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Outline

1. Non-adiabatic response in real and imaginary times.

2. Kibble-Zurek mechanism and universal dynamics near 

continuous phase transitions. 

3. Application to spin glass transitions: Quantum annealing vs. 

Simulated annealing.

4. Dynamical localization transition near critical points.



Non-adiabatic response in real and imaginary time dynamics

Infinitesimal transformations are like the Schrödinger equation 

Hamiltonian equations of motion in a moving frame

Special instantaneous frame, where U diagonalizes the 

instantaneous Hamiltonian. Convenient near the adiabatic limit

Consider an arbitrary unitary transformation of the wave function

Berry connection is the expectation 

value of the gauge potential



Compute leading correction to the energy due to the Galilean term

F

First order perturbation theory



Dilation operator

Recover “quantum” dilatation mass: the classical result plus an 

additional quantum correction. 

Leading non-adiabatic correction.

Moving frame
Can absorb L2 into time 

dilatation:



Leading corrections to generalize forces (beyond Born-

Oppenheimer approximation)

Leading non-adiabatic corrections give the Berry curvature for 

generalized forces and mass tensor for the energy (metric 

tensor for energy fluctuations). 



Repeat similar analysis for imaginary time dynamics

Imaginary time Schrödinger equation in a moving frame

Similar analysis applies to classical Markov systems

L. D’Alessio, Y. Kafri, A.P. 2015 

F

Same expression as in the real time



Generalized Kubo response (imaginary time) and the metric tensor.

g is the metric tensor, characterizes the Riemann manifold of 

ground statates (density matrices).

Metric tensor can be extracted from response of physical 

observables in the imaginary time dynamics. 

Real time



Analytic structure of the non-adiabatic response

Asymptotically (excluding LZ type nonanalytic corrections)

We can get real time result by analytic continuation in the 

complex velocity plane.

For observables need something else 



Use left and right expectation values in imaginary time.

In particular, can extract the Berry curvature from the 

imaginary time dynamics (M. Kolodrubetz, 2013)



Critical points: diverging susceptibilities. Scaling theory.
(Pokrovsky, Patashinski, 1963-1965, Kadanoff 1966 )

Diverging correlation length

Power law correlations (scale invariance) at the critical point

Finite size scaling hypothesis close to the critical point



Extend scaling theory to nonequilibrium – universal dynamics 

(both in real and imaginary time) 
(C. De Grandi, A.P., A. Sandvik, 2011, Chandran et al. 2012, Kolodrubetz et. al. 2012)

We can now use normal scaling theory using this new length scale 

The shortest scale dominates. At the critical point

If M~Ld is extensive then 



Instead slowly quench T to the critical point. Metropolis dynamics
(C.-W. Liu, A. P., A. Sandvik 2013)

Magnetization

Temperature
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FIG. 2: (Color online) For linear QAQfor different systemsizeswith
Metropolis dynamicson 2DIM. Therescaled magnetization squared

at Tc versusrescaled quench velocity with therescaling described by
Eq. (5) showsaclear scalingcollapse. Thisuniversal behavior allows

us to carry out an optimization procedure to determine the dynamic
exponent z

M
. The optimized result gives z

M
= 2.1723(37) with

χ2 = 1.00 per dof. Inset: rescaled magnetization vs. rescaled veloc-
ity in amorefocused window for L = 128 curve. Thedashed lineis

theuniversal function obtained by carrying out theoptimization pro-
cedure. It indicates that the rescaled magnetization will eventually

collapse to thisuniversal curvewhen thevelocity is below acritical
valuevcr i t . Theerror bar of each datapoint isat most thesizeof the

symbol.
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j

σ0σj ∼ L− 2, (7)

thespin-spin correlation σ0σj becomes memoryless at high
velocity, hence scales as L0 in the above equation. Eq. (7)
determines thepower x in Eq. (6):

x = −2
1− β

ν

z + 1
ν

(8)

