CONSIDERATIONS DETERMINING PAIRING Tc FOR
SUPERCONDUCTIVITY THROUGH E.E. INTERACTIONS

Momentum and Frequency Dependence of effective
electron-electron Interactions for High Tc?

Based on (ArXiv.org), RMP (collog. ?).

What is the Physical Basis for the Following?

Electron-phonon based supercond. M azimum T./0p is O(10™1)

Liquid He(3) T./Esis O(107%)
Heavy Fermions O(1071) to O(10™?)
Cuprates O(10™2)
Pnictides 0(1()—2)

Cold Fermions (Low Density Fermions with variable
Interactions) A aximum near unitarity : O(10™1)

Chandra Varma, UC Riverside KITP Material Design Conf, Feb 9, 2010
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Related Questions Encountered:

Why is electronically induced pairing invariably found near
QCP’s? Do these QCP’s have to be of a special nature!?

Is Higher Temperature Superconductivity Possible!?
And if so, is there any theoretical guidance as to where one
should look for it?
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T./0p ~ O(10™") is actually realized in electron-phonon
induced superconductivity in Pb,Al5’s, MgB2, etc.
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Upper Limit on Tc: Provided by Low Density Attractive
Hubbard Model giving s-wave pairing or cold atoms.

T./0p ~ O(10™") is actually realized in electron-phonon
induced superconductivity in Pb,Al5’s, MgB2, etc.
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Upper Limit on Tc: Provided by Low Density Attractive
Hubbard Model giving s-wave pairing or cold atoms.

- Svistunov et al. (2008)
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T./0p ~ O(107") is actually realized in electron-phonon
induced superconductivity in Pb,Al5’s, MgB2, etc.
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Electron-Phonon Interactions
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Electron-Phonon Interactions

Thoroughly understood problem both theoretically and
empirically.
Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established.
Enormous amount of data available and analyzed.
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Electron-Phonon Interactions

Thoroughly understood problem both theoretically and
empirically.
Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established.
Enormous amount of data available and analyzed.

McMillan (1967):

T, ~< w > e~ (HA0)/ 20

Ao =N()<I*> /M < w?® >
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Electron-Phonon Interactions

Thoroughly understood problem both theoretically and
empirically.
Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established.
Enormous amount of data available and analyzed.

McMillan (1967):

T, ~< w > e~ (HA0)/ 20

Ao =N()<I*> /M < w?® >

Empirical Relations:

McMillan : N(0) < I? >~ constant within a class
Varma and Dynes(1975) :< I? > /M < w® > also constant
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McMillan : N(0) < I? >~ constant within a class

Several Derivations: Simplest by Friedel et al. in
tight binding representation of el-ph. interactions:

N(0) < I” >~ N(0) < (0t/OR)* >~ E./r§

Varma and Dynes : (Following Friedel’s reasoning)

<12 > [M < W? >n< (0t/OR) > | < OP/OR® > enormm Eo13

Lessons: parameters determining Tc are gross averages and they are

inter-related.
This is equally true for e.e. induced superconductivity, especially for

problems where fermi-liquid theory can be applied.

There is one clear example of a fermi-liquid superconductor:
liquid He(3), (possibly also Sr(2) Ru O(4)).
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Maximum Tc from El-Ph Interactions

Using the observed empirical relation and their approx. derivation:

(T¢)maz &~ EC/MT(% exp(—3/2) &~ wWynren. €xp(—3/2)
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Tc in Liquid He(3): Triplet odd parity pairing.
Very Strongly Interacting Fermions:

Mass enhancement near melting = 6.
Susceptibility Enhancement = 20.
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Tc in Liquid He(3): Triplet odd parity pairing.
Very Strongly Interacting Fermions:
Mass enhancement near melting = 6.

Susceptibility Enhancement = 20.
T./E; ~ 10 only

Friday, February 19, 2010



Tc in Liquid He(3): Triplet odd parity pairing.
Very Strongly Interacting Fermions:
Mass enhancement near melting = 6.

Susceptibility Enhancement = 20.
T./E; ~ 10 only
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Tc in Liquid He(3): Triplet odd parity pairing.
Very Strongly Interacting Fermions:
Mass enhancement near melting = 6.

Susceptibility Enhancement = 20.
T./E; ~ 10 only

| I T T |
361 Solid phase m

= Experimental
30 ¢  Theoretical

®  Theory using data on
transport properties.

nN
S
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@
1

Pressure (bar)

N
[

0.4 0.8 |.2 |.6 20 2.4 2.8
Temperature (m°K)

Pfinzner and Woelfle:Variation of Tc with P understood systematically by calculating
interactions parameters constraining them by measured Landau parameters but with a
renormalization of pre-factor downwards by about |/10.
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Things to remember when thinking of fermion interaction induced pairing:

|. The actual superconductivity interactions parameters continually
connected (and actually close) to Landau’s A parameters, which are
always less than |,

due to cancellation of self-energy and vertices.

