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LEARNING A RULE




LEARNING A RULE

E" =Fu= (01001010 01110011 10001100 01001011

01110000 10001100 ..... all the pixels ....)

Goal: Find a function f so that

e =l for a picture of a cat.

g =l for a picture of a dog.

Today this can be done with deep neural networks.
(causing excitement in many areas of interest, in science, in business ...).




STATISTICAL PHYSICS OF LEARNING A RULE

M pletures? Ee RS s e A mle: R S B e s e RE S

J. Phys. A: Math. Gen. 22 (1680) 19831934, Printed in the UK

Model B in Gardner, Derrida’88:
(teacher-student perceptron)

Three unfinished works on the aptimal storage capacity
of networks

Elements of F (matrix) generated
oo . E Gardner and B Derrida
as 11d random Gaussians. T
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Rule/teacher x* so that
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| Goal Learn XE from M samples / examples of (Fp,yp)




STORAGE CAPACITY

e Main focus of Gardner&Derrida was storage capacity:
y iid random, F iid random, (no x*).

N
Is there an x so that for all u=1,....M: y, = Sign(z )
i=1
o Interesting mathematically (constraint satisfaction problem),
but no notion of generalisation error (=when we get a new

picture the rule should be able to tell a dog from a cat).
N

* Back to the learning the rule setting where y, = sign(z )
and we need to find x* back from (y,F). i=1




Solved using the replica method in the limit N - 00 o= M/N

RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 41, NUMBER 12 15 JUNE 1990

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition. where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the gencralization cr-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at acn™1.245 examples per coupling.

® Binary weights/synapses:
e A T
o “The dashed lines represent

non-physical segments of the
curves.” (Gyorgyi’9o)
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VOLUME 65, NUMBER 13 PHYSICAL REVIEW LETTERS 24 SEFTEMBER 1990

Learning from Examples in Large Neural Networks

H. Sompolinsky*’ and N. Tishby
AT&T Bell Latoratories, Murray Hill, New Jersey 07974

H. S. Seung

Department of Physics, Harvard University, Cambridee. Massachusetts 021 38
(Receivec 29 May 1990)

A statistical mechanical theory of learning from examples in layered networks at finite iemperature is
studied. When the training error is @ smooth function of continuously varying weights the generalization
error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of
single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit
a discentinuous transition to perfect generalization. For intermediate sizes of the example set, the state
of perfect generalization coexists with a metastable spin-glass state.

PACS numters: 87.10.+e. 02.50.+s, 05.20.—~y

as a—» 1.24. Above a=1.24 the only 'ground state, i.e.,

state with zero training error, is the m =1 state.'* How-
ever, lor 1.24 < a < 1.63 metastable states with nmg < |
and positive training error exist. Ahove «=1.63 the
only stable state at 7 >0 is that with » =1, although
strictly at 7 =0 states that arc stable to flips of single
weights are expected Lo be present even at higher a.

In cantrast to the high-7" limit, in the darker region of
the phase diagram the metastable state represents a
spin-glass phase. The presence of this phase implies

that there 1s an enormous number of metastable states

separated by energy barriers which diverge with #,
rendering the convergence to m =1 extremely slow. In




VOIL.UMI: 76, NUMBIER 11 PITYSICATI RLEVIEW TLETTIIRS 11 MARCIT 1996

Mean Field Approach to Bayes Learning in Feed-Forward Neural Networks

Manfred Opper
Institut fiir Theoretische Physik, Julius-Maximilians-Universitit, Am Hubland, D-97074 Wiirzburg, Germany

Ole Winther

CONNLCT, The Nieis Bohr Institute, Blegdamsvej 17, 2100 Copenhagen @, Denmark
(Received 6 Octoher 1995)

We propose an algorithm (o realice Bayes optimal predicuons [or [eed-forward nelworks wlinch 1s
based on the Thouless-Anderson-Palmer mean field method developed for the statistical mechanics of
disordered systems. We conjechure that our approach will be exact in the thermodynamic limit. The
algorithm results in a sumple built-m leave-one-out cross validation of the predictions. Simulations for
the case of the simple perecptron and the committee machine arc in cxeellent agreement with the results
of replica theory.

