Flowing through a world of patterns

Demo materials

Acrylic plates (McMaster-Carr, Amazon, ...)

3D fabric paint (Michaels, Amazon, ...)

Drying time ~ 15 minutes

Duco Cement glue + powdered food color (Hardware store, Walmart, Amazon, ...)

Drying time ~ 2 seconds

Branching patterns in nature

Trees

Lightning

Blood vessels

River networks

Bronchial trees in lungs

Branching patterns in nature

Trees

Patterns grow by branching/tip-splitting

Large surface area at small volume Volume of pair of human lungs ~1 gal, surface area ~500-1000 ft² (~ tennis court!)

How do these patterns spontaneously grow?

We use model systems to study growth

Many surprises → deep science

Bronchial trees in lungs

Let's do it again!

Two fluids of different viscosities: drop of paint and air

Viscosity: a fluid's resistance to flow

Viscous fingering instability

More viscous fluid → less viscous fluid

Less viscous fluid → **more viscous** fluid

Stable: small perturbations get stabilized

Unstable: small perturbations grow Repeated branching

Viscous fingering instability

Less viscous fluid displaces more viscous fluid

Total time ~ 1 min

Viscous fingering instability

Width of fingers λ_c

$$\lambda_c \propto \sqrt{rac{\sigma}{\Delta \eta V}}$$

 σ : surface tension

 $\Delta \eta$: viscosity difference

 $V: \mathsf{velocity}$

Patterns at different
$$\ \lambda_c \propto \sqrt{\frac{\sigma}{\Delta \eta V}}$$

Same σ , $\Delta \eta$

Against expectations!

What are we missing?

Fully developed patterns

Fixed finger width λ_c

Different η_{in}/η_{out}

Fully developed patterns

Fixed finger width λ_c

Second control parameter!

Sets relative length of finger

TWO length scales in patterns: finger width and finger length

Branching patterns: Random disordered growth

Nature has many more tricks!

Dendritic patterns: Ordered growth

Dendritic patterns: Ordered growth

Snowflake

Solidified alloy

Copper oxide

Dendritic patterns: Ordered growth

Dendritic growth requires **anisotropy** in interfacial dynamics

Anisotropy: property of being directionally dependent

Water molecule H₂O

Ice structure
Six-fold symmetry

Dendritic growth in anisotropic systems

Introduce anisotropy in growth environment

Engraved ordered channels

Channels modulate gap spacing, become preferred growth direction

Six-fold symmetric lattice

Dendritic growth in anisotropic systems

Six-fold symmetric lattice

Six-fold symmetric pattern

Dendritic growth in anisotropic systems

Six-fold symmetric lattice

TWELVE-fold symmetric pattern!!!

Symmetry depends on viscosity ratio

 η_{in} / η_{out}

Randomness

versus

Order

Branching growth

Dendritic growth

Morphology selection depends on intrinsic symmetries growth environment desired function

Life is neither random nor ordered

Branching growth

Dendritic growth

A new class of patterns

 $3-10\eta_{in} \approx \eta_{out}$

Toes!

No tip-splitting: no new toes!

t

Proportionate growth

Toes exhibit features of proportionate growth

Proportionate growth

Proportionate growth

common in biological world...

... but rare otherwise

Growth in the toe regime

Toes grow proportional to inner circle

No tip-splitting: no new toes!

Proportionate growth in the toe regime

Proportionate growth in the toe regime

An example of memory formation

 η_{in} / η_{out}

System remembers initial state

Instability needed once, but further instabilities prevent memory formation

Pattern growth from fluid instabilities

Sometimes we can only see the memory

A story about a most familiar phenomenon that completely defies our normal intuition

A splash

Filmed at ~50'000 fps

Ethanol impacting dry glass $u_0 \approx 3 \text{ m/s}$

A variety of splashes

Viscosity matters

 η = 10 mPa s

A variety of splashes

Viscosity matters

 η = 1.4 mPa s

 η = 10 mPa s

A variety of splashes

Viscosity matters

 η = 1.4 mPa s

 η = 10 mPa s

Substrate roughness matters

$$\eta$$
 = 10 mPa s

A variety of splashes

Viscosity matters

 η = 1.4 mPa s

 η = 10 mPa s

Substrate roughness matters

$$\eta$$
 = 10 mPa s

What else matters?

Viscosity

Drop size

Substrate roughness

Surface tension

Impact velocity

A splash

Ethanol impacting dry glass $u_0 \approx 3 \text{ m/s}$

atmospheric pressure

Lowering pressure suppresses splashing

Ethanol impacting dry glass $u_0 \approx 3 \text{ m/s}$

1/3 of atmospheric pressure

No splash on Mount Everest

1/3 of atmospheric pressure

Pressure controls splashing in all regimes

lowering pressure always suppresses splashing → common cause?

Why is the air so important?

What is the air doing?

Air flows are not governing splashing

Find control parameters

Air flows:

Impact velocity
Air viscosity
Drop size

Splashing threshold:

Liquid viscosity
Drop size
Surface tension
Impact velocity
Weight of gas
Air viscosity

Many discoveries awaiting

Sidney Nagel

Cacey Bester-Stevens

Michelle Driscoll

Andrzej Latka

Radha Ramachandran

Qing Zhang

A great resource

http://fyfluiddynamics.com/

Flowing through a world of patterns

Pattern growth is full of surprises

we are only starting to understand the deep and complex science behind

Flowing through a world of patterns

Pattern growth is full of surprises

we are only starting to understand the deep and complex science behind

Thank you for your attention!

