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Local Granular Rheology
● inertial number: ratio                 between

 

– micro timescale (T) to squeeze a particle into a hole

– macro timescale of deformation

– large I corresponds to rapid flow
 

● stress ratio: ratio            between
– shear stress

– normal pressure

I=
γ̇ d

√P/ρ

μ= τ
P

  

v wall

P τ

γ̇=
∂ v
∂ r

fixed
r

density 
diameter d
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Key Failures of Local Rheology

● cannot quantitatively capture the transition from 
inertial to quasistatic (but still creeping) flow 
Koval, Roux, Corfdir, Chevoir. PRE (2009)

● boundary-driven flows form shear bands whose 
dimensions depend on both the geometry and the 
grain size 
GDR MiDi. EPJE (2004)
Fenistein & van Hecke. Nature (2003)
Cheng, Lechman, … Nagel. PRL (2006)

● shear/vibration in one region of a granular material 
can fluidize regions far from the perturbation 
Nichol, Zanin, Bastien, Wandersman, van Hecke. PRL (2010)
Reddy, Forterre, Pouliquen. PRL (2011)
Wandersman & van Hecke. PRL (2014 )
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Local vs. Nonlocal Rheology

Local
● the local shear rate is determined by only the 

local shear stress
● resistance to flow is a function of only the local 

shear rate
 

Nonlocal
● particle rearrangements in one part of a flow 

trigger rearrangements elsewhere
● resistance to flow is a function of both the local 

shear rate and these nonlocal events
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cooperative model
Kamrin & Koval (PRL 2012)

gradient model
Bouzid et al. (PRL 2013)

Laplacian term accounts for nonlocal effects

granular fluidity

● based on extending a local 
Bagnold-type granular flow law
● length scale  diverges at s
● 3 fit parameters: A, b, s

● based on gradient expansion
● solutions have a divergent 
lengthscale L(Y,l) at s

● 4 fit parameters: l,l, a, s
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cooperative model
Kamrin & Koval. PRL (2012); Henann & Kamrin. 
PNAS (2013), PRL (2014), Soft Matter (2014)

gradient model
Bouzid et al PRL (2013), EPJE (2015)

●  b ~ 1.0 ± 0.1 controls the 
steepness of rise of (I)

●A ~ 0.8 ± 0.3 controls of strength 
of cooperativity (divergence at s)

● s ~ 0.25 is the yield ratio – can 
be obtained independently

● a ~ 4.3 in constitutive relation

●l ~ 8 controls magnitude of 
higher-order approximation
● l ~ fluidity contributes over a few 
grain diameters
● s ~ 0.25 is the yield ratio – can 
be obtained independently

● Test: determine parameters in one flow 
geometry  reuse those values in another→

● Ultimately: predict parameters for given 
shape/size/roughness/stiffness
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Success of Nonlocal Rheology in Sims

Kamrin & Koval. PRL (2012)

slow                    fast
cooperativity
length
diverges
near s

quantitatively predict 
velocity profile
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Key Challenges
● need to directly test underlying 

assumptions:  e.g. do force chains 
distinguish local vs. nonlocal effects?

● do experiments show diverging 
lengthscale?

● what sets parameters? (friction, 
particle shape, stiffness) 

– hard vs. soft particles matter   
Bouzid et al. EPJE,2015  →

● transient behaviors
●  …. memory?
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Annular Granular Rheometer
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Idealized (2D) Experiments

● controlled shearing of particles
● instrumented at both 

boundaries
● bespoke particles & boundaries
● all particles visible: track their 

individual positions and forces
● allows for first-principles determination of 

material parameters
● allows for the isolation of local vs. 

nonlocal parameters
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R = 15 cm
2R

vwall v (r )

N ≈ 104

disks and ellipses
d = 5 mm, 7 mm

γ̇=
∂ v
∂ r

μ(r )=
τ(r )
P

I (r )=
γ̇ (r )d

√P /ρ

S

τ (r )=S
R2

r 2

P,
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6 Experimental Runs:
4 speeds: 0.02, 0.02, 0.2, 2 d/s

2 packing fractions:  ~ 0.82, 0.84

Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)
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Calibration of Leaf-Spring Walls

outer boundary is 
composed of laser-cut 

leaf springs

Tang, Brzinski, Daniels. Powders & Grains 2017.