¢

PACS pumbers: 87.10.+¢, 64.60.Cn

* Spherical weights/synapses » =N

» But: TAP do not converge for large N. _F
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FIG. 1. The Bayes leaming curve for the sunple percep-
. f 1 f b. . h tron with outpur nose 8 = 05 and N = 50 averaged over
Y I')T 200 rums. The full Jines are the simulation resuls (upper curve
} But' COnJ eCture alSe 10T bina Welg tS' shows prediction error anc the lower curve shows traimng er-
ror). The dasked lie s the theorelical predicton. The dotked
line with larger error bars is the moving control estimate.




A BIT OF HISTORY

» Very active part of statistical physics in the 9os. Whole section of arxiv.org/
cond-mat/ devoted to Disordered Systems and Neural Networks. Hundreds of
papers following these studies. Review articles and book:

e Seung, Sompolinsky, Tishby. Statistical mechanics of learning from
examples, Phys. Rev. A, 1992.

e Watkin, Rau, Biehl. The statistical mechanics of learning a rule,
Reviews of Modern Physics, 1993.

e Engel, Van den Broeck. Statistical Mechanics of Learning,
Cambridge University Press, 2001.

» Many questions left open (next slide).

» After 2000, not much activity on *artificial* neural networks among statistical
physics community.

» Massive come-back in recent years when Deep Learning became widely known
and used.



http://arxiv.org

OPEN QUESTIONS

e If the optimal generalization error by Gyorgyi & Sompolinsky, Tishby,
Seung 1S correct, can we prove it mathematically rigorously?

o What is the smallest a reachable with tractable algorithms?
o What if the activation function was different (e.g. relu instead of sign)?

o What if the weights were different (e.g. sparse instead of binary)?

All answered in this talk.




GENERALIZED LINEAR REGRESSION

component-wise function
labels:

y == ff ( F Qj*) data matrix:

. ground truth weights:
e.g.: fe(z) = sign(z)

noise:
z; € {1}

» Goal: Estimate x from examples (F,,y.).

» Special cases: Signal reconstruction in computed tomography,
magnetic resonance imaging, phase retrieval, compressed
sensing, LASSO, superposition error correcting codes, code-
division multiple-access problem, group testing, logistic
regression, ...
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Generalized linear models
P McCullagh - European Joumal of Operational Research, 1984 - Elsevier
... where S,cs and S,~ are the regression and residual 280 P. McCullagh / Generalized linear models

sum of ... A natural generalization corresponding to canonical regression would be to write 11, =
flo + ( fiVx, )e, (27) but the above model is no longer of the gener- alized linear type ...

vr Y9 Cited by 32787 Related articles All 15 versions &9

Longitudinal data analysis using generalized linear models
KY Liang, SL Zeger - Biometrika, 1986 - academic.oup.com

... With a single observation for each subject (nt =1), a generalized linear model (McCullagh & Nelder,
1983) can be applied to obtain such a description ... This paper presents an extension of generalized
linear models to the analysis of longitudinal data when regression is the ...

Y7 YUY Cited by 15100 Related articles All 18 versions

Book] Generalized linear models
JA Nelder, RJ Baker - 1972 - Wiley Online Library

A statistical model is the specification of a probability distribution. For example, the model
implicit in much of regression analysis is that the obsarvations have a normal distributions,
the means being linearly related to the covariate values. Similarly, a log-linear model for

vy U9 Cited by 6260 Related articles All 10 versions

Book] Generalized additive models
T Hastie, R Tibshirani - 1990 - Wiley Online Library

... Linearity always remains a special case, and thus simple linear relationships can be easily ...
Friedman (5) proposed a generalization of additive modeling that finds interactions among
prognostic factors ... Software for fitting generalized additive models is available as partof the S ...