In the optimization procedure, we divide the abscissa into
two regions, the first region corresponds to the low and in-
termediate velocity regions, i.e., the“plateau” and “shoulder”
shown in Fig.(2). Polynomial fit is used for this region. The
second region corresponds to the high velocity region, with
the power-law behavior dictated by the exponent Eq.(8) for
the z

M
optimized in the first region. This result is in good

agreement with15,17. We use χ2 as a statistically system-
atic way to quantify the“goodness” of theoptimization result
when removing potentially high velocity data points, wealso
gradually removesmall system sizes to excludefinite-size ef-
fects, weobtain z

M
= 2.1723(37) with χ2 = 1.00 per degree

of freedom (dof). This result is in good agreement with15,17.
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FIG. 3: (Color online) For nonlinear QAQswith Metropolisdynam-
icson 2DIM. Bottom panel: quadratic quench (r = 2). Themagne-

tization squared and acceleration are rescaled according to Eq. (5).
The inset shows three typical protocols of temperature change as a

function of time. Top panel: square-root quench (r = 0.5). Thedy-
namic scaling still holds for irrational number of r , here application

of Eq. (5) with r = 0.5 result isshown. The inset shows three typi-
cal square-root quench protocolsof temperaturechangeasafunction

of time. In both bottom and top panels of scaling collapse, theopti-
mized z

M
= 2.1723 isused directly.

2. Non-linear QAQ

Aswepointed out inSec. (II), thequasi-adiabatic quench is
not only restricted to linear protocol. Eqs. (3), (4), (5) incor-
porate nonlinear quench scenarios. Furthermore, the expres-
sions provide a simple way to separate the quench process
from theunderlying dynamics (updating scheme), the former
ischaracterized by parameter r whilethelater by thedynamic
exponent z.

For example, one can also carry out an “constant acceler-
ation” quadratic quench with r = 2, and the characteristic
quantity Eq. (3) stands for acritical acceleration which sepa-
rates aquasi-adiabatic and diabatic regimes. Thescaling col-
lapse follows directly, and is shown in the bottom panel of
Fig. (3).

More remarkably, the dynamic scaling Eq. (5) also holds
when theparameter r isan irrational number. Wedemonstrate
asquare-root quench r = 0.5result in thetoppanel of Fig. (3).

B. Swendsen-Wang dynamics

Metropolis algorithm is known to suffer significantly from
critical slowing down at critical point. As the system ap-

Very accurate determination of the dynamical exponent. 



Quantum Ising model in 2D (imaginary time QMC)

Scan through QCP, look for Binder cumulant:

Expect the scaling form

If the second argument is constant (or flows to zero) expect a 

crossing point at  



Numerical simulations (imaginary time quantum annealing) 

Either the best or close to the best accuracy for simulations on 

a small computer cluster.



Comparison of real and imaginary time ramps for small systems



Before QCP perturbation theory works and have good agreement.

Beyond QCP in real time the system remains excited











Quantum annealing vs. simulated quantum annealing



Application to Quantum Annealing

Goal: find the ground state of a disordered classical model

NP-hard problem. Many applications in many fields.

Thermal annealing. Take this system at finite temperature

and slowly decrease it. In the adiabatic limit the system should 

gradually relax to the ground state. 



Quantum Annealing

Introduce an auxiliary quantum term and slowly anneal it to zero 

In the adiabatic limit follow the ground state.

Both thermal (simulated) annealing and quantum annealing 

have problems in glass phases. Hopes are that quantum 

annealing can be more efficient.





Extracting Quantum-glass transition



Velocity Scaling at the Glass Transition





Origin of KZ scaling is that many excitations are created near 

QCP. Like moving in a swamp: lots of drag and added mass.

Image taken from: http://allthingspoliticaltoday.com

As the ball gets heavier it is harder to move even if there is a slope. 

Can get stuck.



