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LEARNING A RULE



= Fµ = (01001010 01110011 10001100 01001011 
01110000 10001100 ….. all the pixels ….)

Goal: Find a function f so that

LEARNING A RULE

f(Fµ) = +1

f(Fµ) = �1

for a picture of a cat.  

for a picture of a dog.  

Today this can be done with deep neural networks.                             
(causing excitement in many areas of interest, in science, in business …). 



STATISTICAL PHYSICS OF LEARNING A RULE

Fµ 2 RN µ = 1, . . . ,MM “pictures” A rule: f : Fµ ! yµ 2 {+1,�1}

Model B in Gardner, Derrida’88: 
(teacher-student perceptron)

yµ = sign(
NX

i=1

Fµix
⇤
i )

Rule/teacher x* so that

Elements of F (matrix) generated 
as iid random Gaussians. 

Goal: Learn x* from M samples/examples of (Fµ,yµ).



STORAGE CAPACITY

Main focus of Gardner&Derrida was storage capacity:  

y iid random, F iid random, (no x*).  

Is there an x so that for all µ=1,…,M: 

Interesting mathematically (constraint satisfaction problem), 
but no notion of generalisation error (=when we get a new 
picture the rule should be able to tell a dog from a cat). 

Back to the learning the rule setting where                                          
and we need to find x* back from (y,F).  

yµ = sign(
NX

i=1

Fµixi)

yµ = sign(
NX

i=1

Fµix
⇤
i )



Binary weights/synapses: 

“The dashed lines represent 
non-physical segments of the 
curves.” (Gyorgyi’90)

↵ = M/N

↵GD = 1.245 ↵AT = 1.493

N ! 1
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x⇤ 2 {�1, 1}N

Solved using the replica method in the limit 



↵GD = 1.245 ↵SST = 1.63



Spherical weights/synapses  

‣But: TAP do not converge for large N. 

‣But: Conjecture false for binary weights. 

X

i

x2
i = N



A BIT OF HISTORY
‣ Very active part of statistical physics in the 90s. Whole section of arxiv.org/

cond-mat/ devoted to Disordered Systems and Neural Networks. Hundreds of 
papers following these studies. Review articles and book:  

• Seung, Sompolinsky, Tishby. Statistical mechanics of learning from 
examples, Phys. Rev. A, 1992.  

• Watkin, Rau, Biehl. The statistical mechanics of learning a rule,                   
Reviews of Modern Physics, 1993.  

• Engel, Van den Broeck. Statistical Mechanics of Learning,                         
Cambridge University Press, 2001. 

‣ Many questions left open (next slide). 

‣ After 2000, not much activity on *artificial* neural networks among statistical 
physics community.  
‣ Massive come-back in recent years when Deep Learning became widely known 

and used. 

http://arxiv.org


OPEN QUESTIONS

If the optimal generalization error by Gyorgyi & Sompolinsky, Tishby, 
Seung is correct, can we prove it mathematically rigorously?  

What is the smallest α reachable with tractable algorithms?  

What if the activation function was different (e.g. relu instead of sign)?  

What if the weights were different (e.g. sparse instead of binary)? 

All answered in this talk. 



Goal: Estimate x from examples (Fµ,yµ). 

Special cases: Signal reconstruction in computed tomography, 
magnetic resonance imaging, phase retrieval, compressed 
sensing, LASSO, superposition error correcting codes, code-
division multiple-access problem, group testing, logistic 
regression, …

GENERALIZED LINEAR REGRESSION

labels:

data matrix:

ground truth weights:

noise:

component-wise function

e.g.:  f⇠(z) = sign(z)

y = f⇠(Fx⇤)
y 2 RM

F 2 RM⇥N

x⇤ 2 RN

⇠ 2 RM
x⇤
i 2 {±1}





Goal: Estimate x from examples (Fµ,yµ).  

Model considered in this talk:  

F iid of zero mean and variance 1/N;   
x* iid random from Px (e.g. sparse, binary); 
High-dimensional limit:                                                   . 

GENERALIZED LINEAR REGRESSION

N,M ! 1,↵ ⌘ M/N = O(1)

labels:

data matrix:

ground truth weights:

noise:

component-wise function

e.g.:  f⇠(z) = sign(z)

y = f⇠(Fx⇤)
y 2 RM

F 2 RM⇥N

x⇤ 2 RN

⇠ 2 RM
x⇤
i 2 {±1}



BAYES-OPTIMAL ESTIMATION

x* ~ PX; y generated from     

Estimate x* from (F, y). For a new row, Fnew, predict the label ynew.  

