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A memory is a capacity for encoding, storing, 
and retrieving pieces of information



Aging & rejuvination in glasses

Return point memory

Spin-echo

Multiple transient memories

wikipedia

Jonason et al. 1998Hahn 1950, Carr & Purcell 1954

Barker et al. 1983

Coppersmith et al. 1997; Povinelli et al. 1999
...in charge-density waves

...in a sheared granular suspension
This Talk
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Enzo: “I (am) (am not) going out to dinner with my friends tonight”

Memory in a pile of sand



 Charge-density waves:

Gill, 1981
Fleming & Schneemeyer, 1983
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Granular material:

“Pulse-sign memory”

A memory of a direction

time

Gadala-Maria & Acrivos, 1980

Toiya, Stambaugh, & Losert, 2004

Sheared suspensions:

Dry grains:



Input: train of fixed-width current pulses

Phase of voltage oscillations locked to end of pulse

I

V

time

time

τ τ τ τ

Brown, Grüner & Mihály, 1986

Fleming & Schneemeyer, 1986

Coppersmith & Littlewood, 1987

Memories in Charge Density Waves



Simulations: forget all but longest, shortest pulse widths

    +Noise: remember all

Experiments: retained all memories


Multiple memories:

I

time

V
time

τ1 τ2 τ1 τ2

τ1τ2 τ2

Coppersmith, Jones, Kadanoff, Levine, McCarten, Nagel, Venkataramani & Wu, 1997
Povinelli, Coppersmith, Kadanoff, Nagel & Venkataramani, 1999

Memories in Charge Density Waves



• Is this memory generalizable, or specific to CDWs? 
• How would we find it in other systems? 

• Clue: memory is in a steady-state

- The more times you (re-)write, the stronger the memory

- Random noise garbles memory 

Transient Memories violate both!

What do we expect of a memory?

- System learns multiple inputs

- Eventually forgets most under continual training

- Addition of noise: remembers all



Hydrodynamic Reversibility of Stokes Flows



Hydrodynamic Reversibility of Stokes Flows



0 1 2 3 4 5 6 7 8 9 10

Sheared suspension of particles
Pine, Gollub, Brady & Leshansky, 2005

Corté, Chaikin, Gollub & Pine, 2008
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Stroboscopic imaging: 

Compare particle positions after each cycle

Cyclic shear

★★ ★ ★

● Particles destroy reversibility for first cycles


● For small enough γ, finds reversible steady-state



A model showing transient irreversibility:
ARTICLES

(i)

0 = a/bγ

a

b

(ii) (iii)

Figure 1 Schematic representation of one cycle of the collision model, in which
particles that collide when sheared are given small random displacements.
Each shear cycle is decomposed into three steps: (i) determine particle positions
(black dots); (ii) shear the system by a strain amplitude ⇥0 and find particle pairs that
collide (that is, come within a distance d of each other, indicated by overlapping red
circles of diameter d ); (iii) reset the initial positions and randomly displace particles
that collided (dashed red circles ⌅ blue circles). For each shear cycle, particles are
displaced as many times as they collide. The chance of particles colliding increases
with the strain amplitude ⇥0 and volume fraction ⇤.

are self-organized to avoid collisions, resulting from a process of
‘random organization’.

To gain some intuition, we first describe a one-dimensional
version of our model. To start, N point particles are randomly
distributed along a line of length L. Next, one of the particles
is displaced a distance l along the line, possibly encountering
other particles, and then returned to its initial position. For each
encounter, both the displaced particle and the one it encounters
are given random displacements of maximum amplitude ⇤ from
their initial positions, which can increase or decrease the distance
⌅x between them. This process is repeated cyclically for all
the particles.

According to these rules, particles in regions where ⌅x ⇥ l
receive random displacements and are active, and thus undergo
di�usive motion. In regions with ⌅x > l, particles do not
encounter each other and are inactive, with particles returning
after each cycle to their initial positions. Active regions can
activate neighbouring inactive regions and the process can
continue forever, provided there is always some region where
⌅x ⇥ l (see Supplementary Information, video S1). However, if a
configuration develops where ⌅x > l for all neighbouring particle
pairs, there are no more displacements and dynamics cease (see
Supplementary Information, video S2). The system has reached an
absorbing state.

It is clear that at l = L/N , the inverse density, there is a unique
absorbing state: all particles are equidistant with ⌅x = L/N . For
l > L/N , there are no absorbing states; motion can never cease
and particles di�use. For l < L/N , there is an infinite number
of absorbing states. Our simulations show that there is a phase
transition at a critical value lc ⇧ 0.91±0.01L/N characterized by
an order parameter, the steady-state fraction of active particles f ⌃

a ,
which for l ⌅ l+c scales as f ⌃

a ⇤ [(l � lc)/lc]� with � ⇧ 0.42±0.10.
Thus, there exist absorbing states for l > lc that are not found.