From a snowball to inflation in cosmology (hypothetical scenario)

Scalar field    rolls affecting the Higgs mass. Near QCP (zero 

Higgs mass) it gets very heavy and dynamically localizes.

Related ideas: L. Kofman et. al. (2004) 



The Kibble-Zurek type scaling argument one more time

Scaling dimension of velocity

Divergent KZ correlation length 

Characteristic gap 

Energy (heat) density

Initial kinetic energy

Can expect localization if 



Localization is expected if we 

absorb more energy than it has

The slower the system goes the more likely it is localized

Localization from the Kibble-Zurek

Alternative way to understand this result. Mass renormalization 

near QCP

Negative scaling dimension = divergence. Small dimensionality 

implies divergent mass.  



Check numerically. Transverse field Ising model with magnetic 

field as a dynamical degree of freedom 

First subtract the GS energy so that the field moves in a flat potential 

(later revise this assumption). 

Trapping condition

Expect trapping when 



Observe sharp transition to the trapping regime at 



Scaling collapse of the dynamics in the trapping regime

Trapping slightly off QCP due to irrelevant terms in the Hamiltonian.



Finite slope

Start from the rest at some       and 

release the system. What will happen?

Naïve answer: will roll down, perhaps stumble a bit near QCP 

and move on. Wrong!

The system can be truly self-trapped due to heating

Expect two scenarios: 

Untrapped (adiabatic)

Trapped (enough heating)  



Start far from QCP: not too fast

Expect trapping when

Trapping is possible 

only if 

Start near QCP : not too slow



Numerical phase diagram

Numerical constants are not very small, but this is quite typical.



Interesting non-equilibrium dynamics if start near QCP.

Bare mass is irrelevant and can be set to zero. 

Except for transients and long times have a full scaling collapse 



Outlook: dynamic trapping is consistent 

with thermodynamic trapping

Consider a fixed energy state. Equilibrium: maximize entropy

The entropy is maximized near QCP where excitations are cheapest.

From scaling expect entropy maximum near QCP. 

Can the same happen with  MBL/glass type transitions with heavy/light atoms?



Summary

• Can use non-adiabatic response in real and imaginary times to 
get non-trivial susceptibilities: Berry curvature, Fubini-Study 
metric and Fidelity susceptibility, added mass, …

• Can use this scaling theory to accurately determine both 
equilibrium and dynamical critical exponents in classical and 
quantum systems. Applications to quantum annealing.

• Can use simulate quantum annealing in imaginary time and 
likely get upper bounds to real time annealing protocols.

• Dynamical localization of macroscopic slow fields near critical 
points. Potential applications to Higgs mass.



Berry phase and geometry. Aharonov-Bohm effect.

A charged particle 

outside of a solenoid

Image: H. Batelaan and A. Tonomura, Physics 

Today, Sep. 2009 

No magnetic field

Gauge transformation

does not depend on  

Total accumulated (Aharonov-Bohm) phase for a closed path 



Geometric phase: S. Pancharatnam (1956), M. V. Berry (1984) 

The integral is taken over an arbitrary path outside the solenoid. 

Berry: imagine that we adiabatically move R0 around the solenoid

Geometric interpretation: the Berry phase is the 

phase obtained by a parallel transport of

the ground state              around a closed loop.   



These ideas can be extended to an arbitrary parameter manifold 

Berry curvature (Magnetic field). 

Berry phase (flux)

The Hamiltonian and the ground state are functions of the parameter 

Berry connection (vector potential)

θ
h⊥

h
Example: spin in a magnetic field



General gauge transformations in quantum systems

Infinitesimal transformations are like the Schrödinger equation 

Hamiltonian equations of motion in a moving frame

Special instantaneous frame, where U diagonalizes the 

instantaneous Hamiltonian. Convenient near the adiabatic limit

Consider an arbitrary unitary transformation of the basis.

Berry connection is the expectation 

value of the gauge potential


