
 CONSIDERATIONS DETERMINING PAIRING  Tc FOR 
SUPERCONDUCTIVITY THROUGH E.E. INTERACTIONS

Momentum and Frequency Dependence of effective 
electron-electron Interactions for High Tc?

Based on (ArXiv.org), RMP (colloq. ?).

Liquid He(3)
Heavy Fermions
Cuprates
Pnictides 
Cold Fermions (Low Density Fermions with variable 
Interactions)

O(10−2)
O(10−2)
O(10−2)

Tc/Ef is O(10−3)
O(10−1) to

Maximum near unitarity : O(10−1)

Electron-phonon based supercond. Maximum Tc/θD is O(10−1)

What is the Physical Basis for the Following?
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Why is electronically induced pairing invariably found near 
QCP’s? Do these QCP’s have to be of a special nature?

Is Higher Temperature Superconductivity Possible?
And if so, is there any theoretical guidance as to where one 
should look for it?

Related Questions Encountered:
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                              is actually realized in electron-phonon 
induced superconductivity in Pb, A15’s, MgB2, etc.
Tc/θD ≈ O(10−1)
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Upper Limit on Tc:  Provided by Low Density Attractive 
Hubbard Model giving s-wave pairing or cold atoms.

                              is actually realized in electron-phonon 
induced superconductivity in Pb, A15’s, MgB2, etc.
Tc/θD ≈ O(10−1)
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Upper Limit on Tc:  Provided by Low Density Attractive 
Hubbard Model giving s-wave pairing or cold atoms.

                              is actually realized in electron-phonon 
induced superconductivity in Pb, A15’s, MgB2, etc.
Tc/θD ≈ O(10−1)

20 times smaller than those typically accessible with the
auxiliary field determinant method [16], This allows us to
perform a reliable extrapolation to the universal limit
yielding Tc="F ¼ 0:152ð7Þ, in perfect agreement with
our previous value [14]. Next, we explore the critical
temperature at finite values of 1=kFa. Our results, shown
in Fig. 1, fix the general shape of the universal curve Tc="F
versus 1=kFa. The main feature is a substantial maximum
of Tc="F on the BEC side of the crossover.

Our specific model is described by the Hamiltonian

H ¼
X

!¼";#

Z
dx!y

!ðxÞðK̂ $"Þ!!ðxÞ

þU
Z

dx!y
" ðxÞ!y

# ðxÞ!#ðxÞ!"ðxÞ; (1)

where!!ðxÞ is the fermion field operator (! ¼"; # ), x is a
continuous three-dimensional coordinate, " is the chemi-
cal potential, U < 0 is the contact interaction strength, and
K̂ is the kinetic energy operator, K̂eikx ¼ "ke

ikx, with "k
being the single-particle dispersion.

The scattering length a is given by the sum of the
vacuum ladder diagrams [18] leading to (@ ¼ 1)

m

4#a
¼ U$1 þ

Z dk

ð2#Þ3
1

2"k
; (2)

where m is the fermion mass. For the continuous space
model with "k ¼ k2=2m an ultraviolet regularization of
Eq. (2) is required. Keeping in mind comparison with
Ref. [16], where the parabolic dispersion with an ultravio-
let cutoff was used, we introduce a microscopic length

scale l0 such that

"k ¼
!
k2=2m; k < 2#=l0;
1; k > 2#=l0;

(3)

yielding

m=4#a ¼ U$1 $U$1
& ; U& ¼ $#l0=m: (4)

It is straightforward to generalize the DDMCmethod for
resonant fermions [14] to the continuous model (1). One
starts by expanding the partition function Z ¼ Tre$$H,
where $ ¼ 1=kBT, in powers of U. The resulting
Feynman diagrams consist of four-point interaction verti-

ces connected by free single-particle propagators Gð0Þ
! . A

diagram of a given order p is described by the space-time
configuration of the vertices Sp ¼ fðxj; %jÞ; j ¼ 1; . . . ; pÞg
(% 2 ½0;$( is the imaginary time) and the topology of
propagator lines connecting them without integration
over the vertex positions—the latter is done by the
Monte Carlo sampling process. Next, one observes [19]
that the sum over all topologies is given by detA"ðSpÞ)
detA#ðSpÞ, where A! is the p) p matrix, A!