For l < lc the system finds an absorbing state in a finite time
t = ⇧ (number of cycles). For l ⌅ l�c the relaxation time ⇧ diverges
as ⇧ ⇤ [(lc � l)/lc]�⌅ with ⌅⇧2.48±0.10, and is independent of the
system size for large systems. For l > lc the time to establish a steady
state likewise shows power-law behaviour, ⇧ ⇤ [(l� lc)/lc]�⌅. Unlike
the ‘protein-folding problem’, where the time to search for a unique
folded state by a random walk diverges as the size increases21, here
the time to find one of the infinite number of absorbing states is
finite. The exponents � and ⌅, which characterize the asymptotic
critical behaviour of the order parameter f ⌃

a and the relaxation
time ⇧, do not correspond to those found for DP (�DP ⇧ 0.276
and ⌅DP ⇧ 1.73); therefore, our model does not belong to the DP
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Figure 2 Simulation results for the 2D model, showing particle activity above
and below the strain threshold. a,b, Snapshots of the particle distributions for two
strain amplitudes ⇥0 = 3.0 and 2.0, area fraction ⇤ = 0.2 and 1,000 particles. The
number of shear cycles that have passed is indicated below each snapshot. Filled
black circles indicate particles that will collide and thus be irreversibly displaced in
the next shear cycle; open circles indicate particles whose trajectories are reversible.
The shear flow direction is horizontal. c, Fraction of active particles per cycle fa as a
function of number of shear cycles for the two different strain amplitudes shown in a
and b: ⇥0 = 3.0 (red) and ⇥0 = 2.0 (blue). Full lines show fits to equation (1). Inset:
Fraction of active particles in steady state as a function of strain amplitude ⇥0. The
full line in the inset shows the scaling f ⌃

a ⇤ |⇥0 � ⇥ c
0|� where � = 0.45±0.02,

obtained by a fit to the data. The blue and red data points indicate the data below
(f ⌃
a = 0) and above (f ⌃

a > 0) the critical strain amplitude ⇥ c
0.

universality class, as expected, because the number of particles is
conserved in our model whereas in DP it is not22,23.

A 2D version of the model mimics a suspension of particles
subjected to periodic shear, as illustrated in Fig. 1. First, N = 1,000
discs are randomly distributed in a two-dimensional rectangular
box. The interaction distance d sets the unit of length and the area
of the box A is chosen to obtain the desired area (2D volume)
fraction ⌃ = N�d2/4A. The system is sheared with a strain
amplitude ⇥0, which causes some particles to encounter each other,
as illustrated in Fig. 1. As in the one-dimensional case, particles
that collide are given a random displacement from their initial
position. The net displacement of a particle after one cycle is
zero if it does not encounter any other particle. The direction of
the random displacements is uniformly distributed in the plane
and their amplitude is uniformly distributed between zero and a
maximum value ⇤, typically a fraction of a particle diameter d.

nature physics VOL 4 MAY 2008 www.nature.com/naturephysics 421

Random initial state, area fraction φ

(i) Particles at γ=0


(ii) Shear by strain amplitude γ0, tag particles that collide

(iii) Shear back to γ=0, 

     Give tagged particles a small random kick

γ0=b/a

cycle

Corté, Chaikin, Gollub & Pine, 2008



Stroboscopic video of particle positions
Corté, Chaikin, Gollub & Pine, 2008



Stroboscopic video of particle positions
Corté, Chaikin, Gollub & Pine, 2008



• Reversible up to γ0

• Some particles will collide if we now shear to γ0+ε

Reversible steady state is a memory of γ0



1. Training

2. Readout

Keim & Nagel, PRL 2011
Writing and reading a single memory

Fraction of particles that collide at trial shear of γfmov(γ):
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all

A

B

C

D

FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.

PRL 107, 010603 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JULY 2011

010603-2
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Keim & Nagel, PRL 2011
Single Memory: 2D Simulation

Training: γ0=3

γ0

Final state



© rene sorensen

Shown: Toy model ‘learns’ single memory in steady-state 
Will show: Toy model can learn multiple memories…

Now: Single memory in experiment

…forgets all but largest in steady-state 
…noise can stabilize all memories



A neutrally buoyant, non-Brownian suspension 
under cyclic, low Reynolds-number shear [1,2] 
• Suspension:


-Fluid: Water, ZnCl2, Triton X-100

-Particles: PMMA spheres, d = 106-125 µm

-Density matched: (Δρ)/ρ < 10-4

-Fluid viscosity: µ ~ 4000 cP

-Volume fraction: φ = 0.10 to 0.45
-Refractive index matched


• Geometry/Driving:

