CONSIDERATIONS DETERMINING PAIRING To FOR SUPERCONDUCTIVITY THROUGH E.E. INTERACTIONS

Momentum and Frequency Dependence of effective electron-electron Interactions for High Tc?

```
Based on (ArXiv.org), RMP (colloq.?).
```

What is the Physical Basis for the Following?

```
Electron-phonon based supercond. Maximum\ T_c/\theta_D\ is\ O(10^{-1}) Liquid He(3) T_c/E_f\ is\ O(10^{-3}) Heavy Fermions O(10^{-1})\ to\ O(10^{-2}) Cuprates O(10^{-2}) Pnictides O(10^{-2}) Cold Fermions (Low Density Fermions with variable Interactions) Maximum\ near\ unitarity: O(10^{-1})
```

Chandra Varma, UC Riverside

KITP Material Design Conf, Feb 9, 2010

Related Questions Encountered:

Why is electronically induced pairing invariably found near QCP's? Do these QCP's have to be of a special nature?

Is Higher Temperature Superconductivity Possible? And if so, is there any theoretical guidance as to where one should look for it?

Field of Action:

 $T_c/\theta_D \approx O(10^{-1})$ is actually realized in electron-phonon induced superconductivity in Pb,A15's, MgB2, etc.

Upper Limit on Tc: Provided by Low Density Attractive Hubbard Model giving s-wave pairing or cold atoms.

 $T_c/\theta_D \approx O(10^{-1})$ is actually realized in electron-phonon induced superconductivity in Pb,A15's, MgB2, etc.

Upper Limit on Tc: Provided by Low Density Attractive Hubbard Model giving s-wave pairing or cold atoms.

 $T_c/\theta_D \approx O(10^{-1})$ is actually realized in electron-phonon induced superconductivity in Pb,A15's, MgB2, etc.

Electron-Phonon Interactions

Thoroughly understood problem both theoretically and empirically.

Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established. Enormous amount of data available and analyzed.

Electron-Phonon Interactions

Thoroughly understood problem both theoretically and empirically.

Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established. Enormous amount of data available and analyzed.

McMillan (1967):

$$T_c \approx <\omega>e^{-(1+\lambda_0)/\lambda_0}$$

$$\lambda_0 = N(0) < I^2 > /M < \omega^2 >$$

Electron-Phonon Interactions

Thoroughly understood problem both theoretically and empirically.

Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established. Enormous amount of data available and analyzed.

McMillan (1967):

$$T_c \approx <\omega>e^{-(1+\lambda_0)/\lambda_0}$$

$$\lambda_0 = N(0) < I^2 > /M < \omega^2 >$$

Empirical Relations:

$$McMillan: N(0) < I^2 > \approx constant \ within \ a \ class$$

$$Varma \ and \ Dynes(1975): < I^2 > /M < \omega^2 > \ also \ constant$$

 $McMillan: N(0) < I^2 > \approx constant within a class$

Several Derivations: Simplest by Friedel et al. in tight binding representation of el-ph. interactions:

$$N(0) < I^2 > \approx N(0) < (\partial t/\partial R)^2 > \approx E_c/r_0^2$$

Varma and Dynes: (Following Friedel's reasoning)

$$< I^2 > /M < \omega^2 > \approx < (\partial t/\partial R)^2 > / < \partial^2 t/\partial R^2 >_{renorm} \approx E_c/r_0^2$$

Lessons: parameters determining Tc are gross averages and they are inter-related.

This is equally true for e.e. induced superconductivity, especially for problems where fermi-liquid theory can be applied.

There is one clear example of a fermi-liquid superconductor: liquid He(3), (possibly also Sr(2) Ru O(4)).

Maximum Tc from El-Ph Interactions

Using the observed empirical relation and their approx. derivation:

$$(Tc)_{max} \approx E_c/Mr_0^2 \exp(-3/2) \approx \omega_{unren.} \exp(-3/2)$$

Tc in Liquid He(3): Triplet odd parity pairing.

Very Strongly Interacting Fermions:

Mass enhancement near melting = 6.

Susceptibility Enhancement = 20.

Tc in Liquid He(3): Triplet odd parity pairing.

Very Strongly Interacting Fermions: Mass enhancement near melting = 6. Susceptibility Enhancement = 20.

 $T_c/E_f \approx 10^{-3} only$

Tc in Liquid He(3): Triplet odd parity pairing. Very Strongly Interacting Fermions:

Mass enhancement near melting = 6.

Susceptibility Enhancement = 20.

Tc in Liquid He(3): Triplet odd parity pairing. Very Strongly Interacting Fermions: Mass enhancement near melting = 6. Susceptibility Enhancement = 20.