2. Pre-factor: Do not forget the self-energy.

S-Waves: T. ~ wce—(l'f‘)\(l)/)\tl
Ao : S-wave interaction parameter.
D-Waves: 1. & wce_(l‘*')\(l)/)\iz
Ao :d-wave interaction parameter.

)\O is never smaller than ~ 2 A\
because interaction range is no shorter than about (2/kf)
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Things to remember when thinking of fermion interaction induced pairing:

|. The actual superconductivity interactions parameters continually
connected (and actually close) to Landau’s A parameters, which are
always less than |,

due to cancellation of self-energy and vertices.

2. Pre-factor: Do not forget the self-energy.

SELF ENERGY ALWAYS MORE DELETERIOUS FOR FINITE ANG.
MOMENTUM PAIRING
S-Waves: T, & wce—(l'*')\tl)/)\o
Ao : S-wave interaction parameter.
D-Waves: 1. & wce_(l‘*')‘(l)/)ﬁz
Ao :d-wave interaction parameter.

)\Q is never smaller than ~ 2 A\
because interaction range is no shorter than about (2/kf)
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3. Nothing much for superconductivity by exchange of incoherent
fluctuations (Luttinger-Kohn).

Must stick to collective modes but as opposed to phonons, they
have only a fraction of the spectral weight.
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4. INELASTIC SCATTERING LIMITS Tc WHEN Tc IS HIGH FOR D-WAVE
SCATTERING WHILE IT IS HARMLESS FOR S-WAVE SCATTERING.

Inelastic Scattering or ‘real’ Scattering may be regarded for this purpose
as elastic scattering from excitations with w up to O(T).

How bad is it!: Millis, Sachdev, CV (1988).

D-wave pairing solution from
Eliashberg Egns. with successively
increasing spectral weight of
low-energy excitations with total
weight kept constant.
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4. INELASTIC SCATTERING LIMITS Tc WHEN Tc IS HIGH FOR D-WAVE
SCATTERING WHILE IT IS HARMLESS FOR S-WAVE SCATTERING.

Inelastic Scattering or ‘real’ Scattering may be regarded for this purpose
as elastic scattering from excitations with w up to O(T).

This is harmless for s-wave pairing: Cancellation of self-energy and
vertex. But it is deleterious for finite ang. momentum pairing.

How bad is it!: Millis, Sachdev, CV (1988).

D-wave pairing solution from
Eliashberg Egns. with successively
increasing spectral weight of
low-energy excitations with total
weight kept constant.
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One Immediate Conclusion:

Ordinary or “Gaussian” Quantum-Ciritical Points are
bad for Tc.
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One Immediate Conclusion:

Ordinary or “Gaussian” Quantum-Ciritical Points are
bad for Tc.

'~ wce—(l-i-)\o)/}\:z

|. Weight of Fluctuations goes towards zero frequency at such critical points so ‘prefactor’ goes
to 0 at the critical point.

2. Not captured by the above expression: the role of inelastic scattering because it introduces
Imaginary part in the gap-function similar to the effect of magnetic impurities in s-wave case.

Friday, February 19, 2010



Some High Tc Electronically induced
d-wave Superconductors

Heavy fermions: mass renormalizations of O(100)

Tc/Ef is only about /100

From review by Sarrao
and Thompson.
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Some High Tc Electronically induced

d-wave Superconductors

Heavy fermions: mass renormalizations of O(100)

Tc/Ef is only about |/100
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Some High Tc Electronically induced

d-wave Superconductors

Heavy fermions: mass renormalizations of O(100)

Tc/Ef is only about |/100

1000 = ! 'l ! l
: TI Ba Ca Cu O
100 L YBa,Cu, O, |
- La14858r0.15cuo4 g
PuCoGa, ] From review by Sarrao
S 10 ' —e HgBa,Ca,Cu,0,.,] and Thompson.
=~ = CeColn, PuRhGa '
0 - CeRhin \ ;
 UBe, “UszA!s
1 Ly URu,Si, |
- UleAI i UGe
S
| CeCu,Si, 4 URNhGe
10 100 1000 10000

T, (K)

Gained a factor of 10 in the dimensionless ratio, but lost by a factor of 100
in the heavy fermions in absolute magnitude. But no such loss in Cuprates.
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Heavy Fermion Superconductivity
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Heavy Fermion Superconductivity

First suggestion (1982) following the discovery in CeCu(2) Si(2) and UBe(13) that heavy
fermion superconductivity could not be electron-phonon induced but induced by AFM
spin fluctuations and analysis of Expts to show d-wave pairing.