Bayes-optimal inference      = marginal mean of xi in P(x|y,F).    
Optimal because it minimizes 

Bayes-optimal prediction/generalization:

zµ =
NX

i=1

FµixiP (x|y, F ) =
1

Z(y, F )

MY

µ=1

Pout(yµ|zµ)
NY

i=1

PX(xi)

Pout(y|z) = EP⇠ [�(y � f⇠(z))]

ŷnew = EP (x|y,F ),P⇠
[f⇠(Fnewx)]

No over-fitting! No other procedure can be better. 

x̂i

MSE =
1

N

NX

i�1

(x̂i � x⇤
i )

2



CLOSING 27 YEARS OLD CONJECTURE

Theorem 1 (informally): The replica free energy is correct.  

f = sup
m

inf
m̂

fRS(m, m̂)

fRS(m, m̂) = �PX (m̂) + ↵�Pout(m; ⇢)� mm̂

2

⇢ = EPX (x2)

where

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

Def. “quenched” free energy:

�PX (m̂) ⌘ Ez,x0

h
lnEx

h
em̂xx0+

p
m̂xz�m̂x2/2

ii

�Pout(m; ⇢) ⌘ Ev,z

h Z
dy Pout(y|

p
mv +

p
⇢�mz) lnEw

⇥
Pout(y|

p
mv +

p
⇢�mw)

⇤ i

x, x0 ⇠ PX z, v, w ⇠ N (0, 1)

↵ =
M

N
f ⌘ lim

N!1

1

N
Ey,F logZ(y, F )



Theorem 1 (informally): The replica free energy is correct. 

f = sup
m

inf
m̂

fRS(m, m̂)

fRS(m, m̂) = �PX (m̂) + ↵�Pout(m; ⇢)� mm̂

2

Theorem 2: Optimal error on estimation of x* is:

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

Def. “quenched” free energy:

⇢ = EPX (x2)

MMSE = ⇢�m⇤

where m* is the extremizer of fRS.

↵ =
M

N
f ⌘ lim

N!1

1

N
Ey,F logZ(y, F )

CLOSING 27 YEARS OLD CONJECTURE



Theorem 1 (informally): The replica free energy is correct.
f = sup

m
inf
m̂

fRS(m, m̂)

fRS(m, m̂) = �PX (m̂) + ↵�Pout(m; ⇢)� mm̂

2
Theorem 3: Optimal generalisation error is

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

Def. “quenched” free energy:

⇢ = EPX (x2)where m* is the extremizer of fRS.

Egen = E
v,⇠

⇥
f⇠(

p
⇢ v)2

⇤
�E

v
E
w,⇠

⇥
f⇠(

p
m⇤ v+

p
⇢�m⇤ w)

⇤2

v, w ⇠ N (0, 1)

⇠ ⇠ P⇠

↵ =
M

N
f ⌘ lim

N!1

1

N
Ey,F logZ(y, F )

CLOSING 27 YEARS OLD CONJECTURE



ONE SLIDE ON THE PROOF
Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395

Guerra-Toninelli interpolation between the original posterior 
and N + M independent scalar denoising problems. 

Key property for the proof to work (Nishimori): Under 
expectations ground truth x* is exchangeable for a sample 
from P(x|y,F). 

Novel (more powerful) variant where the interpolation 
parameter depends is a suitably chosen function of the 
interpolation “time”.



IS THE OPTIMAL ERROR REACHABLE 
WITH EFFICIENT ALGORITHMS? 

Physics Math 
free energy computation

working algorithm



Simple to implement, only 
matrix multiplications, O(N2)

Rangan’10



Simple to implement, only 
matrix multiplications, O(N2)

GAMP for prediction: 

ŷtnew =
1p
2⇡V t

Z
dz dy yPout(y|z)e�

1
2V t (z�

P
i Fnew,ia

t�1
i )2

Rangan’10



GAMP is closely related to the Thouless-Anderson-Palmer’76 equations for the 
Sherrington-Kirkpatrick spin glass. For perceptron written by Mezard’89 as a 
way to derive the replica result without replicas, not used as an actual algorithm.  

TAP was used as an iterative algorithm, but had wrong iteration-indices and 
consequently did not convergence. 

Bolthausen fixed the issue in ~2008 and proved state evolution for the corrected 
TAP equations.   