ijðSpÞ ¼
Gð0Þ

! ðxi $ xj; %i $ %jÞ. In the case of equal densities of
the spin components, the weight of a configuration Sp is
positive definite:

dP ðp;SpÞ ¼ ð$UÞpj detAðSpÞj2
Yp

j¼1

d%jdxj: (5)

The partition function Z ¼ P1
p¼0

R
Sp

dP is calcu-

lated stochastically according to the standard
Metropolis-Rosenbluth2-Teller2 algorithm ensuring that
configurations Sp are generated with the probability den-
sity given by Eq. (5). The Monte Carlo updates are based
on a worm algorithm for the four-point correlation function
[15] G2ðx; %;x0; %0Þ ¼ hT %Pðx; %ÞPyðx0; %0Þi, where T %

indicates time ordering, Pðx; %Þ ¼ !"ðx; %Þ!#ðx; %Þ is the
pair annihilation operator, and h* * *i is the thermal av-
erage. The asymptotic value of

RR
d%d%0G2ðx;%;x0;%0Þ as

jx$ x0j ! 1 is proportional to the condensate density.
Up to statistical errors, the DDMC calculations yield

exact results for a finite system—in our case a cubic box of
a linear size L with periodic boundary conditions. An
efficient way of finding Tc in the thermodynamic limit L !
1 is to employ the technique of Binder crossings [20] for
R ¼ L1þ&

R
dxdx0d%d%0G2ðx; %;x0; %0Þ=ð$L3Þ2 [where

& + 0:038 for the 3DUð1Þ universality class], as discussed
in detail in Ref. [15]. It is expected that at the critical point
R becomes scale invariant. By analyzing the crossings of
the family of RðL;$Þ curves one can obtain Tc with an
accuracy of a fraction of percent with a relatively small
number of particles. The thermodynamic limit of the num-
ber density is obtained from a linear extrapolation of nðLÞ
as a function of 1=L. An example of the finite-size analysis
for a typical set of parameters is given in Fig. 2.

FIG. 1 (color online). The universal results for the critical
temperature in the units of the Fermi energy plotted versus ' ¼
1=kFa (circles). The solid lines for negative and positive '
represent the limiting behavior of the BCS theory (with the
Gorkov-Melik-Barkhudarov correction) and the ideal BEC, re-
spectively. For reference, we also plot nonuniversal results for
hard-sphere (triangles) and soft-sphere (squares) bosons
(Ref. [23]).

PRL 101, 090402 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

29 AUGUST 2008

090402-2

= rs/a

Svistunov et al. (2008)
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Electron-Phonon Interactions
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Electron-Phonon Interactions

Thoroughly understood problem both theoretically and 
empirically.
Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established.
Enormous amount of data available and analyzed.
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Electron-Phonon Interactions

Thoroughly understood problem both theoretically and 
empirically.
Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established.
Enormous amount of data available and analyzed.

Tc ≈< ω > e−(1+λ0)/λ0

McMillan (1967):

λ0 = N(0) < I2 > /M < ω2 >
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Electron-Phonon Interactions

Thoroughly understood problem both theoretically and 
empirically.
Many lessons were learnt- many of them forgotten.

Limits of validity of Eliashberg theory firmly established.
Enormous amount of data available and analyzed.

Tc ≈< ω > e−(1+λ0)/λ0

McMillan (1967):

λ0 = N(0) < I2 > /M < ω2 >

Empirical Relations: 
McMillan : N(0) < I2 >≈ constant within a class

V arma and Dynes(1975) :< I2 > /M < ω2 > also constant
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McMillan : N(0) < I2 >≈ constant within a class

Several Derivations: Simplest by Friedel et al. in 
tight binding representation of el-ph. interactions:

N(0) < I2 >≈ N(0) < (∂t/∂R)2 >≈ Ec/r2
0

Varma and Dynes : (Following Friedel’s reasoning)

< I2 > /M < ω2 >≈< (∂t/∂R)2 > / < ∂2t/∂R2 >renorm≈ Ec/r2
0

Lessons:  parameters determining Tc are gross averages and they are
inter-related.
This is equally true for e.e. induced superconductivity, especially for 
problems where fermi-liquid theory can be applied.