(Miyake, Schmitt-Rink, Varma (1986)

Why 1s Tc so low in heavy Fermions?

(1) Even though repulsion is large, the pair energy has a cut-off of the spin-fluctuation
Energy which 1s the same order as the effective fermi-energy which is very small.

(2) Large Inelastic scattering unhelpful for high Tc.

(3) Also, s-wave scattering always larger than d-wave scattering leading to large
self-energy effects which are bad for Tc.
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Quantum criticality and superconductivity

Preference for electronically induced pairing around quantum-critical Points.
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Quantum criticality and superconductivity

Preference for electronically induced pairing around quantum-critical Points.
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Quantum criticality and superconductivity

Preference for electronically induced pairing around quantum-critical Points.
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Experimental Evidence for Spectra of Quantum-critical Form in Cuprates

W w S we
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Experimental Evidence for Spectra of Quantum-critical Form in Cuprates
Single-particle Spectra measured in ARPES

W w S we

Friday, February 19, 2010



Experimental Evidence for Spectra of Quantum-critical Form in Cuprates
Single-particle Spectra measured in ARPES

Linewidth proportional to w for w < w, and constant beyond
Inelastic Scattering rate independent of k.

From quantum Critical Fluctuation Spectra Predicted single-particle Linewidth
w/T Scaling and Locality: a new Universality Class. [
(1989): 2.
Recent microscopic Derivation (Aji,cmv 2007,2009)
Imy(k,w) g
Excitation Spectra ' N
w‘_,."'lrl.
’1. o = 0 5 iC 1 0 5
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Experimental Evidence for Spectra of Quantum-critical Form in Cuprates
Single-particle Spectra measured in ARPES

Linewidth proportional to w for w < w, and constant beyond
Inelastic Scattering rate independent of k.

From quantum Critical Fluctuation Spectra Predicted single-particle Linewidth

w/T Scaling and Locality: a new Universality Class. [
(1989): 2.
Recent microscopic Derivation (Aji,cmv 2007,2009)

]Ill\(k.w‘) g

Excitation Spectra

w‘_,."'lrl.
'1. \""’" “ 0 5 .0 1 0 iS
o/Q
@0, 4
B
- O OP Bi2201 Nodal , Meevasana et al.
% X OP-Bi2212 Nodal, Lanzara et al.
E ® LSCO OP, Nodal , Chang et al.
O 8 LSCO Nodal underdoped, Chang et al.
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0.0
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This spectrum is ideal for high Tc because:
. Locality implies least value of Ao/ A2

2. Least inelastic scattering imaginable.

3. Large Upper cut-off.

4. Fermi-liquid renormalizations are of O(|).
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This spectrum is ideal for high Tc because:
. Locality implies least value of Ao/ A2

2. Least inelastic scattering imaginable.

3. Large Upper cut-off.

4. Fermi-liquid renormalizations are of O(|).

Quantitative estimates of 7., A/T.
Why is Tc quite high!?

From single-particle spectra, w. ~ 0.4eV’
Coupling parameter for single-particle scattering )\, is about 1.0

Transition temperature for d-wave superconductors approximately given by

T, = weexp(—(1+ |As])/|Aal)

single-particle, d-wave coupling constants
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Ba[Fe(l-x)Co(x)As(2) Chu et al. (Stanford), Canfield (Ames)
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How to get much Higher Tc.

Electronically induced pairing to get high upper cut-off.
“Fermi-liquid” renormalizations only of O(|): avoid the sad experience of
heavy fermions and liquid He(3).

Topological Quantum critical point so that criticality does not renormalize scale
downward and inelastic scattering does not hurt.

S-wave pairing

Is electronically induced s-wave pairing near topological quantum critical point possible?
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Case of BaBiO(3) doped with K?
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Summary

In terms of (Tc/cut-off energy) finite ang.

Momentum pairing will always give much smaller Tc
than s-wave.

Because of normal self-energy and inelastic scattering.

Strong Interactions reduced cut-off energy as well.
At Gaussian criticality, cut-off scale is sharply reduced
which hurts.

Topological or local quantum criticality with w/T scaling of
spectra maintaining large cut-off is ideal and the secret of
high Tc in Cuprates and possibly pnictides.

To get significantly higher Tc, need s-wave electronically
induced pairing with similar criticality.
This may not be impossible.
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Friedel et al. (1975)

N(0) < I? >~ E./r§
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