14

Spring tips  normal & tangential force→

x

y

measure spring wall deformation in 
experiment by cross-correlation

Tang, Brzinski, Daniels. Powders & Grains 2017.
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Example: Pressure & Dilatancy

v = 0.002 d/s
v = 0.02 d/s
v = 0.2 d/s
v = 2 d/s
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Testing the Two Nonlocal Models

● Can we capture the shape of (I)?

● Can we use (I) to capture the shape of v(r)?  

● Does a lengthscale diverge at s?

● Can one set of parameters capture all 6 datasets?
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Test #1: Fit the (I) data

s = 0.26

cooperative model –     gradient model - - -    

μ(r )=
τ (r )
P

I (r )=
γ̇ (r ) d

√P /ρ

outer
edge

inner
edge

Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)
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Experimental Detail #1:   = /P

geometry basal friction

leaf
springs

torque
sensor
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Experimental Detail #2:  v(r) derivatives

ignore
this

region



20

Granular Fluidity Profile
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Test #2: Fit the Speed Profiles
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Test #3: Nonlocal Lengthscale Diverges?

Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)
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Test #4:  All 6 runs, same parameters?
cooperative model –     gradient model - - -    

cooperative
s = 0.26 ± 0.01

b = 1.1 ± 0.5
A = 0.402 ± 0.003

gradient
s = 0.26  ± 0.01
l = 1.02 ± 0.02
a = 7.2 ± 4.3

vl = 0.46 ± 0.03
Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)



24

Determination of s

(1) upper limit of slowest (I) curve:s > 0.26

(2) maximum of ():  s ~ 0.26 

 … but shouldn't it have to do with forces?

Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)
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Is s a susceptibility?

Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)
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Determination of s

(1) upper limit of slowest (I) curve:s > 0.26

(2) maximum of ():  s ~ 0.26 

(3) force chain fluctuations: s < 0.29

Tang, Brzinski, Shearer, Daniels (submitted to Soft Matter)
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What about shape?
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Sample Image: Pentagons
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Unsurprisingly, (I) rheology changes 
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Goal: take simple inputs ….

● time taken for grains to 
flow through an orifice 

● force required to shear a 
prepared sample

● angle of repose

… output the 3-4 parameters 
needed for the nonlocal model
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Conclusions
● New leaf-spring design allows for 

measurement of boundary stresses 

● Tested two nonlocal rheologies:

✔single set of parameters works 
to capture (I) and v(r)

✔growing lengthscale at s

● Material parameters are consistent 
with previous work using DEM 
simulations

● Newly associate s with a drop in 
susceptibility to force chain 
fluctuations
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Exponential Decay of Packing Fraction
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Discrete      vs.      Continuum

● computer simulation (DEM) 
solves Newton's Laws for every 
inter-particle collision 

● Advantage: obtain complete 
trajectories, forces for all particles

● Key Challenges: 
– limited to particles made from 

sphere/circles
– provides fictional friction
– a new simulation (slow) for 

any new loading geometry or 
particle properties

● equation for deformation/flow as a 
function of a few material 
parameters

● Advantage: obtain flow field from 
numerical solution (fast)

● Key Challenges: 
– experiments needed to relate 

grain-scale parameters to bulk 
properties

– same equations, independent of 
geometry?

– are there non-local effects?

v⃗ i

v⃗ j

d
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Quick Technique 1: Image-Differencing

subtracted = after – before

before

after

Daniels & Hayman. J. Geophysical Research 2008
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Increasing force  More fringes→

Puckett. PhD Thesis, NC State. (2012)

FF



37

Measuring Vector Forces

image

pseudoimage

left
circular
polarizer

right
circular
polarizer

QW

QW
LP

LP

Daniels, Kollmer, Puckett. Rev. Sci. Inst. (2017)
https://github.com/jekollmer/PEGS 

https://github.com/jekollmer/PEGS
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Stick-Slip Failure

 Daniels & Hayman. J. Geophys Res. (2008)
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