There is one clear example of a fermi-liquid superconductor:
liquid He(3), (possibly also Sr(2) Ru O(4)).
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Maximum Tc from El-Ph Interactions

(Tc)max ≈ Ec/Mr2
0 exp(−3/2) ≈ ωunren. exp(−3/2)

Using the observed empirical relation and their approx. derivation:
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Tc in Liquid He(3): Triplet odd parity pairing.
 Very Strongly Interacting Fermions: 
Mass enhancement near melting = 6.
Susceptibility Enhancement = 20.

Friday, February 19, 2010



Tc in Liquid He(3): Triplet odd parity pairing.
 Very Strongly Interacting Fermions: 
Mass enhancement near melting = 6.
Susceptibility Enhancement = 20.

Tc/Ef ≈ 10−3only
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temperature (for T c < T '~  eF), the vertex I) reduces 

to its value in Fermi liquid t h e o r y  F] .FL. In addition, 

for Tin  the range e o <~ T ' ~  eF, the kernel in eq. (1) 

may be shown explicitly to be of  order N(0) (eo/T), 

and thus may be neglected, leading to the identifica- 

tion Y/(T>~ eo) =//. Thus, for e o ~ T <  eF, we have 

F/"FL = ~/"(T>~ eo )  =/ ] "  (5)  

Therefore, the in terac t ion/ / tha t  enters eq. (1) is given 

by the interaction vertex of Fermi liquid theory, F/FL. 

It is well known, however, that the value of the vertex 

F/FL depends on the order of  limits in which VFq and 
t 

co appraoch zero, [1] where q = P l  - P l  and 

co = co 1 - co] are the momentum and energy transfer 

and V F the Fermi speed. In the integral in eq. (1) we 

have the typical values q "~ PF, co ~ eo "~ eF- Thus, 

except for a small region of  phase space of negligible 

weight, namely O(eo/eF), the limit co "¢ VFq always 

obtains. Expressing Fi FL in terms of the Landau para- 

meters for co "~ VFq and using eq. (5) yields eqs. (2). 

In using eqs. (2) in eq. (1) we make the usual assump- 

tion that (except for the singular region q, co -+ 0) 

I '  is a slowly varying function of  frequency and mag- 

nitude of momentum near the Fermi surface. 

To use eqs. (1) and (2) to calculate T c we make the 

simplest possible approximation (s and p wave) [5] 

for R, R 0 = 1, R 1 = cos 4); which procedure, however, 

has the advantage of introducing no additional 

unknown parameters, leaving ~ completely specified 

by the Landau parameters. We find, if the effective 

interaction gj is negative, where 

go = A0(Tr, 40 = ~ ( - ) / (A~ - 3A~)/4 (6a) 
l 

g] = Al(Zr, ~)/3 cos 4~ = ~ ( - ) I ( A ~  +A~)/12, (6b) 
1 

then a solution for Tc (/) exists 

Tc(i) = 1.13 t~Tf exp(llg/) (7) 

where j = O( l )  indicates pairing in a singlet (triplet) 

state. 

For 3He, we take F~, F~ and F~ from experiment 

[6] ¢, and use the sum rule (4) to determine A~. At 

low pressure, we also have an independent determina- 

To reduce scatter, values of  Ag  were determined by a 

smooth curve fit to the data tabulated on page 467 of  ref. [6]. 

tion, A] = -0 .55 ,  obtained from finite-temperature 

contributions to the thermal conductivity [5]. Fig. 2 

shows the triplet transition temperature Tc (1) versus 

pressure for a = 0.054. The fit depends on only the 

one unknown parameter a, and is remarkably good in 

view of the exponential dependence on the interac- 

tion. The experimental increase of  T e with pressure is 

thus seen to correlate fundamentally with the increase 

of the strength of the interactions; in the case of 3 He 

the important effects are the increase of the exchange 

interaction F~, and the effective mass, m*/m = 1 +F~/3 

with pressure. We note that the enormous change in 

F~ (associated with the compressibility) plays little 

role in the pressure dependence of Tc, since F~ is 

always large enough that eq. (3) leads to virtually com- 

plete screening of the interaction. The decrease of  the 

calculated T c at high pressure may be due to the 

restriction to Landau parameters for l ~< 1, an approxi- 

mation that becomes less valid for high pressures. 

