Inelastic Studies of Complex Ground States: Spin, Charge, Lattice and Orbital Excitations in Novel Materials

J.P. Hill Brookhaven National Laboratory

KITP, Santa Barbara, February 11th 2010

Collaborators

SmFeAs(O,F)

M. LeTacon (MPI, Stuttgart)
M. Krisch (ESRF)
A. Walters (ESRF)
T. Forrest (UCL)
D. McMorrow (UCL)
C. Ruegg (UCL)
J. Karpinski (ETH)

Fe(Te,Se)

R. Tobey (BNL) X. Liu (BNL) G. Gu (BNL) M. Sfeir (BNL) (La,Sr)₂MnO₄ X. Liu (BNL) A. Boothroyd (U. Oxford) D. Casa (APS) J. Kim (APS) M.H. Upton (APS) T. Gog (APS)

$(La,Sr)_2NiO_4$

J. Geck (IFW-Dresden) R. Kraus (IFW-Dresden) M. Knupfer (IFW-Dresden) A. Boothroyd (U. Oxford)

Outline

1. Introduction

- Excitations
- Inelastic x-ray scattering: Cross-section

2. Lattice Excitations

- Anomalous phonons in $SmFeAsO_{1-x}F_x$
- 3. Magnetic Excitations

4. Orbital and Charge Excitations

- Dispersive and non-dispersive excitations in $La_{2-x}Sr_x(Mn,Ni)O_4$

ω_i, k_i τ

 $\omega_{\rm f}, k_{\rm f}$

کے

Ground State and Excitations

A complete picture of a system requires knowledge of both its ground state and its excitations.

(in high-energy physics parlance: Vacuum and particles)

Fig. 1.5 Modern View of a Many-body System in its Ground State

Excitations in Condensed Matter

- 1) Excitation spectrum determines the dynamic response of these materials.
- 2) Excitation spectra provide stringent test of theory.
- 3) "High-energy physics" of systems often controls their behavior:

t ~ 1 eV, U ~ 8 eV, Δ ~ 2eV Charge Transfer Phonons Magnons d-d d-d 50 meV 1.5 eV 2 eV Energy

Need a momentum and energy resolved probe \implies IXS

Inelastic X-ray Scattering

Inelastic X-ray Scattering

Elastic scattering ($\omega = 0$) gives static properties.

Inelastic scattering ($\omega \neq 0$) gives dynamic properties.

Inelastic X-ray Scattering

Cross-Section

Resonant IXS is > 100 x Non-Resonant IXS!

1. Introduction

2. Lattice Excitations

- Anomalous phonons in $SmFeAsO_{1-x}F_x$

3. Magnetic Excitations

4. Orbital and Charge Excitations

"Iron Age" of Superconductivity

Discovery of a new class of iron-based superconductors

- •Large variety of "families" of materials
 - "1111" LaFeAsO, CeFeAsO, SmFeAsO...
 - "122" $BaFe_2As_2$, $CoFe_2As_2$,
 - •"111" LiFeAs, ...
 - "11" FeSe, FeTe. ...
 - +?
- Highest $T_c = 55$ K in SmFeAsO_{1-x} F_x
- Metallic parent compounds, with SDW antiferromagnetism
- LDA seems to work reasonably well (small U)
- s-wave superconductors

$SmFeAsO_{1-x}F_x$

Crystal Structure

Carrier blocking layer

Carrier conducting layer

Phase Diagram

Pairing Mechanism

Lee et al. 7: J. Phys. Soc Jpn (2008)

Need measurements of the phonons

High Resolution Inelastic Scattering

ID 28 at the ESRF

Inelastic X-Ray Scattering

Volume ~ 100 x 100 x 5 μ m³

ID28, ESRF, $\Delta E = 3 \text{ meV}$

LeTacon, et al., PRB (2009)

Single Crystal Phonon Dispersions

Deviations are seen from DFT calculations

Doping Dependence

Certain phonons around 23 meV show unusual shifts on doping

BROOKHAVEN

21 meV Mode

NATIONAL LABORATORY

26 meV Mode

Other Nearby Phonon Modes

 $Sm + As mode \sim 25 meV$

To first order, these don't couple to the FeAs tetrahedra – and therefore do not couple to the Fe electronic degrees of freedom

Oxygen mode ~ 43 meV

From Hadjiev et al. PRB (2008)

Spin/Orbital-phonon Coupling

BaFe₂As₂

Akrap et al. PRB (2009)

Rhalenbeck *et al.* PRB (2009)

Other Systems

Grandon et al. PRB (1999)

Classic example of spinphonon coupling. See softening of phonon proportional to magnetic order parameter.

This is not seen in the pnictides.

Iron-pnictides

- It is possible to carry out high-quality phonon measurements on small volume single crystals with IXS. Limitation is number of instruments!
- Certain c-axis modes are anomalously renormalized on doping and with temperature. These shifts have unusual momentum dependence – signature of electron-phonon coupling.
- The affected modes are magnetically active. Suggests spin or orbital fluctuations may be important.

1. Introduction

2. Lattice Excitations

3. Magnetic Excitations

4. Orbital and Charge Excitations

- Dispersive and non-dispersive excitations in La_{2-x}Sr_x(Mn,Ni)O₄

Electronic Ground States

Transition metal oxides exhibit a range of charge, spin and orbitally ordered ground states (new *vacua*). What are the excitations (new *particles*) associated with these states?

Manganites

Nickelates

Cuprates

CuO₂ plane, n_h=0.125

NATIONAL LABORATORY

NiO₂ plane, n_h=0.25

La_{2-x}Sr_xNiO₄: A Stripe Ordered System

Electron Energy Loss Spectroscopy

$$\begin{split} E_o &= 170 \text{ keV} \\ \Delta E &= 70 \text{ meV} \\ \Delta q &= 0.04 \text{ A}^{-1} \end{split}$$

(Instrument now at IFW-Dresden: M. Knupfer)

EELS Data

 $La_{1.67}Sr_{0.33}NiO_{4}$

At small momentum transfers, EELS reproduces optical data – observe opening of gap in stripe phase

R. Kraus, J. Geck, M. Knupfer, B. Buchner and JPH, unpublished data

Momentum Dependence

La_{1.67}Sr_{0.33}NiO₄

R. Kraus, J. Geck, M. Knupfer, B. Buchner and JPH, unpublished

Momentum Dependence

 $La_{1.67}Sr_{0.33}NiO_4$

RIXS data

Wakimoto *et al*, PRL (2009)

 $\Delta E = 150 \text{ meV}$

MERIX, APS Ge(642)

 $La_{I-x}Sr_{x}MnO_{4}$

Manganite K-edge RIXS

Charge and Orbital Order

Summary

Inelastic x-ray scattering can probe many of the relevant excitations in condensed matter over the important (q,ω) .

• Anomalous renormalization seen in magnetically active phonons in SmFeAs(O,F).

• In stripe-ordered phase in $La_{1.67}Sr_{0.33}NiO_4$, a dispersive charge excitation is observed with EELS at small momentum transfers. Nothing new is seen at the stripe wave-vector (caveat: multiple scattering effects) – in contrast to RIXS results.

• In charge-ordered $La_{1.5}Sr_{0.5}MnO_{4,.}$ A non-dispersive orbital excitation is observed at 2 eV. No new excitation is observed with RIXS at the charge or orbital order wave-vectors.

