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Ecosystems

Communities formed by individuals belonging to different species.
Interactions between individuals intra and inter species.
«Competition for resources--Cooperation.

«Abundances of species vary dynamically due to the births and deaths.
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“Modern” ecosystems




“Modern” ecosystems
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Questions & Motivations

From a few species to_many > STATISTICAL PHYSICS

Emergent properties of complex ecosystems

How many equilibria for the same ecosystem?
In some ecosystems many, Bashan et al. Nature 2016

*Response to perturbations?
Memory, hysteresis, Dethlefsen, Relman PNAS 2011

*Equilibria or chaotic dynamics?
Chaos in plankton ecosystem, Beninca et al Nature 2008

*What are the factors determining diversity (number of surviving species)?



Lotka-Volterra equations for ecosystems
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dt
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N; > 0 abundance of species i
S is the number of species

Well-mixed population: no-space dependence

Dynamics due to intra-and inter-species interactions

Properties of the community reached dynamically



Lotka-Volterra equations for ecosystems
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N; abundance of species i

S is the number of species

dNi — . N.(K N A species alone self-regulates to the

= r;N;(K; — N;)

abundance K

dt



Lotka-Volterra equations for ecosystems
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N; abundance of species i
S is the number of species
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interaction between species



Lotka-Volterra equations for ecosystems
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Demographic Noise to
model fluctuations in
births and deaths
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Lotka-Volterra equations for ecosystems

dN;
dt
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N; abundance of species i
S is the number of species
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Immigration rate



Lotka-Volterra equations for ecosystems

dN;
dt
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1=1,...,8
N; abundance of species i
S is the number of species

Large number of species
(S~50-100 is large)




Lotka-Volterra equations for ecosystems

dN;
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1=1,...,5
N; abundance of species i
S is the number of species
Main assumption: complex -> random
(May in ecology & Wigner in physics) (V;;  Gaussian RVs i.i.d.
(Determining interactions network: a key inference problem)
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Small noise and small immigration rate (Ki=1)

Representative model, see
Barbier et al. PNAS to appear



Ecosystems Phase Transitions
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Similar for symmetric and non symmetric
interactions (here v = 0)

EXACT SOLUTION

Related works and phase diagrams
Sompolinsky, Crisanti, Sommers '88 ; Diederich, Opper '89; G. B., G. Bunin and C. Cammarota arXiv:1710.03606
Fisher, Mehta '14; Kessler, Shnerb ’15; Bunin ‘16 and works in progress (F. Roy, V. Ros)




Unique Equilibrium Phase

{mu,sigma,gamma,S) = (4,1,0,100)
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Unbounded Growth Phase

{mu,sigma,gamma,S) = (4,4,0,100)
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“Complex” Phase

v = 1 symmetric interactions: multiple equilibria

v < 1 non-symmetric interactions: chaos




Transition to Chaos
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Symmetric interactions |
f'}/ p—
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Langevin equation
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Stochastic dynamics of a disordered system
(~spin-glass)

small or zero noise > Low temperature physics
T = w?



The phase diagram & the energy landscape

Spin-glass
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The Two Phases

One equilibrium

Multiple Equilibria
(Critical Spin-Glass Phase)
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Critical Multiple Equilibria Phase

Marginal stability fixes dynamically the diversity
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*Extreme susceptibility to perturbations (memory only in the one equilibrium phase)

o Large fluctuations-correlations

Xa(t,t') S%: SN (86N ()5 N; ()5N; (') — *{;z B ) i oz o, oa%
(SN ()N (1)) (ON; (£)ON; ()] 2

0 500 1000 1500 2000
t-t



Dynamics and Transition to Chaos
v <1
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Ongoing: charaterize chaotic dynamics, properties of the transition to chaos

Related works: Sompolinsky, Crisanti, Sommers ‘88 ; Kessler, Shnerb 15



Emergent phenomena in interacting
communities

Different phases of ecosystems from the exact solution of the Lotka-Volterra
model of ecosystems

*An entire region with multiple equilibria poised at the edge of stability:
-marginal phase, extreme susceptibility to perturbations, large correlations, ...
-diversity is dynamically fixed by the requirement of being marginal stable:
May'’s bound is saturated

*Chaotic phase where all equilibria are unstable
*Generality beyond the particular model we studied: emergent properties as

for phases of matter.

*Many perspectives: Chaotic dynamics, slow dynamics, avalanches, other
functional responses, retardation effects, space dependence, ...



