
R
L

C

Available online at www.sciencedirect.com

egulation and control of metabolic fluxes in microbes
uca Gerosa1,2 and Uwe Sauer1
After about ten years of research renaissance in metabolism,

the present challenge is to understand how metabolic fluxes

are controlled by a complex interplay of overlapping regulatory

mechanisms. Reconstruction of various regulatory network

topologies is steaming, illustrating that we underestimated the

broad importance of post-translational modifications such as

enzyme phosphorylation or acetylation for microbial

metabolism. With the growing topological knowledge, the

functional relevance of these regulatory events becomes an

even more pressing need. A major knowledge gap resides in

the regulatory network of protein–metabolite interactions,

simply because we lacked pertinent methods for systematic

analyses – but a start has now been made. Perhaps most

dramatic was the conceptual shift in our perception of

metabolism from an engine of cellular operation to a generator

of input and feedback signals for regulatory circuits that govern

many important decisions on cell proliferation, differentiation,

death, and naturally metabolism.
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Introduction
Compared to other biological networks, function and top-

ology of metabolism are unusually well understood. Much

of the contemporary focus is on the higher level cellular

phenomenon of how small molecule fluxes emerge from

the interaction between thousands of enzymes and metab-

olites in this network. Largely driven by advanced exper-

imental [1] and computational methods [2] to estimate not

only intracellular fluxes but also metabolite concentrations

[3], novel biological insights are generated for microbes [4]

and higher organisms [5]. In particular microbial metab-

olism became a paradigm network for systems biology [6].

In our view, the presently greatest challenge resides in

unraveling, in a quantitative sense, the interplay between
urrent Opinion in Biotechnology 2011, 22:566–575
the various regulatory mechanisms that control metabolic

fluxes.

The key problem in understanding how metabolic fluxes

are modulated is the complexity arising from multiple

overlapping regulatory mechanisms and metabolic feed-

back into regulatory networks (Figure 1). The actual in
vivo capacity of an enzyme to realize a catalytic flux is a

function of its abundance and kinetic properties. Of the

three layers of cellular regulatory mechanisms, gene expres-
sion acts only on enzyme abundance, post-translational
modification may modulate abundance and kinetic

parameters (e.g. by changing the degradation rate or

protein phosphorylation, respectively), while allosteric
regulation modulates exclusively the kinetic parameters

through non-covalent binding of effector molecules to

non-catalytic sites. The actual in vivo reaction rate (i.e.

metabolic flux), however, depends also on the in vivo
reactant concentrations (Figure 1b). Since these metabolite

concentrations are a function of thermodynamics and

reaction kinetics, the cell may modulate them only

indirectly. Further complexity is caused by the reac-

tant-mediated link to neighboring reactions (i.e. through

altered reactant concentrations or competitive inhibition)

and through feedback regulation into all three layers of

regulatory mechanisms. While current large-scale efforts

focus mostly on mapping the interactions between reg-

ulators and their targets within a given mechanistic class,

for example, transcription [7] or phosphorylation net-

works [8], understanding metabolic regulation as a whole

eventually requires the entire set of regulatory mechan-

isms to be considered.

Here we review progress since 2009 on metabolism-

relevant regulatory networks in microbes, with a focus

on publications that provide biological insights rather

than new methods. For this purpose, we grouped papers

into four categories: i) reconstructing regulatory network

topology, ii) unraveling input–output regulatory logics

and metabolic feedback, iii) assessing and quantifying

the control exerted by regulation events, and iv) under-

standing the evolution of metabolic regulatory circuits.

Reconstructing the topology of metabolic
regulatory networks
Topological knowledge of interactions between regulators

and targets, and among regulators, is a prerequisite to

understand regulation strategies. Driven by mature exper-

imental methods to quantify gene expression and to map

physical interactions between transcription factors and

genes (i.e. chip-ChIP microarrays), reconstruction of tran-

scriptional network topologies receives much attention [6].
www.sciencedirect.com
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Figure 1
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A systems biology view of metabolism and its regulation. (a) Metabolic fluxes and metabolite pools emerge in the metabolic network from the complex

interplay between cellular regulation of enzyme capacities, the environment, and metabolite pools themselves. Metabolite pools also provide a

feedback mechanism from within metabolism to all modes of enzyme regulation. (b) Metabolic fluxes are net sums of underlying enzymatic reaction

rates. Enzymatic reaction rates are themselves integral output of three biological quantities interacting at the level of enzyme kinetics: enzyme

concentrations, kinetic parameters, and reactant concentrations, here exemplified by the classical Michaelis–Menten rate law. Enzyme concentrations