Pfinzner and Woelfle: Variation of Tc with P understood systematically by calculating interactions parameters constraining them by measured Landau parameters but with a renormalization of pre-factor downwards by about 1/10.

Things to remember when thinking of fermion interaction induced pairing:

- I. The actual superconductivity interactions parameters continually connected (and actually close) to Landau's A parameters, which are always less than I, due to cancellation of self-energy and vertices.
- 2. Pre-factor: Do not forget the self-energy.

S-Waves:
$$T_c \approx \omega_c e^{-(1+\lambda_0)/\lambda_0}$$

 λ_0 : s-wave interaction parameter.

D-Waves:
$$T_c \approx \omega_c e^{-(1+\lambda_0)/\lambda_2}$$

 λ_2 : d-wave interaction parameter.

 λ_0 is never smaller than ~ 2 λ_2 because interaction range is no shorter than about (2/kf)

Things to remember when thinking of fermion interaction induced pairing:

- I. The actual superconductivity interactions parameters continually connected (and actually close) to Landau's A parameters, which are always less than I, due to cancellation of self-energy and vertices.
- 2. Pre-factor: Do not forget the self-energy.

SELF ENERGY ALWAYS MORE DELETERIOUS FOR FINITE ANG. MOMENTUM PAIRING

S-Waves:
$$T_c \approx \omega_c e^{-(1+\lambda_0)/\lambda_0}$$

 λ_0 : s-wave interaction parameter.

D-Waves:
$$T_c \approx \omega_c e^{-(1+\lambda_0)/\lambda_2}$$

 λ_2 : d-wave interaction parameter.

 λ_0 is never smaller than ~ 2 λ_2 because interaction range is no shorter than about (2/kf)

3. Nothing much for superconductivity by exchange of incoherent fluctuations (Luttinger-Kohn).

Must stick to collective modes but as opposed to phonons, they have only a fraction of the spectral weight.

4. INELASTIC SCATTERING LIMITS To WHEN TO IS HIGH FOR D-WAVE SCATTERING WHILE IT IS HARMLESS FOR S-WAVE SCATTERING.

Inelastic Scattering or 'real' Scattering may be regarded for this purpose as elastic scattering from excitations with ω up to O(T).

How bad is it?: Millis, Sachdev, CV (1988).

D-wave pairing solution from Eliashberg Eqns. with successively increasing spectral weight of low-energy excitations with total weight kept constant.

Notice also increase in the ratio of Δ/T_c

4. INELASTIC SCATTERING LIMITS To WHEN TO IS HIGH FOR D-WAVE SCATTERING WHILE IT IS HARMLESS FOR S-WAVE SCATTERING.

Inelastic Scattering or 'real' Scattering may be regarded for this purpose as elastic scattering from excitations with ω up to O(T).

This is harmless for s-wave pairing: Cancellation of self-energy and vertex. But it is deleterious for finite ang. momentum pairing.

How bad is it?: Millis, Sachdev, CV (1988).

D-wave pairing solution from Eliashberg Eqns. with successively increasing spectral weight of low-energy excitations with total weight kept constant.

Notice also increase in the ratio of Δ/T_c

One Immediate Conclusion:

Ordinary or "Gaussian" Quantum-Critical Points are bad for Tc.

One Immediate Conclusion:

Ordinary or "Gaussian" Quantum-Critical Points are bad for Tc.

$$T_c \approx \omega_c e^{-(1+\lambda_0)/\lambda_2}$$

- I. Weight of Fluctuations goes towards zero frequency at such critical points so 'prefactor' goes to 0 at the critical point.
- 2. Not captured by the above expression: the role of inelastic scattering because it introduces Imaginary part in the gap-function similar to the effect of magnetic impurities in s-wave case.

Some High Tc Electronically induced d-wave Superconductors

Heavy fermions: mass renormalizations of O(100)

Tc/Ef is only about 1/100

From review by Sarrao and Thompson.

Some High Tc Electronically induced d-wave Superconductors

Heavy fermions: mass renormalizations of O(100)

Tc/Ef is only about 1/100

From review by Sarrao and Thompson.

Some High Tc Electronically induced d-wave Superconductors

Heavy fermions: mass renormalizations of O(100)

Tc/Ef is only about 1/100

From review by Sarrao and Thompson.

Gained a factor of 10 in the dimensionless ratio, but lost by a factor of 100 in the heavy fermions in absolute magnitude. But no such loss in Cuprates.

Heavy Fermion Superconductivity

First suggestion (1982) following the discovery in CeCu(2) Si(2) and UBe(13) that heavy fermion superconductivity could not be electron-phonon induced but induced by AFM spin fluctuations and analysis of Expts to show d-wave pairing.