¢ P9 Cited by 14911 Related articles All 37 versions $9




GENERALIZED LINEAR REGRESSION

component-wise function
labels:

y == ff ( F Qj*) data matrix:

. ground truth weights:
e.g.: fe(z) = sign(z) il
z; € {1} '

> Goal Estimate x from examples (Fp,yu)

L delconsed in thls tlk

o F iid of zero mean and variance 1/N;
e x* 1id random from Px (e.g. sparse, binary);
e High-dimensional limit: N, M — co,aa = M/N = O(1)




BAYES-OPTIMAL ESTIMATION

N

Plzly, F) = Z(y, F H Pout (Yul2pu) HPX(xi)

,u 1 =1

» X* ~ Px; y generated from P, (y|z) = Ep, [6(y — fe(2))]

N
= E 8l 30
]

» Estimate x* from (F, y). For a new row, Fnew, predict the label ynew.

P et o

i . . Ay . N
Optimal because it minimizes e S G

N
1—1

» Bayes-optimal prediction/ generahzatlon

» No over- flttlng' No other procedure can be bet

» Bayes-optimal inference ; = marginal mean of x; in P(x|y,F).

ynew == JP(ac|y F),Pe [f«S( newx)] |

B




CLOSING 27 YEARS OLD CONJECTURE

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

1
Def. “quenched” free energy: f = lim —Ey rlogZ(y, F)

N — o0

Theorem 1 (informally): The replica free energy is correct.
f =supinf frs(m,m)

= ®p, (M) +a®p, . (m;p)
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[efn:cxo—l—\/Exz—frhacz/Q} }

4 4
<42,2Q [ln 4T

®p,..(m;p) = E, [/dyPout(yI\/_v+\/ mz)InE, | out(ylx/ﬁwrx/p—mw)]}
T, xo ~ Px z,v,w ~ N(0,1) p=Ep, (22




CLOSING 27 YEARS OLD CONJECTURE

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

: 1
Def. “quenched” free energy: f = lim —E, plogZ(y, F)

N — o0

Theorem 1 (informally): The replica free energy is correct.

f =supinf frs(m,m)

m M

) A):®PX(m)+a®Pout(m;p)

A

mm
)

Theorem 2: Optimal error on estimation of x* is:

MMSE = p —m”~

where m* is the extremizer of frs.




CLOSING 27 YEARS OLD CONJECTURE

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

: 1
Def. “quenched” free energy: f = lim —E, plogZ(y, F)

N — o0

Theorem 1 (informally): The replica free energy is correct.

f =supinf frs(m,m)

m T

): QPX(m)_I_a@Pout(m;p)

A

mm
2

Theorem 3: Optimal generalisation error is

Eqen = E [fe(vP0)*]-E E_[fe(vm* vtvp—m w)]

v v w,§

where m* is the extremizer of frs. R




ONE SLIDE ON THE PROOF

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

Guerra-Toninelli interpolation between the original posterior
and N + M independent scalar denoising problems.

Novel (more powertul) variant where the interpolation
parameter depends is a suitably chosen function of the
interpolation “time”.

Key property for the proof to work (Nishimori): Under
expectations ground truth x* is exchangeable for a sample
from P(x|y,F).




free energy computation

Physics ————— Math

working algorithm

IS THE OPTIMAL ERROR REACHABLE
WITH EFFICIENT ALGORITHMS?




Algorithm 2 Generalized Approximate Message Passing (G-AMP) Rangan’10
Input: v

Initialize: 2" v", ¢, w b —1
repeat

AMP Update of w,,, V),

vt <—LF’ -1
erat 1

¢ Gout Wy, Y. Vi)

AMP Update of 35, Ri. gout .

—1
E : 2, t rt
Ef’. < , F;ui.dwgout Wiy Y V ;1.)

. —1
Rf f ! ‘1 Z rutgout L

AMP Update of the estimated margimals a;, »;

a: ( fa‘ A_J?"
L { !,
v; — [u(Z5, Ri)

te t| | Simple to implement, only
til Conve € \V : T A

LR Lonvergence ohy &, matrix multiplications, O(N2)

output: a.v.