Using measurements of  the Fermi liquid parameters 

in 3 He-4 He mixtures and assuming the same value of 

c~, it would be possible to predict the temperature at 

which 3He would go superfluid in superfluid 4He. In 

the absence of a more complete experimental deter- 

mination of the Landau parameters, we use values 

obtained indirectly from fitting an effective potential 

to transport and osmotic pressure measurements [7, 

8]. Using the sume rule and including only 1 < 2, 
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Fig. 2. Phase diagram of  3 He. Solid curve is the experimental 

Tc from ref. [6 ]. Circles were calculated from eq. (7) using 

the sum rule for A] t. The square is calctdated with A~ = -0 .55 ,  

obtained from the thermal conductivity. 
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Tc in Liquid He(3): Triplet odd parity pairing.
 Very Strongly Interacting Fermions: 
Mass enhancement near melting = 6.
Susceptibility Enhancement = 20.

Tc/Ef ≈ 10−3only
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Tc in Liquid He(3): Triplet odd parity pairing.
 Very Strongly Interacting Fermions: 
Mass enhancement near melting = 6.
Susceptibility Enhancement = 20.

Pfinzner and Woelfle: Variation of  Tc with P understood systematically by calculating 
interactions parameters constraining them by measured Landau parameters but with a
renormalization of pre-factor downwards by about 1/10. 

Tc/Ef ≈ 10−3only
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Things to remember when thinking of fermion interaction induced pairing:

1. The actual superconductivity interactions parameters continually
connected (and actually close) to Landau’s A parameters, which are 
always less than 1,
due to cancellation of self-energy and vertices.

2. Pre-factor: Do not forget the self-energy.

: d-wave interaction parameter.

S-Waves:

D-Waves:

: s-wave interaction parameter.

is never smaller than ~ 2     
because interaction range is no shorter than about (2/kf)

λ0 λ2
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Things to remember when thinking of fermion interaction induced pairing:

1. The actual superconductivity interactions parameters continually
connected (and actually close) to Landau’s A parameters, which are 
always less than 1,
due to cancellation of self-energy and vertices.

2. Pre-factor: Do not forget the self-energy.

  SELF ENERGY ALWAYS MORE DELETERIOUS FOR FINITE ANG.
     MOMENTUM PAIRING

: d-wave interaction parameter.

S-Waves:

D-Waves:

: s-wave interaction parameter.

is never smaller than ~ 2     
because interaction range is no shorter than about (2/kf)

λ0 λ2
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3.  Nothing much for superconductivity by exchange of incoherent 
fluctuations (Luttinger-Kohn). 
Must stick to collective modes but as opposed to phonons, they 
have only a fraction of the spectral weight. 
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4.  INELASTIC SCATTERING LIMITS Tc WHEN Tc IS HIGH FOR D-WAVE
     SCATTERING WHILE IT IS HARMLESS FOR S-WAVE SCATTERING.

Inelastic Scattering or ‘real’ Scattering may be regarded for this purpose
as elastic scattering from excitations with     up to O(T).ω

How bad is it?: Millis, Sachdev, CV (1988).

FIG. 4: Dependence of Tc/Tc0 and ∆/∆0 on inelastic scattering for the case of d-wave pairing.

An Einstein spectrum of spin-fluctutations at ωE is used for simplicity with frequencies 1 and

additional Einstein modes are introduced with frequencies (in units of ωE) as marked for curves

a, b and c. Tc0, and ∆0 are the values without inelastic scattering and so is the unmarked curve.

Dashed and full lines represent approximate and exact solutions of the Eliashberg equations. For

details, see (23)

C. Quantum-Criticality in Relation to Tc in e-e Induced Pairing

The highest Tc’s in the Cuprates are undoubtedly through electronic fluctuations, and

near a quantum-critical point (qcp), as are those in the heavy-fermions. This as we will

see is likely be true for the pncitides as well. As discussed below for each of these cases,

we know this because the observed transport and thermodynamic properties for T ! Tc in

these compounds can only be understood as due to scattering of fermions from fluctuations

which have a singularity in the limit ω → 0, T → 0. It is therefore important to ask about

the role of spectral distribution of fluctuations near qcp’s in determining Tc in light of what

we have learnt in the previous section.