THE STORY OF GAMP



(i.e Bolthausen’s paper)

(i.e. LZ, Krzakala,  Advances in Physics’16)



(i.e. Bolthausen’s paper)

(i.e. LZ, Krzakala,  Advances in Physics’16)



GAMP is closely related to the Thouless-Anderson-Palmer’76 equations for the 
Sherrington-Kirkpatrick spin glass. For perceptron written by Mezard’89 as a 
way to derive the replica result without replicas, not used as an actual algorithm.  

TAP was used as an iterative algorithm, but had wrong iteration-indices and 
consequently did not convergence. 

Bolthausen fixed the issue in ~2008 and proved state evolution for the corrected 
TAP equations.   

For GAMP state evolution proven by Bayati, Montanari’11, Bayati, Lelarge, 
Montanari’12, Javanmard, Montanari’13.

THE STORY OF GAMP



STATE EVOLUTION

Define:  

mt in the AMP algorithm evolves as: 

Recall the RS free energy

mt ⌘ 1

N

NX

i=1

x⇤
i a

t
i then  MSE(t) = ⇢�mt

fRS(m, m̂) = �PX (m̂) + ↵�Pout(m; ⇢)� mm̂

2

mt+1 = 2@m̂�PX (m̂t)

m̂t = 2↵@m�Pout(m
t; ⇢)

No “state evolution” for naive mean-field, nor MCMC, nor Langevin dynamics 
(except spherical p-spin, much more complex int.-diff. equations). 

N,M ! 1,↵ ⌘ M/N = O(1)



x* is generated from PX, y from Pout. F is random iid.  

The analysis gave us the free energy 

P (x|y, F ) =
1

Z(y, F )

MY

µ=1

Pout(yµ|
NX

i=1

Fµixi)
NY

i=1

PX(xi)

BOTTOMLINE

MSEAMP
= local extremum of                 , reached from              
un-informed initialisation of state evolution. 

fRS(m)

fRS(m)

MMSE = ⇢� argmaxfRS(m)



RESULTS



PX(x) =
1

2
[�(x� 1) + �(x+ 1)]

BINARY PERCEPTRON
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y = sign(Fx⇤)

↵

↵IT = 1.249

↵Alg = 1.493

Gardner, Derrida’89, Gyorgyi’90, Sompolinsky, Tishby, Seung’90

Gyorgyi’90

GAMP is optimal starting from αAlg. 
Redemption of the “un-physical” branch.  



PHYSICS VS LEARNING

liquid metastable liquid crystal

impossible hard tractable

impossible hard tractable
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PX(x) =
1

2
[�(x� 1) + �(x+ 1)]

BINARY PERCEPTRON
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y = sign(Fx⇤)

↵

↵IT = 1.249

↵Alg = 1.493

Gardner, Derrida’89, Gyorgyi’90, Sompolinsky, Tishby, Seung’90

↵GD = 1.245

Sompolinsky, 
Tishby, Seung’90 GAMP follows the liquid-spinodal, 

and ignores the glassiness that 
slows down MCMC. Can other 
algorithms match GAMP? ↵SST = 1.63



GAUSS-BERNOULLI PERCEPTRON 
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y = sign(Fx⇤)

↵

PX(x) = ⇢N (0, 1) + (1� ⇢)�(x)

⇢ = 0.2



PX(x) =
1

2
[�(x� 1) + �(x+ 1)]

SYMMETRIC BINARY PERCEPTRON

Very simple yet 
very hard 
benchmark for 
classification! 
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K chosen so that P(y=1)=0.5

from: Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395 

y = sign(|Fx⇤|�K)

↵Alg = 1.566

↵IT = 1



NEW WITH RESPECT TO 1990

‣ Generic PX and Pout, plug-and-go formula/algorithm (Rangan’10; LZ, 
Krzakala’16) 

‣ Proof of the optimal error. (Barbier, Krzakala, Macris, Miolane, LZ’17) 

‣ GAMP with correct time indices (Kabashima’03; Bolthausen’08; Donoho, 
Montanari, Maleki’09) follows the state evolution. (Bayati, Montanari’11; et 
al.) 

‣ GAMP ignores glassiness, it follows the “unphysical” spinodal.  

‣ Conjecture: GAMP optimal among tractable algorithms.          
(challenge for future work …)



ONGOING WORK

Generalized linear model as an interesting benchmarks for generic-
purpose algorithms. How many samples does a deep network need to 
learn these simple rules? 

Beyond random iid matrices in order to study structured data.  

Beyond separable priors, extending to multiple-layers. With fixed 
weights (Krzakala, Manoel, Mezard, LZ’17). 

Learning of weights in multiple layers - a case where we still have to 
find the right decoupling to make the replica method work. 



      Thank you for your attention!
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