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Learning and memory



Associative memory

How do you keep multiple 
memories from interfering?

Learning and memory

Memory of examples vs 
learning from examples



Temporal dynamics in biology

Circadian clocks w/ Rust lab (U Chicago)

Not for today

Temporal control of gene regulation, fate etc w/ Tay lab (U Chicago) + others

Purvis/Lahav 2014

Metabolism

Kalman filter..

Specificity, allostery/
cooperativity in time.. 



Associative memory in neural networks

spurious 
memories

Under capacity
(Hopfield 1982)

Above capacity

Retrieval by association

Initial Cond.



Associative memory in neural networks
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Final state
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Failure

Hopfield 1982
Amit et al 1985
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Associative memory in neural networks

1. Correlations between memories reduce capacity

Ideally:

2. Complex learning rules can (slightly) increase capacity

Hopfield w/ linear Hebbian rule

E. Gardner 
Optimal 



Associative memory in neural networks

3. Range of interactions is important

Finite dimensions

Fully connected
(infinite dimensions)

4. Nature of memories is important

Original model :  
Each memory = point attractor 

Place cell model (spatial memories):
Each memory = continuous attractor 



Michael BrennerZorana Zeravcic

Menachem Stern

Nat. Comm. 2017,
PRX 2017 
+ in progress

J. Stat. Phy. 2017  
- W Zhong, D. Schwab

Stanislas Leibler

PNAS 2015

Associative memory in materials



DNA Brick assembly
Yin lab, 
Harvard Medical School
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Assembly mixtures

• We ask:

Cue A Cue B

Cue C
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Assembly mixtures
• General model:

Colors represent bonds

‘m=3’ stored structures
(or ‘memories’)

‘N=25’ species



Monte-Carlo Simulations

N = 400 species (20x20), 
Bond energy = E, Conc. = exp(1.8 E), 
T = 0.15 E

Parameters:

m=5 stored memories m=25 stored memories

Monomers not shown









Phase diagram
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Recovery Regime

# of stored structures

Chimeric Regime

Paramagnetic Regime

Initial condition

Capacity

N = 400 components (20x20)



Promiscuity balanced by frustration

Total of ‘N’ species

‘m’ stored memories

‘m’ local choices

Promiscuity: ‘m’ local choices

Memory 1 Memory 2 Memory 3

The friend (12) of a 
friend (17) of a 
friend (6) .. may not
be a friend (of 28).

Frustration



‘m’ choices that bind 
strongly to 12

‘m’ choices that 
bind strongly to 6

Promiscuity balanced by frustration

Sizeable 
intersection when 

N species

z = coordination number



Phases
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replot

Selective assembly

Pattern recognizer
Patterns in 
concentrations



replot

Selective assembly

Pattern recognizer
Patterns in 
concentrations



Pattern recognizer



Associative memory

Neural networks

Self-assembling 
particles

Self-folding polymers
(Ribozymes,  
DNA origami)
(Schultes et al 2000)

Self-folding 
sheets

(Origami)
(Stern et al 2017)

Mechanical 
networks

(metamaterials)
(Rocks et al 2017)



Self-folding polymers

Contacts in desired structure

Fold Fold

Design
(find sequence)

Programmed 
interactionsSeq. A Seq. B

Examples:
• DNA origami (dots = stapling region)
• RNA secondary structure 

(dots = stem regions)



Associative memory in polymer folding

Design
(find common sequence)

Union of 
interactions

Contacts in desired structure

Seq. C



Promiscuous polymers
In how many ways can promiscuous polymers fold?

Specific kinetic simulations:
Abkevich et al , JCP 1994
Isambert et al 2000s..

Equilibrium theory:
Ball, Fink PRL 2001

DNA Origami experiments:
Dunn et all, Nature 2015

Entropically 
unfavorable

Chimeric structure



Science 2000

Ligase fold Cleaving fold
(Hepatitis D Virus
ribozyme)

Useful evolutionary 
intermediate 



Self-folding sheets

Tomohiro Tachi



Multiple folding modes



Multiple folding modes

No need to micromanage






Frustrated loops prevent chimeras

V M

M
V

# of folding modes 
= # of zero E ground states of disordered frustrated spin-1 system

M
V V

M

V
M=V

M

M
M

State of a crease = Mountain, Valley or Flat



Mechanical networks

One memory

Two memories
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Non-linearity of springs
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Sparsity through springs
Given: Sufficient pairwise distances between N cities … 
Reconstruct geography.

Complication:  A few distances are *wrong*

L2 minimization:  Bad idea

L0 minimization:  Better idea

L1 minimization:  Best idea

Compressed sensing

One pixel camera

L0 L1 L2

Sparsity emphasized       

Non-convex Convex                 .     



Sparsity through springs
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Learning vs memory

Input -> Output

Black box w/ plastic elements

Training phase:
Show examples of inputs that should evoke output
Other inputs should not evoke output

Test phase:
Try other inputs that should evoke output.

High plasticity

Input space
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Learning vs memory

Input -> Output

Black box w/ plastic elements

Training phase:
Show examples of inputs that should evoke output
Other inputs should not evoke output

Test phase:
Try other inputs that should evoke output.

Restricted plasticity

Higher training error
Lower test error



Learning vs memory

Vapnik–Chervonenkis (VC) dimension: 

Size of largest set of inputs that 
can always be `shattered’.

Conclusion:

Higher VC dim => low training error, high test error => more memorization/ less learning

Lower VC dim => high training error, low test error => less memorization / more learning

Lines can shatter `any’ set of three points..
but not sets of four points.

Rectangles can shatter sets of four points..



Noise  (‘Dropout’)

Randomly turn off (and on) plasticity 
in different parts during learning.

Full network Random dropout

How to force generalization

Time during training -> 



How to force generalization
Switching environments

Seasonal variation of photo period

Large T
Slow changes in day length

Genotypic mem. of day length
(inflexible, memorized)

Small T
Rapid changes in day length

No fitness pressure 
to predict

Intermediate T

Genotypic mem: concept of 
seasons

Phenotypic mem: day length

Predict dawn/dusk Predict dawn/dusk

S. Elongatus, Rust lab, eLife 2017



S. Wang et al, Cell 2015

How to force generalization

`Evolve’ antibody specific to mug 
- But ignore handle
- All cups have handles

Time during training  -> 

Answer: Change mugs as a function of time

Switching environments



VC dim of dynamical systems

Different time series: 

Series 1

Series 2

Series 3

Can a dynamical system map these 
to different fixed points?

How large a set of time series can be `shattered’ by a dynamical system? 

Kyle Kawagoe
Ambre Bourdier
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