Much less is understood about the universality classes of quantum critical points (qcp)

than classical critical points where the scale-invariant frequency and momentum dependence

of critical fluctuations for the classical critical points has been catalogued into different Uni-

versality classes [27]. A qcp is the point p = pc, where by varying a parameter p, for example

pressure or electron density, the transition temperature to some broken symmetry → 0. A

22

D-wave pairing solution from 
Eliashberg Eqns. with successively
increasing spectral weight of 
low-energy excitations with total
weight kept constant.

Notice also increase in the ratio
of ∆/Tc
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This is harmless for s-wave pairing: Cancellation of self-energy and 
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One Immediate Conclusion:
Ordinary or “Gaussian” Quantum-Critical Points are
bad for Tc.  
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One Immediate Conclusion:
Ordinary or “Gaussian” Quantum-Critical Points are
bad for Tc.  

1.  Weight of Fluctuations goes towards zero frequency at such critical points so ‘prefactor’ goes 
    to 0 at the critical point.

2. Not captured by the above expression: the role of inelastic scattering because it introduces
    Imaginary part in the gap-function similar to the effect of magnetic impurities in s-wave case.  
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Some High Tc Electronically induced 
          d-wave Superconductors

Tc/Ef is only about 1/100
Heavy fermions: mass renormalizations of O(100)

From review by Sarrao 
and Thompson.
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FIG. 10: Tc vs. T0, a measure of the Fermi-energy obtained from magnetic susceptibility measure-

ments from several heavy-fermion superconductors as well as Cuprates; figure is reproduced from

Ref.(67).

qualitatively different from that in liquid He3. The renormalizations are characteristic of a

sub-set of fermi-liquids in which the single-paricle self-energy is very weakly dependent on

momentum compared to on energy. This idea gives that [68]

m∗/m = 1/z = (1 + F s
0 ) (36)

κ/κ0 = (m∗/m)/(1 + F s
0 ) = O(1)

χ/χ0 = (m∗/m)/(1 + F a
0 ) = O(1).

The enhancement of the specific heat of O(103) gives z of O(10−3); similar enhancement

of susceptibility gives F a
0 of O(1); the lack of renormalizations in ultrasonic attenuation

and zero-temperature resistivity give that F s
0 ≈ 1/z. The temperature dependence of the

resistivity in the Fermi-liquid regime is ∝ T 2 with its coefficient renormalized by O(1/z2)

which also follows from the momentum independence of the self-energy. These ideas are also
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FIG. 10: Tc vs. T0, a measure of the Fermi-energy obtained from magnetic susceptibility measure-

ments from several heavy-fermion superconductors as well as Cuprates; figure is reproduced from

Ref.(67).
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Gained a factor of 10 in the dimensionless ratio, but lost by a factor of 100
in the heavy fermions in absolute magnitude. But no such loss in Cuprates.
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Heavy Fermion Superconductivity
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First suggestion (1982) following the discovery in CeCu(2) Si(2) and UBe(13) that heavy 
fermion superconductivity could not be electron-phonon induced but induced by AFM 
spin fluctuations and analysis of Expts to show d-wave pairing. 
(Miyake, Schmitt-Rink, Varma (1986) 

Why is Tc so low in heavy Fermions?
(1) Even though repulsion is large, the pair energy has a cut-off of the spin-fluctuation
Energy which is the same order as the effective fermi-energy which is very small. 
 (2) Large Inelastic scattering unhelpful for high Tc.
 (3) Also, s-wave scattering always larger than d-wave scattering leading to large 
 self-energy effects which are bad for Tc.

Heavy Fermion Superconductivity
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Quantum criticality and superconductivity
Preference for electronically induced pairing around quantum-critical Points.
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  Single-particle Spectra measured in ARPES
 Experimental Evidence for Spectra of Quantum-critical Form in Cuprates

ω ! ωcω Linewidth proportional to      for               and constant beyond
         Inelastic Scattering rate independent of k.