-Frequency: f ~ 0.16 Hz 
-Péclet number: Pe ~ 109 
-Gap: 6 mm 

-Reynolds number: Re < 0.007

• Top & bottom surfaces stress-free:


-Suspension floats on Flourinert (μ=24 cP)

-Top surface open to air


• Imaging:

-Fluid flourescently dyed, laser sheet


• Analysis (particle locating):

-Blair implementation of Crocker-Grier code

[1] Pine, Gollub, Brady & Leshansky 2005

[2] Corté, Chaikin, Gollub & Pine 2008

suspension

Flourinert 

air

Experiment
Top View:

Side View:



Laser, 

laser sheet


optics

Shear cell

Camera

Shearing motor



Laser, 

laser sheet


optics

Shear cell

Camera

Shearing motor



Room lighting:

Image 2D Slice

Laser sheet: Zoom: Long-pass filter



“Readout” after 100 training cycles at γ=1.6

γ = 0 2.00.4 0.8 1.2 γ0 = 1.6 2.4
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Image subtractions between adjacent ★s
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Paulsen, Keim, & Nagel, PRL 2014



Single Memory: Can place wherever we want (below γc)

Paulsen, Keim, & Nagel, PRL 2014
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1.) Training: cyclic shear, γ0=1.44x10

dγ/dt = 0.1/s

Expect sharp increase in stress at γ=γ0

Stress signature of memory

2.) Readout: 
-Shear at constant strain rate 
-Measure stress on inner cylinder

Paulsen, Keim, & Nagel, PRL 2014



Multiple Transient Memories

• System learns multiple inputs


• Eventually forgets most under continual training


• Addition of noise: remembers all



That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all

A

B

C

D

FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.

PRL 107, 010603 (2011) P HY S I CA L R EV I EW LE T T E R S
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1 JULY 2011

010603-2

Training: γ0=3

trial strain (γ) γ0

Partial memory

Keim & Nagel, PRL 2011
Single Memory: 2D Simulation
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all
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D

FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all
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D

FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all
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FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all
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FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all

A

B

C

D

FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.
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That model simulates the rearrangement of particles as
they pass close to each other during a shearing cycle of
amplitude !0. It evolves the positions of N discs with
diameter d in a two-dimensional box of area Abox with
periodic boundary conditions. The algorithm considers the
effect on each particle of applying a uniform strain ! as
illustrated in Fig. 1, simply translating the center of each
particle by !x ¼ y!. If a particle overlaps with another at
any strain 0 " ! " !0 along the motion, it is tagged. To
advance to the next time step, each tagged particle is
moved in a random direction, by a distance with a uniform
random distribution between 0 and "d. This model does a
remarkable job at reproducing the phenomena observed in
the experiment [10,11]: for sufficiently small strain, re-
peated application of !0 eventually causes the system to
become reversible so that further application of !0 no
longer changes particle positions. Moreover, in both ex-
periment and the model there is a critical strain amplitude
!c, above which complete self-organization does not
occur.

In our simulations, N ¼ 104, the box is square, and the
area fraction # # ðN$d2=4Þ=Abox ¼ 0:2 so that !c & 4.
We focus on systems that reach a steady state: !< !c. We
use much smaller random displacements than Corté et al.
to evolve the system (0:005 " " " 0:1 vs 0.5), requiring
simulation runs of>106 cycles. In the limit " ' 1, we find
that the evolution time scales as "(2.

In Fig. 2, we plot the fraction of particles fmov that
would be moved by the algorithm in a single cycle, versus
the strain. Because a particle is moved only when the
shearing motion brings it into contact with other particles,
each curve probes the separations between particles, aver-
aged over the entire system. Figure 2(a) shows the evolu-
tion of fmovð!Þ as the system gradually self-organizes from
a random configuration, under a single applied strain
amplitude !1 ¼ 3. This value is significantly less than

the critical strain for this packing fraction, !c & 4, so
that a steady state can be formed. Crucially, when the
training process of repeatedly shearing by !1 is complete,
a shear with any ! " !1 results in no rearrangement of the
particles. This permits the memory to be read out, without
knowledge of the system’s preparation, by applying a
cyclic shear with progressively larger trial ! until re-
arrangement is observed. However, even before self-
organization is complete, the memory may be read out
by observing a marked increase in the irreversibility of
the system quantified by the change in slope of fmov at !1.
Progressing to two simultaneous memories, we encoun-

ter a crucial distinguishing question in evaluating memory
in disordered systems: can a memory generally be added
without erasing another? Figure 2(b) shows that the same
system can be trained with 2 memories at once, combined
in a repeating pattern of !1 ¼ 3 and !2 ¼ 2. (We repeat the
smaller amplitude, !2 ¼ 2, 5 times for every application of
!1 ¼ 3. This helps make the memory of !2 ¼ 2 more
apparent. The memory would be there, only harder to
see, if we used equal numbers of !1 and !2 in each cycle.)
This result distinguishes this type of memory from
(i) ‘‘return-point memory’’ in magnets [14,15] where ap-
plication of a large magnetic field immediately erases all

