

Local Granular Rheology

- <u>inertial number</u>: ratio $I = \frac{\dot{\gamma} d}{\sqrt{P/\rho}}$ between
 - micro timescale (T) to squeeze a particle into a hole
 - macro timescale of deformation
 - large I corresponds to rapid flow
- stress ratio: ratio $\mu = \frac{\tau}{P}$ between
 - shear stress
 - normal pressure

Key Failures of Local Rheology

 cannot quantitatively capture the transition from inertial to quasistatic (but still creeping) flow

```
Koval, Roux, Corfdir, Chevoir. PRE (2009)
```

 boundary-driven flows form shear bands whose dimensions depend on both the geometry and the grain size

```
GDR MiDi. EPJE (2004)
Fenistein & van Hecke. Nature (2003)
Cheng, Lechman, ... Nagel. PRL (2006)
```

 shear/vibration in one region of a granular material can fluidize regions far from the perturbation

```
Nichol, Zanin, Bastien, Wandersman, van Hecke. PRL (2010)
Reddy, Forterre, Pouliquen. PRL (2011)
Wandersman & van Hecke. PRL (2014)
```

Local vs. Nonlocal Rheology

Local

- the local shear rate is determined by only the local shear stress
- resistance to flow is a function of only the local shear rate

Nonlocal

- particle rearrangements in one part of a flow trigger rearrangements elsewhere
- resistance to flow is a function of both the local shear rate and these nonlocal events

cooperative model

Kamrin & Koval (PRL 2012)

gradient model

Bouzid et al. (PRL 2013)

$$g \equiv \frac{\dot{\gamma}}{\mu} \qquad \text{granular fluidity} \qquad f = \frac{\dot{\gamma}}{Y} = \frac{\mu_s}{\mu(I)} \dot{\gamma}$$

$$I(\mu) = \frac{(\mu - \mu_s) H(\mu - \mu_s)}{b}. \qquad I_{loc}(f) = \frac{Tf}{1 - aTf}$$

$$g_{loc}(\mu, P) = H(\mu - \mu_s) \frac{\mu - \mu_s}{b\mu T}$$

$$\xi^2 \nabla^2 g = (g - g_{loc}) \qquad \dot{\gamma} = \frac{I_{loc}(f)}{T} - \ell^2 \nabla^2 f$$

Laplacian term accounts for nonlocal effects

$$\frac{\xi}{d} = A\sqrt{\frac{1}{|\mu - \mu_s|}}$$

- based on extending a local
 Bagnold-type granular flow law
- length scale ξ diverges at μ s
- 3 fit parameters: A, b, μ s

$$Y = \frac{\mu(I)}{\mu_s} \left(1 - \frac{\nu_\ell}{I} \frac{d^2(\nabla^2 I)}{I} \right)$$

- based on gradient expansion
- solutions have a divergent lengthscale $L(Y, v_l)$ at μ s
- 4 fit parameters: l, v_l, a, μ s

cooperative model

Kamrin & Koval. PRL (2012); Henann & Kamrin. PNAS (2013), PRL (2014), Soft Matter (2014)

gradient model

Bouzid et al PRL (2013), EPJE (2015)

- $b \sim 1.0 \pm 0.1$ controls the steepness of rise of $\mu(I)$
- • $A \sim 0.8 \pm 0.3$ controls of strength of cooperativity (divergence at μ s)
- μ s ~ 0.25 is the yield ratio can be obtained independently

- a ~ 4.3 in constitutive relation $Y = 1 + aI_{loc}$
- v_l ~ 8 controls magnitude of higher-order approximation
- l ~ fluidity contributes over a few grain diameters
- μ s ~ 0.25 is the yield ratio can be obtained independently
- Test: determine parameters in one flow geometry → reuse those values in another
- Ultimately: predict parameters for given shape/size/roughness/stiffness

Success of Nonlocal Rheology in Sims

Key Challenges

- need to directly test underlying assumptions: e.g. do force chains distinguish local vs. nonlocal effects?
- do experiments show diverging lengthscale?
- what sets parameters? (friction, particle shape, stiffness)
 - hard vs. soft particles matter
 Bouzid et al. EPJE,2015 →
- transient behaviors
- memory?

Annular Granular Rheometer

Idealized (2D) Experiments

- controlled shearing of particles
- instrumented at both boundaries
- bespoke particles & boundaries
- all particles visible: track their individual positions and forces
- allows for first-principles determination of material parameters
- allows for the isolation of local vs. nonlocal parameters

6 Experimental Runs: 4 speeds: 0.02, 0.02, 0.2, 2 d/s 2 packing fractions: φ ~ 0.82, 0.84

Calibration of Leaf-Spring Walls

outer boundary is composed of laser-cut leaf springs

Spring tips → normal & tangential force

measure spring wall deformation in experiment by cross-correlation

Example: Pressure & Dilatancy

Testing the Two Nonlocal Models

- Can we capture the shape of $\mu(I)$?
- Can we use $\mu(I)$ to capture the shape of v(r)?
- Does a lengthscale diverge at μ_s ?
- Can one set of parameters capture all 6 datasets?

Test #1: Fit the $\mu(I)$ data

Experimental Detail #1: $\mu = \tau/P$

$$\tau(r) = S\left(\frac{R_i}{r}\right)^2 + \tau_0\left[1 - e^{-(r-R_i)/r_0}\right]$$
 geometry basal friction

Experimental Detail #2: v(r) derivatives

Granular Fluidity Profile

Test #2: Fit the Speed Profiles

Test #3: Nonlocal Lengthscale Diverges?

Test #4: All 6 runs, same parameters?

Determination of μ_s

- (I) upper limit of slowest μ (I) curve: μ _s > 0.26
- (2) maximum of $\xi(\mu)$: $\mu_s \sim 0.26$
- ... but shouldn't it have to do with forces?

Is μ_s a susceptibility?

Determination of μ_s

- (I) upper limit of slowest μ (I) curve: μ _s > 0.26
- (2) maximum of $\xi(\mu)$: $\mu_s \sim 0.26$
- (3) force chain fluctuations: μ_s < 0.29

What about shape?

Sample Image: Pentagons

Unsurprisingly, $\mu(I)$ rheology changes

Goal: take simple inputs

- time taken for grains to flow through an orifice
- force required to shear a prepared sample
- angle of repose

... output the 3-4 parameters needed for the nonlocal model

Conclusions

- New leaf-spring design allows for measurement of boundary stresses
- Tested two nonlocal rheologies:
 - visingle set of parameters works to capture $\mu(I)$ and v(r)
 - \checkmark growing lengthscale at μ_s
- Material parameters are consistent with previous work using DEM simulations
- Newly associate μ_s with a drop in susceptibility to force chain fluctuations

Exponential Decay of Packing Fraction

Discrete vs.

- computer simulation (DEM) solves Newton's Laws for every inter-particle collision
- Advantage: obtain complete trajectories, forces for all particles
- Key Challenges:
 - limited to particles made from sphere/circles
 - provides fictional friction
 - a new simulation (slow) for any new loading geometry or particle properties

Continuum

- equation for deformation/flow as a function of a few material parameters
- Advantage: obtain flow field from numerical solution (fast)
- Key Challenges:
 - experiments needed to relate grain-scale parameters to bulk properties
 - same equations, independent of geometry?
 - are there non-local effects?

Quick Technique 1: Image-Differencing

Increasing force → More fringes

Measuring Vector Forces

Daniels, Kollmer, Puckett. *Rev. Sci. Inst.* (2017) https://github.com/jekollmer/PEGS

Stick-Slip Failure

Daniels & Hayman. J. Geophys Res. (2008)