Excitation Spectra

From quantum Critical Fluctuation Spectra  
         Scaling and Locality: a new Universality Class.
(1989): 
Recent microscopic Derivation (Aji,cmv 2007,2009) 

Predicted single-particle Linewidth
ω/T
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  Single-particle Spectra measured in ARPES
 Experimental Evidence for Spectra of Quantum-critical Form in Cuprates

ω ! ωcω

OP Bi2201  Nodal , Meevasana et al.
OP-Bi2212  Nodal,   Lanzara et al.
LSCO OP,   Nodal , Chang et al.
LSCO  Nodal underdoped, Chang et al.

X
o

linearity in T to linearity in ω have been reviewed [85]. Fig. (13) is also a proof that a distinct

fluctuation spectra with a sharp cut-off ωc ≈ 0.5eV exists universally in the cuprates. These

critical fluctuations themselves for q → 0 are directly observed in Raman scattering (but

the experiments have not been carried out all the way to the cut-off energy), see Fig.(14),

where evidence for the universality is presented through S(ω) = (1 + n(ω/T ))χ”(ω) in the

limit q → 0.

The spectra of Eq.(37) is quite unlike the Gaussian critical spectra discussed in Sec.IIC.

The singularity at (ω, T )→ 0 does not affect the bulk of the spectra at all which extends at all

T to ωc, which as we will infer from experiments is about Ef/4. Second and most curiously,

the critical spectra has no spatial scale, the concept of a dynamical critical exponent z is

lost.

3

La1.83Sr0.17CuO4) is shown in Fig. 1. The experimental MDC

width for this compound and the calculated widths for three

different cuts are compared with experiment in Fig.3. In

Fig.4(a)-(c), we compare the experiments [3] for the disper-

sion of three Bi2212 samples at different dopings with calcu-

lations with !c = 0.5,"0 ∼ 1. In Fig.4(d), we compare the
measured linewidth for an UD-LSCO sample, an OP-Bi2201

sample and an OP-Bi2212 sample with calculations with pa-

rameters given in the figure caption.

FIG. 3: The MDC half-width at half-maximum wk(!) is shown for
the cuts 2 ,3 and 5 of the inset of Fig. 2(a). The experimental data

for the same cuts from Fig. 2 of Ref. 8 is also shown. Note that the

experiments quote are done with an energy resolution of 30 meV,

which accounts for the deviation from the theory at low energies.

Higher resolution data [15] confined to lower energies is consistent

with the theory.

FIG. 4: Comparison between experimental and theory results (repre-

sented by symbols and lines, respectively) for various cuprate sam-

ples. (a)-(c) are calculated dispersions for three Pb-doped Bi2212

samples along the nodal cuts: UD with Tc = 64K, OP with Tc = 91K

and OD with Tc = 65K. The experimental data shown are extracted

from Fig. 1 of Ref. [3]. The tight-binding fitting parameters of the

band structure are taken from Ref. [23]. All these samples are fit-

ted by the parameters !c = 0.5eV(for all) and "0 = 0.98, 1.01, and
1.05, respectively. (d) shows the MDC linewidths (full width at half
maximum) for different cuprate samples. ◦, ×, • and ! represent

OP-Bi2201 (nodal cut, Ref.[9]), OP-Bi2212 (nodal cut, Ref. [24]),

LSCO 0.17 (cut 2 in Fig. 2 of Ref. [8]) and LSCO 0.145 (cut 1

in Fig. 3 of Ref. [25]), respectively. The corresponding theory fit-

ting parameters are: "0 = 0.99, !c = 0.5eV; "0 = 1.01, !c=0.5eV;
"0 = 1.09, !c=0.41eV and "0 = 1.64, !c=0.41eV.

Universality of the Data: The data and the comparison with

experiments in Fig.3 and Fig. 4(a)-(d) attest to the universality

of the single-particle spectra of the cuprates and of the quan-

titative success of the theory. Now we consider in detail each

of the points (i) to (iii) of the experimental data and explain

them successively.

(i) The physical properties in any quantum critical regime

are universal, controlled by the scale-invariant critical fluctu-

ations. Specifically, for! larger than the superconducting gap

or the pseudogap the self-energy is of MFL form and given in

terms of only the two parameters !c, "0 for each compound

for all x. Weak dependencies in these parameters from varia-

tion in microscopic parameters due to varying x or T may oc-

cur of course. We find however that for a given compound, a

single value of these parameters is adequate to fit all the avail-

able data for different x and for all momentum directions.