_.i=> H)l‘: (7—::)"

. da z Py (z) e "= o | -
fa (> R’=f ' 'X(x)e(x_me ,  JoL R)=%0rfa(, R). V) = J dzPout(y]2) (2 w)e; :fv—
Hd,, out(y,_,)c C

f(].'l.' Px(tl.') TN - gout(w 1




Algorithm 2 Generalized Approximate Message Passing (G-AMP) Rangan’10

Input: v

Y n.o 0
Initialize: a",v', gouu. t —1

repeat
AMP Update of w,,, V),
Vi L 2t

meat 1

AMP Update of 35, Ri. gout . ) .
< gout (wp, ’ yﬂ p) “rp )
) 2 . t 't N\
Vi | D PO gout (@ Yus Vi)
gt

. -1
Iy < f 3 Z r‘utgout L

AMP Update of the estimated margimals a;. »;
Q: < fa‘ ._Jz ’

vi — fu(Zi, Rf )
te t| | Simple to implement, only

until Convergence on a,v . . e A
TR matrix multiplications, O(N2)
output: a.v.

GAMP for prediction:

1 t—1)2
/dzdyypout(mz)e_ﬁ(z_zi Frew,ia; )




THE STORY OF GAMP

GAMP is closely related to the Thouless-Anderson-Palmer’76 equations for the
Sherrington-Kirkpatrick spin glass. For perceptron written by Mezard’89 as a
way to derive the replica result without replicas, not used as an actual algorithm.

TAP was used as an iterative algorithm, but had wrong iteration-indices and
consequently did not convergence.

Bolthausen fixed the issue in ~2008 and proved state evolution for the corrected
TAP equations.




Ma come & possibile che un matematico ci abbia sorpassato!!!!

Giorgio Parisi <pjiorgio.parisi@roma.infn.it>
to Andrea, Irena, Federico, Enzn, Miguel, Francesen jorge, ma, Florent |«
IA l:alian > English~ View translated message Always translzte: Italian

‘n

Guardate lo schema iterativo per la TAP, pagina 4

in rttp:llarxlv.orglpdf/1201 .2891v1.pdf (i.e Bolthausen’s Paper)
si non

k+1, ke Sk-1S/111!

Converge!!!!!!

da non crederci

L'ho letto nela tesi di Lenka.... (i.e. LZ, Krzakala, Advances in Physics’|6)

Da non crederci.

Giorgio Parisi <giorgio.parisi@roma.infn.it>

to Andrea, Irene, Federico, Enzo, Miguel, Francesco, jerge, me, Florent ~

-IA l:alian « > English~  Translate massage Tum off for: talian x

corverge nella fase RS, se capisco bene, ma le iterazioni normali non
corvergono nemmenc ir quella fase.

Il 26 settambre 2015 19:56, Giorgo Parisi
<giorgio.parisi@roma*.infn.it> ha scritto:




Ma come ¢ passibile che un matematico ci abbia sorpassato!!R (But how is it that a mathematician has passed us !!!!) =

Flo x

Giorgio Parisi <giorgio parisi@romat infn it> N
to Andrea, Irene, Federico, Enzo, Miguel, Francesco, jorge, e, Florent |~

ltalian ~ > English~ View original messace Always trans/ate: |talian

Look iterative scheme for the TAF, page 4
in http://arxiv.org/pdf/1201 2691 v1.pdf (|e Bolthausen’s Paper)

you do not
k+1,kS k-131M!

Converge !!!'!!
unbelievable
I reac the thesis Lenka .... (i.e. LZ, Krzakala, Advances in Physics’|6)

Unbelievaole.

Department of Physics, Univarsity of Rome ™" La Sapienza *
Piazzale Aldo Mcro 2, 00185, Rome, Italy
tel. +380649914311 Fax + 390649694323

Giorgio Parisi <giorgio.parisi@romat.infn.it>
to Andrea, Irene, Federico. Enzo, Miguel, Francescc, jorge, me, Florent -

Italian ~ > English~ View original message Always trans/ate: Italian

converges in the RS phase, if | understand well, but not the normal iterations
converge even al that stage.




THE STORY OF GAMP

GAMP is closely related to the Thouless-Anderson-Palmer’76 equations for the
Sherrington-Kirkpatrick spin glass. For perceptron written by Mezard’89 as a
way to derive the replica result without replicas, not used as an actual algorithm.

