫, J. Hron⧫, D. Abolafia, J. Pennington, J. Sohl-Dickstein. “Bayesian 
Deep Convolutional Neural Networks with Many Channels are Gaussian Processes.” ICLR 2019.
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Deep Convolutional Networks
Is it reasonable to consider this limit? Overparameterization appears to help CNNs as well.

For theoretical setup, consider purely convolutional layers (1D 
PBC for simplicity). Network performs iterative computation:

N filters, each of size (2k+1), spatial dimensionality d.

Note features of CNNs: locality and weight sharing.

(Full training set, CIFAR-10. Each line corresponds to particular choice of 
architecture and init hyperparameters, selected over best learning rate/weight 
decay.) 
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Deep Convolutional Networks with Infinitely Many Channels

Then as the # of channels (filter) becomes infinite → Gaussian Process 
(see paper for rigorous proof).

Consider parameters drawn i.i.d:

Computation of covariance function:
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CNNs have more architectural design choices:
● Consider pure convolutions until choice of end aggregation into 10 classes. 

Involve various transformations of the pure CNN covariance function.

Case 1: Vectorization
● Flatten vector over channels and spatial dimensions → pass through 𝜙 → FC layer

Transforming GP over spatial locations into GP over classes

In this case, you have lost covariances between different spatial locations.

Observation from previous slide: spatial diagonal maps to spatial diagonal (all you need to keep).

Actually, in this case, didn’t need weight sharing -- could have gotten same result from locality, by considering 
locally connected network. 
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Transforming GP over spatial locations into GP over classes
Case 2: Projection

● Pass through 𝜙 →  project spatial components onto some vector→ FC layer 
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Some empirical results: comparison of various GPs

● CNN-GP (which uses zero padding) better than FCN-GP for most depths (apart from shallow): 
benefit of local connectivity

● CNN-GP with global pooling best (experiments only available for “empirical”/MC case, not exact)

2k train, 4k validation set on CIFAR-10
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Empirical results
For same prior (initialization), gradient-descent trained NN accuracy improves and gets closer to the 
corresponding CNN-GP.

Each point selected over learning rate, weight decay, batch size. CIFAR-10 
downsampled to 8x8, 500 train/4K validation set. Depth=3, erf nonlinearity.

Full CIFAR-10
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Empirical results: comparison between GPs and GD-NNs 

Test error (percentage) 
for the best model within 
each family (maximizing 
validation accuracy over 
hyperparameters) 

● CNN-GPs are state-of-the-art on CIFAR-10 for GPs without trainable kernels. Outperforms CNN with 
small learning rate.

● SGD-training of CNN with Relu and large learning rate seems to have beneficial interplay, for absence 
of pooling

● These differences between CNNs and CNN-GPs are not really observed/not as strong as FC case
State-of-the-art result on GPs without trainable kernels.
Remains to fully disentangle the roles of the various ingredients

Full training set
Hyperparameters: Erf/Relu, learning rate, weight decay, channels/width up to O(1000). 218 gradient 
steps, batch size 128, zero padding.
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Summary

Utility of thinking about functions realized by network.

Compact way of looking at neural networks in a certain limit: through their kernel
● Can characterize Bayesian training
● Can characterize gradient descent evolution

Kernels/GPs as a way of distinguishing architectures.

For many networks in the wild (particularly in science -- small datasets, not a lot of hyperparameter 
tuning):  might be close to this operating point. 

(As a side benefit: estimation of uncertainty.)
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Thank you!