It is worth noting that the spectra for energies below the

pseudogap energy and T ≤ Tg is also scale-invariant with a

new scale # Tg(x) [26, 27].
(ii) Suppose at certain energy !, Eq. (6) is satisfied for k=

k0. Since the self-energy does not depend significantly on k,

we can expand the spectral function in (k− k0). The MDC
is then a Lorentzian with width wk given by Im$(!)/v(k0)
where v(k0) = vy(k0)+vx(k0)(kx−kx0)/(ky−ky0), is the bare
velocity in the momentum-cut direction. This expansion also

requires that within (k−k0)≈ wk, the velocity vk is nearly a

constant.

As discussed above Im$(!) increases linearly in ! for

! " !c and is constant beyond. Therefore if v0(k) varies
slowly with k as in cut 2 in Fig. 2, MDC linewidths also vary

linearly in !, i.e., wk # !. Away from the nodal momentum

directions, v0(k) varies considerably as in cut 4 and higher
of Fig. 2. As a result, MDCs’ linewidth deviates from the

linear-! dependence. This accounts for the MDC width of cut

5 shown as an example in Fig. 3 and the higher cuts. If the

MDC linewidth is multiplied by the bare velocity at each k

in any direction, a linear dependence of the width with ! is

obtained both in theory and the experiments.

(iii) Comparing Figs. 2(d-f), we can see that there are

two distinct reasons for the “waterfalls”. If %k reaches !1−
Re$(!1) at k ≈ k0 as k is varied along the momentum cut,

e.g., cut 2 in Fig. 2, %(k) follows the “waterfall” between !1
and !2, which correspond to E1 and E2 defined in experi-

ments.

If the momentum cuts are sufficiently away from the nodal

cut such that the bottom of the band is very shallow, %k never

reaches !1−Re$(!1); e.g., cuts 5-8 in Fig. 2. The observed
dispersion %(k) then follows Eq. (6) to its maximum value at
the bottom of the band km. For higher energies, there are no

solutions to Eq. (6). In this case the MDC curves stay cen-

tered at km which leads to another type of “waterfall”. E1 in

this case is nearly the energy of the bottom of the renormal-

ized band, and gets continuously smaller as the bottom of the

band (where the velocity is zero) becomes continuously more

shallow from the (&,&) to the (&,0) direction. The variation
of the position of the “waterfall”s, Fig. 3 of Ref. [8] and Fig. 3

FIG. 13: The linewidths of the Momentum Distribution curves for different cuprates as a function

of the energy. The imaginary part of the self-energy is obtained by multiplying this linewidth with

the bare fermi-velocity. The detailed references for each cuprate are given in Ref.(86)

Given that these singular fluctuations determine the properties above Tc including the

scattering rate of the fermions, it is natural to ask if they promote superconductive pairing

with the observed d-wave symmetry and with the right order of magnitude of Tc. As has

already been noted in Sec. II, the spectra of the fluctuations (eq:flucspec) is ideal for high

Tc on the basis of Eliashberg theory. It has a high upper cut-off, and it has the least

inelastic scattering possible in a quantum-critical spectra. However, the q-independence

46

 Linewidth proportional to      for               and constant beyond
         Inelastic Scattering rate independent of k.

Excitation Spectra

From quantum Critical Fluctuation Spectra  
         Scaling and Locality: a new Universality Class.
(1989): 
Recent microscopic Derivation (Aji,cmv 2007,2009) 

Predicted single-particle Linewidth
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This spectrum is ideal for high Tc because:
1. Locality implies least value of 
2. Least inelastic scattering imaginable.
3. Large Upper cut-off.
4. Fermi-liquid renormalizations are of O(1).

λ0/λ2
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Quantitative estimates of 

From single-particle spectra,  
Coupling parameter for single-particle scattering     is about 1.0

Tc ≈ ωc exp(−(1 + |λs|)/|λd|)

Transition temperature for d-wave superconductors approximately given by

single-particle, d-wave coupling constants

λs

ωc ≈ 0.4eV

Tc, ∆/Tc

Why is Tc quite high?