TAP was used as an iterative algorithm, but had wrong iteration-indices and
consequently did not convergence.

Bolthausen fixed the issue in ~2008 and proved state evolution for the corrected
TAP equations.

j For GAMP state evolution proven by Bayati, Montanari’11, Bayati, Lelarge,
- Montanari’12, Javanmard, Montanari’'13.




STATE EVOLUTION

| N, M — o00,a = M/N = O(1)
Define: = N Z ria.  then MSE(t) = p— m
i=1

mt in the AMP algorithm evolves as:
mt_l_l — 28mq)px (mt)

' =200, Pp,, (m'; p)
Recall the RS free energy

frs(m,m) = ®p, () + a®p,  (m;p)

No “state evolution” for naive mean-field, nor MCMC, nor Langevin dynamics
(except spherical p-spin, much more complex int.-diff. equations).




BOTTOMLINE

TG

» x* 1s generated from Px, y from Pouw. F is random iid.

/ The aalysis gave us the free energy frs () |
MMSE = p — argmax frg(m)

MSE anvp = = local extremum of frs(7), reached from
un-informed initialisation of state evolution.




RESULTS




BINARY PERCEPTRON

Gardner, Derrida’89, Gyorgyi’9o, Sompolinsky, Tishby, Seung’9o

y = sign(Fz*) B %[5(33 s o

1T — 1.249

aple = 1.493
S Alg
OptimaJ
AMP,N=10, ¢
Logistic,N=10 "

0.5 . Gyorgyi’'9o
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» GAMP is optimal starting from aag.

» Redemption of the “un-physical” branch.




PHYSICS VS LEARNING

liquid metastable liquid crystal

impossible hard tractable

1

0.8 -
0.6 -

0.4

impossible

generalisation error




BINARY PERCEPTRON

Gardner, Derrida’89, Gyorgyi’9o, Sompolinsky, Tishby, Seung’9o

—
o
i
—
)
a
O
o p—
)

= |1za

8%

GAMP follows the liquid-spinodal,
and ignores the glassiness that

slows down MCMC. Can other
O:GD 7 1 945 D = 1.'63 “algorithms match GAMP?

—

” Sompolinsky, |
Tishby, Seung’90




GAUSS-BERNOULLI PERCEPTRON

y = sign(Fz™)

‘ I I I
Optimal and SE ——
oe | AMP, N=107 *»
‘ Lagislic,N=10 .

06

0.4 r

0.2t

—
o
i
—
)
a
O
o p—
)
av]
N
p
4]
=
)
c
D)
&

0 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5
@7




SYMMETRIC BINARY PERCEPTRON

y = sign(|Fz™| — K) Px(z) = =[6(z — 1) + &(z + 1)]

1
2
Symmetric Door, Rademacher X

. » ooy S.E

B At
AW hoiot e Al = 1.566

CMIT:1

|| Neu raIlNgf‘f";-'i‘i‘% ' d .

170 5 10 15 20 Very simple yet
‘ 1 | very hard

. benchmark for

classification!
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K chosen so that P(y=1)=0.5

from: Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395



NEW WITH RESPECT TO 1990

Generic Px and Pout, plug-and-go formula/algorithm (Rangan'io; L.Z,
Krzakala’16)

Proof of the optimal error. (Barbier, Krzakala, Macris, Miolane, LZ’17)
GAMP with correct time indices (Kabashima’o3; Bolthausen’08; Donoho,
Montanari, Maleki’og) follows the state evolution. (Bayati, Montanari’11; et
al.)

GAMP ignores glassiness, it follows the “unphysical” spinodal.

Conjecture: GAMP optimal among tractable algorithms.
(challenge for future work ...)




ONGOING WORK

Generalized linear model as an interesting benchmarks for generic-
purpose algorithms. How many samples does a deep network need to
learn these simple rules?

Beyond random iid matrices in order to study structured data.

Beyond separable priors, extending to multiple-layers. With fixed
weights (Krzakala, Manoel, Mezard, LZ’17).

Learning of weights in multiple layers - a case where we still have to
find the right decoupling to make the replica method work.
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Thank you for your attention!
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