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Outline

1. Non-adiabatic response in real and imaginary times.

2. Kibble-Zurek mechanism and universal dynamics near
continuous phase transitions.

3. Application to spin glass transitions: Quantum annealing vs.
Simulated annealing.

4. Dynamical localization transition near critical points.



Non-adiabatic response In real and imaginary time dynamics

Consider an arbitrary unitary transformation of the wave function
w(N) = UT(N)]P)
Infinitesimal transformations are like the Schrodinger equation

ihox. [V (X)) = —Ag|Y), Ao = ihUOy U, Al = A,
Hamiltonian equations of motion in a moving frame
10y [1)) = (UTHU — My Ag)|0)

Special instantaneous frame, where U diagonalizes the
Instantaneous Hamiltonian. Convenient near the adiabatic limit

o Berry connection is the expectation
‘d}) — Wn(}\)) — -Af_r — (Am> value of the gauge potential



First order perturbation theory
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Compute leading correction to the energy due to the Galilean term
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Dilation operator

Moving frame

2 Can absorb L2 into time
p _ jp dilatation:

0A%o 2mLA(t) dt = L2dr, H — L2°H

Leading non-adiabatic correction.
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Recover “quantum” dilatation mass: the classical result plus an
additional quantum correction.



Leading corrections to generalize forces (beyond Born-
Oppenheimer approximation)

M, ~ —(0|0,H|0) — > (a}(n]0,H|0) + an (0|0, H|n))
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1(Xux = Xap) = i(0][ Ay, AxJ|0) = 9 Ay — OnAy = Flux

Leading non-adiabatic corrections give the Berry curvature for
generalized forces and mass tensor for the energy (metric
tensor for energy fluctuations).



Repeat similar analysis for imaginary time dynamics

Imaginary time Schrodinger equation in a moving frame

N r il AN0) ¢ (n|OxH|0)
a,-lw) — (H(T) 3}‘*’4/\) |w>! An R LA £ — & - (&, — 80)2

Same expression as in the real time
MH — M,E + fUJ\(X,uA + X.-‘MLB) — Mﬂ + Qgp,uvy

Similar analysis applies to classical Markov systems
875P = M(Z(t))P L. D’Alessio, Y. Kafri, A.P. 2015



Generalized Kubo response (imaginary time) and the metric tensor.

MM ~ QgM)\”U)\ Realtime §F? ~ VpguAUA

Hamiltonian: H = %(X) Ground state wave-function: ¥y = Tﬂo(x)-

Consider the following change X=X+ 0A
9h0(X) — o(X + SN)|I* = 1 — (o (N)[tho (X + 5X)[* = gagdAadAs
Xap - geometric tensor (Provost, Vallee, 1980; Venuti Zanardi, 2007)

Xap = <0|§0485‘0>c — <~Aa~/4,8>c> dap — %[Xaﬁ]

g Is the metric tensor, characterizes the Riemann manifold of
ground statates (density matrices).

Metric tensor can be extracted from response of physical
observables in the imaginary time dynamics.



Analytic structure of the non-adiabatic response
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Asymptotically (excluding LZ type nonanalytic corrections)

an (V) = an(ivy), a,(vx) = oy (—ivy)

We can get real time result by analytic continuation in the
complex velocity plane.

For observables need something else

(O) = WW)|OY(v))= (b(=iv) | Op(iv))




Use left and right expectation values in imaginary time.

O) = ()| O (v))

Analytic continuation v — v gives
the real time expectation value in all orders in v

A~

O(v) = O(ww)

In particular, can extract the Berry curvature from the
Imaginary time dynamics (M. Kolodrubetz, 2013)

‘ﬂ/f}u ~ Qﬂhg}hﬁ_‘

(M, ~ vaFy)

A~




Critical points: diverging susceptibilities. Scaling theory.
(Pokrovsky, Patashinski, 1963-1965, Kadanoff 1966 )

Diverging correlation length
£ = ﬁ, A= (T—-1T.),h— h,...is the tuning parameter.