This spectrum is ideal for high Tc because:
1. Locality implies least value of 
2. Least inelastic scattering imaginable.
3. Large Upper cut-off.
4. Fermi-liquid renormalizations are of O(1).

λ0/λ2
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Chu et al. (Stanford),  Canfield (Ames)Ba[Fe(1-x)Co(x)As(2)
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How to get much Higher Tc.

Electronically induced pairing to get high upper cut-off. 
“Fermi-liquid” renormalizations only of O(1): avoid the sad experience of 
heavy fermions and liquid He(3).

Topological Quantum critical point so that criticality does not renormalize scale 
downward and inelastic scattering does not hurt.

S-wave pairing

Is electronically induced s-wave pairing near topological quantum critical point possible? 
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Case of BaBiO(3) doped with K?
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Summary

In terms of  (Tc/cut-off energy) finite ang.
Momentum pairing will always give much smaller Tc
than s-wave.
Because of normal self-energy and inelastic scattering.

Strong Interactions reduced cut-off energy as well.
At Gaussian criticality, cut-off scale is sharply reduced
which hurts.

Topological or local quantum criticality with w/T scaling of 
spectra maintaining large cut-off is ideal and the secret of
high Tc in Cuprates and possibly pnictides.

To get significantly higher Tc, need s-wave electronically
induced pairing with similar criticality.
This may not be impossible.
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The coefficient of resistivity due to electron-phonon interactions in the normal state is also

given in terms of λ. For example for temperatures comparable to an larger than ω, the

resistivity due to e-ph interactions in a metal may be written in terms of the scattering rate

τ−1(T ) = 2πλe−phT. (26)

B. Empirical Relations in transition metal superconductivity

Study of empirical relations among the parameters determining Transitions temperatures

in superconductors gives useful insights to the physics of metals. In his analysis of the
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FIG. 5: Empirically determined ”constancy” of N(0) < I2 > in classes of metals and compounds.

properties of superconducting metals and compounds, McMillan [25] noted that N(0) < I2 >

varies only by about factor of 2 while N(0) and < I2 > vary by a factor of about 10. However

the empirically ”constant” N(0) < I2 > has different values for different classes of metals

and compounds. For example, see Fig. (5), it is is close to one value for the pseudo-

potential metals like Sn, Pb, Bi and their alloys and another for the transition metals and

their alloys and yet another in the A-15 compounds. McMillan proffered no explanation

for the transition metals but showed using the fact that the ion-plasma frequency Ωp are

always much larger than the phonon frequencies, that for the pseudopotential metals that

N(0) < I2 > /Ω2
p is approximately constant.

28
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Barisic, Labbe and Friedel [45] presented a simple and strong argument for transition

metals and compounds on the basis of the tight binding representation of the band-structure

and of the electron-phonon coupling that N(0) < I2 > is related simply to the cohesive

energy Ec of the metal. The argument is summarized in appendix A with the conclusion

that

N(0) < I2 >≈ N(0) < d2Ec/dR2 >≈ N(0)Ec/r
2
0. (27)

< d2Ec/dR2 > is the average of the second derivative of the change in kinetic energy of the

metal as the nearest neighbor distance between two atoms R is changed leaving the others

fixed; r0 is the size of the typical metallic orbital.

FIG. 6: Empirical Relation between experimentally deduced λ and the bare electronic density of

states at the chemical potential in 3d-4d and 5d metals and their alloys.

One may be tempted to conclude that since N(0) < I2 > within a given class of transition

metals or compounds is approximately a constant, one may simply increase λ by reducing the

average lattice stiffness M < ω2 > and thus increase Tc. This led to the soft-phonon myth,

much propagated in the 1970’s . Quite apart from the fact that the prefactor < ω > would

prefer matters the other way for high Tc, there is also another empirical rule [46, 47] followed.

It is that within a given class of materials < I2 > /(M < ω2 >) is also approximately a

29
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N(0) < I2 >≈ Ec/r2
0

Friedel et al. (1975)
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N(0) < I2 >≈ Ec/r2
0

Friedel et al. (1975)

Proven by cmv-Dynes 
(1977).
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