A

B

C

D

FIG. 1. Simulation algorithm after [11]. Particle A, outlined in
dashes, and its neighbors (B, C, D) are sheared to þ! and then
returned to ! ¼ 0 (defined in diagram). The center of each
particle lies in a shaded region corresponding to a strain that
would bring it into collision with A: ! ¼ 0 (black), 1 (dark grey),
and 2 (light grey). At ! ¼ 1, A and B collide; at ! ¼ 2, C also
collides. D never collides with A for any !> 0. After all
particles are considered in this fashion, colliding particles are
given small random displacements and the algorithm repeats.

FIG. 2. Fraction of particles moved fmov versus trial strain !,
at selected times during the system’s evolution. (a) Evolution
with a single training amplitude, !1 ¼ 3:0. After 100 and 1000
cycles, the system’s self-organization is incomplete, but the
value of !1 can be readily identified from kinks in each curve.
(b) With dual training values, !1 ¼ 3:0 and !2 ¼ 2:0, (pattern:
!1, !2, !2, !2, !2, !2, repeat . . .), both values can be identified at
intermediate times. The system completely self-organizes, re-
taining only the larger training value, !1 ¼ 3:0, after *30; 000
cycles. Grey line: memory of both values remains after 105

cycles when the system is stabilized by noise ("noise ¼ 0:006).
Plots are averaged over 9 runs of N ¼ 104, with " ¼ 0:1.

PRL 107, 010603 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JULY 2011

010603-2

trial strain (γ)

γ=3

γ=2

105 cycles 

with noise

Keim & Nagel, PRL 2011
Multiple Memories: 2D Simulation

f m
ov

(γ
)

Final state

• System learns multiple inputs

• Eventually forgets most under 
continual training

• Addition of noise: remembers all

Transient Memories

Training: γ=3,2,2,2,2,2,3,2,2,2,2,2, repeat...



Keim, Paulsen, & Nagel, PRE 2013
Multiple Memories: 2D Simulation
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Keim, Paulsen, & Nagel, PRE 2013
Memories are robust in simulation

• Driving

     - Simple shear


- Pure shear

- Particle swelling


• Interactions

- Random direction kicks

- Center-of-mass conserving kicks

- Kicks push particles away


• Kick size 
- Ranged from 0.001 to 0.5 particle diameters

Evidence of transient memories in all cases

WHAT ABOUT EXPERIMENT!?



Training: 

γ = (2, 1.2, 1.2, 1.2, 1.2) x 4

Multiple Memories: Experiment

Readout (48 independent experiments):

Paulsen, Keim, & Nagel, PRL 2014
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“Signal”:



Transient Memories

• System learns multiple inputs


• Eventually forgets most under continual training


• Addition of noise: remembers all



Training: 

γ = (2, 1.2, 1.2, 1.2, 1.2) x 4

Strain (γ)

γ = (2, 1.2, 1.2, 1.2, 1.2) x 8

γ = (2, 1.2, 1.2, 1.2, 1.2) x 16

Readout:

Forgetting: Experiment
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Transient Memories

• System learns multiple inputs


• Eventually forgets most under continual training


• Addition of noise: remembers all
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γ = (2, pause, 1.2, pause, 1.2, pause, 1.2, pause, 1.2, pause) x 8

strain (γ)

pause = 0 min pause = 2 min pause = 4 min pause = 8 min

Training:

(no noise)

Noise Stabilization of Multiple Memories

S

Paulsen, Keim, & Nagel, PRL 2014



Transient Memories

• System learns multiple inputs


• Eventually forgets most under continual training


• Addition of noise: remembers all



*

Transient Memories: Takes many cycles to erase smaller memories*

-True for simulations 
-Not yet demonstrated in experiment

γ=3

-Is memory simply smoothed out? 
-Is it hidden under noise?



An intrinsic way matter behaves, far from equilibrium

 Charge-density waves: Sheared suspensions:

S



Concrete example 
of plasticity

Aspects shared with biology

“Texture of the Nervous System of Man and the Vertebrates”
Santiago Ramón y Cajal. 1897

Cyclic driving



Similar but distinct from sheared amorphous solid
Fiocco, Foffi, & Sastry, PRL 2014
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Multiple Transient Memories:      
    -Counterintuitive physics
    -A distinct class of memories
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