Power law correlations (scale invariance) at the critical point

1
‘x . :L.f|2f_t"

(m(z)m(a’)) ~ dim[m(z)] = a

Finite size scaling hypothesis close to the critical point

(m(z)) =L *f(L/§) = L=*f(L|\|¥), f is the scaling function

(m(z)m(z’)) ~




Extend scaling theory to nonequilibrium — universal dynamics

(both Iin real and imaginary time)
(C. De Grandi, A.P., A. Sandvik, 2011, Chandran et al. 2012, Kolodrubetz et. al. 2012)

E=\TY = £= 2+ = dim[\ =1/v

NE
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t ~ F —> dlm[t] = —Z
1 1 1
de—)\:}“dim[U]z——i-Z: +zy=>§”w >
dt L/ L/ v zv+1

We can now use normal scaling theory using this new length scale

A .
M,(\) = L™ f(L/éx, L/&,), A, = dim[M,]
The shortest scale dominates. At the critical point

Ex=00 = M, =L 2 f(L/¢,)

. | d+A d
If M~Ld is extensive then  f(z) ~ 22+ = M, ~ Lt =1



Instead slowly quench T to the critical point. Metropolis dynamics
(C.-W. Liu, A. P., A. Sandvik 2013)
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Very accurate determination of the dynamical exponent.



Quantum Ising model in 2D (imaginary time QMC)

H:—SZU,-ZJJ-Z—(l—S)ZOf , s:0—1
(i) i

0D aiivh o) —
5 = H(s)y, s(T)=wvT

Scan through QCP, look for Binder cumulant:

gL:1(3_ <mﬁ>)

2\7 (mp)?

Expect the scaling form

gr, = f [L(s — Sc)”’,vavVJrl]

If the second argument is constant (or flows to zero) expect a
crossing pointat S = S



Numerical simulations (imaginary time quantum annealing)
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Either the best or close to the best accuracy for simulations on
a small computer cluster.



Comparison of real and imaginary time ramps for small systems

Example: linear ramp of transverse-field Ising ferromagnet
N
H(s)=-sY ofoi—(1—5)) o} se€[0,1], s= vt
(i5) i=1
2D square-lattice system; N=L2
Start from eigenstate of H(s=0) at t=0
- Instantaneous ground state |Y(?)) = |Yo(s[t]))
- Actual state during evolution |¥(%))

Distance between these states given by log-fidelity

~In[F(®)] = — 5 In(| (%o (t) 2(2) )

Integrate Schrodinger equation numerically for small L
- compare real and imaginary time
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Dynamic exponent z is same in real and imaginary time!
De Grandi, Polkovnikov, Sandvik, PRB 2011



Schrodinger dynamic in imaginary time t=iT

U ST U e it [_ / deH[s(Tfn]

Implemented in quantum Monte Carlo as:
T =) / il / dT”—l"'/Tz dry|~H(7a)] - -~ [-H(71)][¥(0))

Simpler scheme: evolve with just a H-product
(Liu, Polkovnikov, Sandvik, PRB 201 3)

|W(spr)) = H(spr) - - H(s2)H(s1)|¥(0)), s; =144, Az= SM
Time unitis «1/N, velocity is v x NA,

Difference in v-dependence between product evolution
and imaginary-time Schrodinger dynamics is O(v?)
- same critical scaling behavior, dynamic susceptibilities



Quantum annealing vs. simulated quantum annealing

Recent work claimed the D-wave

machine shows behavior similar to

“simulated quantum annealing”
[S. Boixio, M. Troyer et al.,, Nat. Phys. 2014]

H(s) evolved in simulation time

Is this the same as Hamiltonian
quantum dynamics?

NO! Only accesses the dynamics
of the QMC method

Demonstration for 1D Ising model
with transverse field shows this

z =1 for true Hamiltonian dynamics

z = 2.17 or z=0.30 for simulation-time
dynamics (local or cluster updates)
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Application to Quantum Annealing

Goal: find the ground state of a disordered classical model

NP-hard problem. Many applications in many fields.

Thermal annealing. Take this system at finite temperature

/= Z exp[—ﬁ Z JijU@Jj‘]
{oi} L]

and slowly decrease it. In the adiabatic limit the system should
gradually relax to the ground state.



Quantum Annealing

Introduce an auxiliary quantum term and slowly anneal it to zero

8 ="0t
In the adiabatic limit follow the ground state.
Both thermal (simulated) annealing and quantum annealing

have problems in glass phases. Hopes are that quantum
annealing can be more efficient.



N spins, randomly connected, coordination-number 3

v 3%l A D R

Classical model has mean-field glass transition
- Tc known exactly (Krazakala et al.)