(Miyake, Schmitt-Rink, Varma (1986)

Why is Tc so low in heavy Fermions?

- (1) Even though repulsion is large, the pair energy has a cut-off of the spin-fluctuation Energy which is the same order as the effective fermi-energy which is very small.
- (2) Large Inelastic scattering unhelpful for high Tc.
- (3) Also, s-wave scattering always larger than d-wave scattering leading to large self-energy effects which are bad for Tc.

Quantum criticality and superconductivity

Preference for electronically induced pairing around quantum-critical Points.

Friday, February 19, 2010

Quantum criticality and superconductivity

Preference for electronically induced pairing around quantum-critical Points.

Quantum criticality and superconductivity

Preference for electronically induced pairing around quantum-critical Points.

Experimental Evidence for Spectra of Quantum-critical Form in Cuprates

$$\omega \qquad \omega \lesssim \omega_c$$

Experimental Evidence for Spectra of Quantum-critical Form in Cuprates

Single-particle Spectra measured in ARPES

$$\omega \qquad \omega \lesssim \omega_c$$

Experimental Evidence for Spectra of Quantum-critical Form in Cuprates Single-particle Spectra measured in ARPES

Linewidth proportional to ω for $\omega \lesssim \omega_c$ and constant beyond Inelastic Scattering rate independent of k.

From quantum Critical Fluctuation Spectra ω/T Scaling and Locality: a new Universality Class. (1989):

Recent microscopic Derivation (Aji,cmv 2007,2009)

Predicted single-particle Linewidth

Experimental Evidence for Spectra of Quantum-critical Form in Cuprates Single-particle Spectra measured in ARPES

Linewidth proportional to ω for $\omega \lesssim \omega_c$ and constant beyond Inelastic Scattering rate independent of k.

From quantum Critical Fluctuation Spectra ω/T Scaling and Locality: a new Universality Class. (1989):

Recent microscopic Derivation (Aji,cmv 2007,2009)

Predicted single-particle Linewidth

- O OP Bi2201 Nodal, Meevasana et al.
- X OP-Bi2212 Nodal, Lanzara et al.
- LSCO OP, Nodal, Chang et al.
- LSCO Nodal underdoped, Chang et al.

This spectrum is ideal for high Tc because:

- I. Locality implies least value of λ_0/λ_2
- 2. Least inelastic scattering imaginable.
- 3. Large Upper cut-off.
- 4. Fermi-liquid renormalizations are of O(1).

This spectrum is ideal for high Tc because:

- I. Locality implies least value of λ_0/λ_2
- 2. Least inelastic scattering imaginable.
- 3. Large Upper cut-off.
- 4. Fermi-liquid renormalizations are of O(1).

Quantitative estimates of T_c , Δ/T_c

Why is Tc quite high?

From single-particle spectra, $\omega_c \approx 0.4 eV$ Coupling parameter for single-particle scattering λ_s is about 1.0

Transition temperature for d-wave superconductors approximately given by

$$T_c \approx \omega_c \exp(-(1+|\lambda_s|)/|\lambda_d|)$$

single-particle, d-wave coupling constants

Ba[Fe(I-x)Co(x)As(2)] Chu et al. (Stanford), Canfield (Ames)

 $K_x Sr_{1-x} Fe_2 As_2$:

Melissa Gooch¹, Bing Lv², Bernd Lorenz¹, Arnold M. Guloy², and Ching-Wu Chu^{1,3},

FIG. 2: The resistivity exponent n as a function of x

Friday, February 19, 2010

How to get much Higher Tc.

Electronically induced pairing to get high upper cut-off. "Fermi-liquid" renormalizations only of O(1): avoid the sad experience of heavy fermions and liquid He(3).

Topological Quantum critical point so that criticality does not renormalize scale downward and inelastic scattering does not hurt.

S-wave pairing

Is electronically induced s-wave pairing near topological quantum critical point possible?

Summary

In terms of (Tc/cut-off energy) finite ang. Momentum pairing will always give much smaller Tc than s-wave.

Because of normal self-energy and inelastic scattering.

Strong Interactions reduced cut-off energy as well. At Gaussian criticality, cut-off scale is sharply reduced which hurts.

Topological or local quantum criticality with w/T scaling of spectra maintaining large cut-off is ideal and the secret of high Tc in Cuprates and possibly pnictides.

To get significantly higher Tc, need s-wave electronically induced pairing with similar criticality. This may not be impossible.

Friedel et al. (1975)

$$N(0) < I^2 > \approx E_c/r_0^2$$

Friedel et al. (1975)

$$N(0) < I^2 > \approx E_c/r_0^2$$

Proven by cmv-Dynes (1977).