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Ground State and Excitations

A complete picture of a system requires knowledge of both its 

ground state and its excitations. 

(in high-energy physics parlance: Vacuum and particles)



Excitations in Condensed Matter
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Need a momentum and energy resolved probe IXS

1) Excitation spectrum determines the dynamic response 

of these materials.

2) Excitation spectra provide stringent test of theory.

3) “High-energy physics” of systems often controls their 

behavior:

t ~ 1 eV, U ~ 8 eV, ~ 2eV



Inelastic X-ray Scattering

q=ki-kf

= i- f

Elastic scattering ( = 0) gives static properties.

Inelastic scattering (         ) gives dynamic properties.0
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Inelastic X-ray Scattering



Inelastic X-ray Scattering
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Cross-Section
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Non-resonant scattering 

(weak)

Resonant scattering

(strong at Ei=En)

Resonant IXS is  > 100 x Non-Resonant IXS!

Kao et al, PRB 1996, NiO

Phonons with  

few meV

resolution

Electronic excitations 

with 100 meV

resolution
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“Iron Age” of Superconductivity

Discovery of a new class of iron-based superconductors

•Large variety of “families” of materials

• “1111” LaFeAsO, CeFeAsO, SmFeAsO…

• “122” BaFe2As2, CoFe2As2, ….

• “111” LiFeAs, …

• “11” FeSe, FeTe. …

• + ….?

• Highest Tc=55 K in SmFeAsO1-xFx

• Metallic parent compounds, with SDW      

antiferromagnetism

• LDA seems to work reasonably well (small U)

• s-wave superconductors



SmFeAsO1-xFx
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Pairing Mechanism
Theory:

Mean-field approaches suggest that standard electron-

phonon coupling is not the pairing mechanism

- DFT: Singh and Du (2008), Boeri et al. (2008)

- DMFT, Haule, Shim and Kotliar (2008))

But
• Strong Fe isotope effect ( ~0.35) – Liu et al. (2009)

(and Weak O isotope effect: ~0.1)

• The As NQR frequency correlates with Tc, which suggests Tc

depends on FeAs tetrahedron. – Mukuda et al.,(2008)

• Phonon anomalies seen at TN – Akrap et al. (2009).

Need measurements of the phonons

Expts suggest lattice is not inactive. Perhaps unusual electron-phonon 

coupling  - through spin or orbital channel rather than charge??

From Mizuguhci et al. arXiv: 

1001.0801

Theory:
Mean-field approaches suggest that standard electron-

phonon coupling is not the pairing mechanism

- DFT: Singh and Du (2008), Boeri et al. (2008)

- DMFT, Haule, Shim and Kotliar (2008))

But
• Strong Fe isotope effect ( ~0.35) – Liu et al. (2009)

(and Weak O isotope effect: ~0.1)

• The As NQR frequency correlates with Tc, which suggests Tc

depends on FeAs tetrahedron. – Mukuda et al.,(2008)

• Phonon anomalies seen at TN – Akrap et al. (2009).

Lee et al. 

J. Phys. 

Soc Jpn

(2008)



High Resolution Inelastic Scattering

ID 28 at the ESRF



Inelastic X-Ray Scattering

Single crystal SmFeAsO0.85F0.15 (Tc=52 K)

Volume ~ 100 x 100 x 5 m3

ID28, ESRF,  E = 3 meV

LeTacon, et al., PRB (2009)

~ 3cps



Single Crystal Phonon Dispersions

Parent Superconductor

Deviations 

are seen 

from DFT 

calculations



Doping Dependence

Certain phonons 

around 23 meV

show unusual 

shifts on doping

Parent

Super-

conductor

Parent

Super-

conductor



21 meV Mode



26 meV Mode



Other Nearby Phonon Modes

Oxygen mode ~ 43 meV

From Hadjiev et al. PRB (2008)

Sm + As mode ~ 25 meV

To first order, these don’t couple to 

the FeAs tetrahedra – and therefore 

do not couple to the Fe electronic 

degrees of freedom
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Akrap et al. PRB (2009)
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Spin/Orbital-phonon Coupling
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BaFe2As2

IR RamanRaman

Rhalenbeck et al. PRB (2009)
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Other Systems

TN

B2g

LaMnO3

Grandon et al. PRB (1999)

Classic example of spin-

phonon coupling. See 

softening of phonon 

proportional to magnetic 

order parameter.

This is not seen in the 

pnictides.

Raman



Iron-pnictides

• It is possible to carry out high-quality phonon 

measurements on small volume single crystals with 

IXS. Limitation is number of instruments!

• Certain c-axis modes are anomalously renormalized 

on doping and with temperature. These shifts have 

unusual momentum dependence – signature of 

electron-phonon coupling.

• The affected modes are magnetically active. Suggests 

spin or orbital fluctuations may be important.
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Electronic Ground States

NiO2 plane, nh=0.25 CuO2 plane, nh=0.125MnO2 plane, nh=0.5

Manganites Nickelates Cuprates

Transition metal oxides exhibit a range of charge, spin and 

orbitally ordered ground states (new vacua). What are the 

excitations (new particles) associated with these states?



La2-xSrxNiO4: A Stripe Ordered System

Homes et al. PRB (2003)

Optical Conductivity

Mid-IR 

excitations 

interpreted as 

being 

associated with 

doped holes in 

stripes

NiO2 plane, nh=0.25
Tranquada et al. Nature (1995)



Electron Energy Loss Spectroscopy

Cross-section well understood:-

J. Fink (1989)

(Instrument now at IFW-Dresden: M. Knupfer)

Eo= 170 keV

E = 70 meV

q = 0.04 A-1
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EELS Data

At small 

momentum 

transfers, EELS 

reproduces optical 

data – observe 

opening of gap in 

stripe phase

R. Kraus, J. Geck, M. Knupfer,  B. Buchner and JPH, unpublished data

Q=0.15 A-1

La1.67Sr0.33NiO4



Momentum Dependence

R. Kraus, J. Geck, M. Knupfer,  B. Buchner and JPH, unpublished
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Momentum Dependence
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RIXS data

Wakimoto et al, 

PRL (2009)

E = 150 meV

MERIX, APS 

Ge(642)



La1-xSrxMnO4

Larochelle et al. PRB (2005)

Charge and orbital order



Manganite K-edge RIXS

Grenier et al. PRL (2005)

9ID E=300 meV

Density of states



Charge and Orbital Order

Q=(0.625,0.625,8)

Q=(0.5,0.5,8)  CO

Q=(0.75,0.75,8)  OO

E=200 meV

30ID, APS



Summary

• Anomalous renormalization seen in magnetically active 

phonons in SmFeAs(O,F).

• In stripe-ordered phase in La1.67Sr0.33NiO4, a dispersive 

charge excitation is observed with EELS at small 

momentum transfers.  Nothing new is seen at the stripe 

wave-vector (caveat: multiple scattering effects) – in 

contrast to RIXS results.

• In charge-ordered La1.5Sr0.5MnO4,. A non-dispersive 

orbital excitation is observed at 2 eV. No new excitation 

is observed with RIXS at the charge or orbital order 

wave-vectors.

Inelastic x-ray scattering can probe many of the relevant 

excitations in condensed matter over the important (q, ).