The quantum model was studied recently:
Farhi, Gosset, Hen, Sandvik, Shor, Young, Zamponi, PRA 2012

- S¢c = 0.37 from quantum cavity approximation
- QMC consistent with this s, power-law gaps at s,

More detailed studies with quantum annealing
Edwards-Anderson spin-glass order parameter

.l
1= 5 Y o (Vo)

(1) and (2) are independent simulations (replicas)



Extracting Quantum-glass transition

Using Binder cumulant

U(s,v,N) = Ul[(s — sc)NV/*' ,uN*+1/¥

But now we don’t know
the exponents. Use

vx N™% a>zZ+1/V

Best result for x=17/12
sc = 0.3565 +/-0.0012
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Velocity Scaling at the Glass Transition

Study evolution to s 3 e g
2 —28 /v z 4+1/v
- several system sizes N (q°(sc)) x N % FloN% £ )

- several velocities ok T T T ]
B/v¢ = 0.43(2) [ _—
2+1/V ~ 1.3Q2) .l N

: I N

Same as fully connected 2 _ 128 %\"’h%\

(Sherrington-Kirkpatrick)? = R .

o 051 o 384 -
B/v¢ = 0.42(2) v 512 e
Z2+1/VvV = 1.4(2) - ig; e

Differ from values o3l ° 1936 S

expected for d=oc: bl il

(Read, Sachdeyv, Ye, 1995) 01 f”_N:,”ﬁjO 010
B/vé=1/2

z2+1/v’ =3/4



Relevance to Quantum Computing

The time needed to stay adiabatic up to s. scales as
t ~ NZ TV Z+1/v = 1.3
Reaching S¢, the degree of ordering scales as

\/.< Sl NS B/v' BV ~ 0.43

Let’s compare with the know classical exponents
(finite-temperature transition of 3-regular random graphs)

Classical Quantum
B/ve=1/3 B/v¢ = 0.43 T

2+1/v =1 2+1/v’ = 1.3 glass phase
®

¢ |t takes longer for quantum
annealing to reach its critical point




Origin of KZ scaling is that many excitations are created near
QCP. Like moving in a swamp: lots of drag and added mass.

i

S

Image taken from: http://allthingspoliticaltoday.com

As the ball gets heavier it is harder to move even if there is a slope.
Can get stuck.



From a snowball to inflation in cosmology (hypothetical scenario)

3x10% cm 1@

the visible
universe
today

Hy= [ d%[[0@)P + V()P + No@) +ulg(@)|'] + Ho(\)

Scalar field rolls affecting the Higgs mass. Near QCP (zero
Higgs mass) it gets very heavy and dynamically localizes.

Related ideas: L. Kofman et. al. (2004)



The Kibble-Zurek type scaling argument one more time

Hy= [ d%[[0@)P + V()P + No@) +ulg(@)|'] + Ho(\)

Al

> A
Characteristic gap A ~ 1/¢%,

Energy (heat) density Q/L¢ ~ A&g

Initial kinetic energy ~ K/L? ~ pu)\?

Can expect localization if () > K

Scaling dimension of velocity
[d\/dt] =[N —[t] =2+ 1/v

Divergent KZ correlation length

1

€Kz = —=
A= FT

7 ~ |\ AT




Localization from the Kibble-Zurek

(d+z)v
zrv+1

Al K<Q < uh? < |\

Localization is expected if we
absorb more energy than it has

(d+ z)v 2
9 -
S N < «‘:r-d<z—|-y

The slower the system goes the more likely it is localized

Alternative way to understand this result. Mass renormalization
near QCP

Ko : 2 2
E—>E+§LdA2 [ﬁ]:[EH—d—Q[)\}:z+d—;—22:d—z—;
Negative scaling dimension = divergence. Small dimensionality
Implies divergent mass.



Check numerically. Transverse field Ising model with magnetic
fleld as a dynamical degree of freedom

2

H = z% + Hypi(\) — Egs(N)

Hrpi(A) = =) (1= A)s} + 57571, Egs(A) = (0|Hrri|0)
j
First subtract the GS energy so that the field moves in a flat potential
(later revise this assumption).

Trapping condition

o (d4+z)v

K<Q & pN < |N=3 =)\, d=z=v=1

Expect trapping when pu|\| < const ~ 1



Observe sharp transition to the trapping regime at pvinizs ~ 0.13
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Scaling collapse of the dynamics in the trapping regime
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Trapping slightly off QCP due to irrelevant terms in the Hamiltonian.



