Learning and memory

Arvind Murugan
Assistant Professor, Physics
U Chicago
Nov 2017

Associative memory

How do you keep multiple memories from interfering?

Learning and memory

Memory of examples vs learning from examples

Not for today

Temporal dynamics in biology

w/ Rust lab (U Chicago)

Kalman filter..

Temporal control of gene regulation, fate etc

w/ Tay lab (U Chicago) + others

Purvis/Lahav 2014

Specificity, allostery/cooperativity in time..

Initial Cond.

Retrieval by association

$$J_{ij} = J_{ij} + J_{ij} + J_{ij}$$

Hopfield 1982 Amit et al 1985

$$J_{ij} = x_i x_j, \quad \vec{x} = \text{spider}$$

$$\vec{x} = \text{spider}$$

$$J_{ij} = x_i x_j, \quad \vec{x} = \text{bottles}$$

$$\vec{x} = \text{bottles}$$

$$J_{ij} = x_i x_j, \quad \vec{x} = \text{wolf}$$

$$\vec{x} = \text{wolf}$$

Number of memories

Final state

Cond.

Failure

1. Correlations between memories reduce capacity

Ideally: $\vec{x} \cdot \vec{x} = 0$

2. Complex learning rules can (slightly) increase capacity

Hopfield w/ linear Hebbian rule

$$J_{ij} = J_{ij} + J_{ij} + J_{ij}$$

$$M_C = 0.14N$$

E. Gardner Optimal J_{ij}

$$M_C = 2N$$

3. Range of interactions is important

Fully connected (infinite dimensions)

$$J_{ij} = x_i x_j, \quad \vec{x} = \text{spider}$$

$$M_C = 0.14N$$

Finite dimensions

$$M_C = O(1)$$

4. Nature of memories is important

Original model:

Each memory = point attractor

Place cell model (spatial memories): Each memory = continuous attractor

Associative memory in materials

Zorana Zeravcic

Stanislas Leibler

Michael Brenner

PNAS 2015

J. Stat. Phy. 2017

- W Zhong, D. Schwab

Menachem Stern
Nat. Comm. 2017,
PRX 2017
+ in progress

DNA Brick assembly

Yin lab, Harvard Medical School

Exactly 1 partner for every binding site

Assembly mixtures

Assembly mixtures

General model:

Monte-Carlo Simulations

Monomers not shown

Parameters:

```
N = 400 species (20x20),
Bond energy = E,
T = 0.15 E
```

Conc. =
$$exp(1.8 E)$$
,

Phase diagram

N = 400 components (20x20)

Promiscuity balanced by frustration

'm' local choices

Frustration

Promiscuity balanced by frustration

Pattern recognizer

Patterns in concentrations

Selective assembly

7	9	15	5	24
10	22	11	2	3
8	1	17	20	25
21	23	12	6	19
14	13	4	18	16

Pattern recognizer

Patterns in concentrations

Selective assembly

2	20	25	22	8
4	14	19	21	3
24	11	5	23	18
12	1	7	15	10
17	13	6	9	16

Pattern recognizer

Associative memory

$$J_{ij} = J_{ij} + J_{ij} + J_{ij}$$

Neural networks

Self-folding Relymers mbling Mechanical (Ribozymes, particles networks DNA origami) (metamaterials) (Schultes et al 2000) (Rocks et al 2017)

Self-folding sheets (Origami) (Stern et al 2017)

Self-folding polymers

Associative memory in polymer folding

Promiscuous polymers

In how many ways can promiscuous polymers fold?

One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

Science 2000

Useful evolutionary intermediate

Ligase fold

Cleaving fold (Hepatitis D Virus ribozyme)

Self-folding sheets

Tomohiro Tachi

Multiple folding modes

Multiple folding modes

No need to micromanage

Frustrated loops prevent chimeras

State of a crease = Mountain, Valley or Flat

of folding modes

= # of zero E ground states of disordered frustrated spin-1 system

$$E = \sum_{\text{vertices a}} J^a x_{a1} x_{a2} x_{a3} \dots$$

Mechanical networks

One memory

Sparsity through springs

Given: Sufficient pairwise distances between N cities ... Reconstruct geography.

Complication: A few distances are *wrong*

L2 minimization: Bad idea

L1 minimization: Best idea

ENX

E ~IXI

 \checkmark

LO minimization: Better idea

E~ x

Compressed sensing

One pixel camera

Sparsity through springs

Learning vs memory

Training phase:

Show examples of inputs that should evoke output Other inputs should not evoke output

Test phase:

Try other inputs that should evoke output.

High plasticity

Learning vs memory

Black box w/ plastic elements

Training phase:

Show examples of inputs that should evoke output Other inputs should not evoke output

Test phase:

Try other inputs that should evoke output.

Restricted plasticity

Higher training error Lower test error

Learning vs memory

Vapnik-Chervonenkis (VC) dimension:

Size of largest set of inputs that can always be `shattered'.

Lings ctams hateen anythers et an few portints... but not sets of four points.

$$\Pr\left(ext{test error}\leqslant ext{training error} + \sqrt{rac{1}{N}\left[D\left(\log\!\left(rac{2N}{D}
ight) + 1
ight) - \log\!\left(rac{\eta}{4}
ight)
ight]}
ight) = 1 - \eta,$$

Conclusion:

Higher VC dim => low training error, high test error => more memorization/ less learning

Lower VC dim => high training error, low test error => less memorization / more learning

How to force generalization

Noise ('Dropout')

Full network

Random dropout

Randomly turn off (and on) plasticity in different parts during learning.

(b) After applying dropout.

(b) After applying dropout.

Time during training ->

How to force generalization

Switching environments

Seasonal variation of photo period

S. Elongatus, Rust lab, eLife 2017

Small T

Rapid changes in day length

Intermediate T

Genotypic mem: concept of seasons

No fitness pressure to predict

Phenotypic mem: day length

Large T

Slow changes in day length

Genotypic mem. of day length (inflexible, memorized)

How to force generalization

Switching environments

`Evolve' antibody specific to mug - But ignore handle

- All cups have handles

S. Wang et al, Cell 2015

Answer: Change mugs as a function of time

Time during training ->

VC dim of dynamical systems

Different time series:

Kyle Kawagoe Ambre Bourdier

Can a dynamical system map these to different fixed points?

How large a set of time series can be 'shattered' by a dynamical system?