Finite slope

Start from the rest at some \;,;and
release the system. What will happen?
- } —-)\

C

Naive answer: will roll down, perhaps stumble a bit near QCP
and move on. \Wrong!

The system can be truly self-trapped due to heating

EXxpect two scenarios:

\ — ‘ Untrapped (adiabatic)
):\c A i \ Trapped (enough heating)




Start far from QCP: not too fast

Q Ainit 1
}\init :-E -
H 110’

K ~ M)\z ~ QAinit ,—E Q ~ |)\|a = QAinit 5

Start near QCP : not too slow

1 < 1 < )\iznit
\2 = Ainit S ,u_a — Ainit S o = Apnit >

init

b —> K~

K|=2—-d—-2/v=-2, N =1/v=1 = [k] ~A?

Expect trapping when

Ainit 1 Trapping i 1bl
< Zinit - PpPINg IS POSSIDIEe 2



Numerical phase diagram
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Numerical constants are not very small, but this is quite typical.



Interesting non-equilibrium dynamics If start near QCP.
Bare mass is irrelevant and can be set to zero.
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Except for transients and long times have a full scaling collapse



Outlook: dynamic trapping is consistent
with thermodynamic trapping

Hiot(N) = Ho(A,px) + H(XN, {5;})

Consider a fixed energy state. Equilibrium: maximize entropy

Al

A

The entropy is maximized near QCP where excitations are cheapest.
From scaling expect entropy maximum near QCP.

Can the same happen with MBL/glass type transitions with heavy/light atoms?



Summary

Can use non-adiabatic response in real and imaginary times to
get non-trivial susceptibilities: Berry curvature, Fubini-Study
metric and Fidelity susceptibility, added mass, ...

Can use this scaling theory to accurately determine both
equilibrium and dynamical critical exponents in classical and
guantum systems. Applications to qguantum annealing.

Can use simulate quantum annealing in imaginary time and
likely get upper bounds to real time annealing protocols.

Dynamical localization of macroscopic slow fields near critical
points. Potential applications to Higgs mass.



Berry phase and geometry. Aharonov-Bohm effect.

A charged particle
outside of a solenoid

No magnetic field

Tx A0 = A=V — @(azfgdf

Gauge transformation

N
Image: H. Batelaan and A. Tonomura, Physics Y = wez or (7)
Today, Sep. 2009

159 - —

H=o—+V(-FRo) does notdependon A

Total accumulated (Aharonov-Bohm) phase for a closed path ~y = % j{ Adl



Geometric phase: S. Pancharatnam (1956), M. V. Berry (1984)

—

- — r —
) = e’ m P B (7 Ry) = f A7) dr!
Rq
Berry: imagine that we adiabatically move R, around the solenoid

e e —
Adl = APV
0= 5 oh FV (7, Ro) =

P

-~ f R 00 Rn)—aggdﬁnw%lw)

The integral is taken over an arbitrary path outside the solenoid.

Geometric interpretation: the Berry phase is the
phase obtained by a parallel transport of
the ground state |¢0(Ro)) around a closed loop.




These ideas can be extended to an arbitrary parameter manifold A

The Hamiltonian and the ground state are functions of the parameter

b

H=HN), [Yo)=[to(N))

A, = i<0|a)\a ’0> Berry connection (vector potential)

Faﬁ — 8O¢AB — 8,81404 Berry curvature (Magnetic field).
Yo = 55(3 /-T d;{ — fﬂ F&J@d)\a A d/\ﬁ Berry phase (flux)
Example: spin in a magnetic field

cos(6/2)e?/? 1
i) = (ot serz ) - As = 5(1 = cos(0))

Yo = m(1 — cos(h))




General gauge transformations in quantum systems

Consider an arbitrary unitary transformation of the basis.

$(N) = UT(N)| )

Infinitesimal transformations are like the Schrodinger equation
iy, V(X)) = —Aa 1), Ay = iU, U, Al = A,
Hamiltonian equations of motion in a moving frame

iy |) = (UTHU — Mg Ao)|9)

Special instantaneous frame, where U diagonalizes the
Instantaneous Hamiltonian. Convenient near the adiabatic limit

o Berry connection is the expectation
‘d}) — Wn(}\)) — -Af_r — (Am> value of the gauge potential