([E]) can be regulated by gene expression and post-translational modification; kinetic parameters such as turnover (kcat) and substrate affinity (km) can

be modulated by post-translational modification, allosteric regulation, and competitive inhibition; reactant concentrations ([S]) are metabolite pools that

emerge from the overall metabolic system.
Curated databases are available for microbial model organ-

isms, some with explicit links to metabolism [9]. Although

transcriptional networks are presently the most advanced

regulatory network reconstructions, recent investigations

of the key Escherichia coli transcription factors of central and

amino acid metabolism, Cra and Lrp, revealed 144 and 121

previously not annotated binding sites [10,11]. This 7-fold

increase relative to previous knowledge suggests there are

still wide gaps in the network topology. Computational

analyses of the E. coli transcription topology highlight a

hierarchical organization of general and specific transcrip-

tion factors in which the diverse catabolic, anabolic, and

central metabolic pathways are targeted by distinct com-

binations of regulators [12,13]. Notably, reconstruction of

transcription networks increasingly embraces the complex-

ity of transcription unit architectures by including regulat-

ory events beyond transcription factors such as alternative

sigma factors [7,14], anti-sense transcription [14], and

transcriptional attenuation [15]. In contrast to transcription,

translational regulation is mostly studied on a case-by-case

basis. A recent example draws attention to the role of the

small RNA fnrS in targeting mRNA of enzymes involved in

anaerobic metabolism, acting in cooperation with the tran-

scription factor Fnr [16].
www.sciencedirect.com
On a different layer of regulation, much progress has been

made in reconstructing networks of post-translational

modification, primarily by advanced mass spectrometry-

based proteomics. The most relevant protein modifi-

cation is arguably reversible phosphorylation, where

phosphoproteome complexity reflects evolutionary pro-

gress from few hundred phosphorylated proteins in bac-

teria (around 5% of all cellular proteins) [17] to thousands

in eukaryotes [18]. Frequent phosphorylation of bacterial

enzymes suggests a particular relevance for metabolic

regulation [17,19,20]. The current focal point for com-

prehensive mapping of phosphorylation networks is the

eukaryotic model organism Saccharomyces cerevisiae. An

early study with a metabolic focus led to the identification

of 80 phosphorylation sites in 48 different mitochondrial

proteins, mostly enzymes [21]. Mass spectrometry phos-

phoproteomics from large-scale genetic perturbations

brought a major advance by identifying 8814 regulated

phosphorylation events in 124 kinase/phosphatase

deletion mutants of yeast [8]. Functional interactions

between these kinases and regulatory proteins were

mapped by epistatic miniarray profiles from growth rates

in pair-wise deletion combinations, revealing rather fre-

quent occurrence in the same complex and/or function in
Current Opinion in Biotechnology 2011, 22:566–575
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the same pathway [22]. Typically, however, there is only a

partial functional overlap between these interacting pairs

of regulators, as was demonstrated by transcriptomics data

from 150 single and 20 double kinase/phosphatase

mutants [23]. An amazing 1844 of such physical inter-

actions between protein and metabolite kinases with

regulatory subunits and phosphatases were identified

by mass spectrometry [24�]. These data render the

yeast phosphorylation network the currently most com-

prehensive – nearly 60% of the about 6000 genes encode

phosphoproteins [25]. Many metabolism-related phos-

phorylation events were unraveled, but in particular

the Breitkreutz et al. [24�] interaction study identified

several new effector kinases with relevance in nitrogen

and carbon metabolism. In sharp contrast to this great

progress in mapping network topology, function of

specific phosphorylation events has rarely been demon-

strated and quantified, leaving a major challenge for the

near future.

Beyond phosphorylation, further post-translational modi-

fications of lysine residues in metabolic enzymes were

recently demonstrated in microbes; that is, succinylation

[26], acetylation [27,28��], and conjugation with the

degradation-regulating, ubiquitin-like protein PUP

[29,30]. While succinylation was only described for three

E. coli enzymes, about 50% of the 191 acetylated Salmo-
nella proteins were metabolic enzymes. Functionally,

acetylation was shown to control the direction of glyco-

lytic versus gluconeogenic flux and the branching be-

tween tricarboxylic acid (TCA) cycle and glyoxylate

bypass [28��]. Although functional evidence is lacking,

succinylation of the glycolytic glyceraldehyde-3-P

dehydrogenase and the TCA cycle isocitrate dehydro-

genase in E. coli suggests a somewhat similar role [26].

Similarly, the pupylation network of Mycobacteria was

systematically reconstructed by proteomics, revealing

that about half of the 41 identified pupylated proteins

were central metabolic or respiratory enzymes [30]. While

pupylation has so far been described in only few species

and only few succinylation events are known, acetylation

represents a more general metabolic regulation mechan-

ism conserved from bacteria [28��] to mammals [27]. At

present it remains unclear, however, how specificity in the

response to different nutritional conditions can be

achieved when only a single pair of lysine acetyltransfer-

ase and deacetylase exists like in Salmonella [28��].

Finally, reconstruction efforts have begun also to inves-

tigate the topology of protein–metabolite interactions. In

the absence of a dedicated methodology in the past,

we had to rely on serendipitous discovery of allosteric

regulation of enzymes or regulatory proteins, although

such allosteric interactions are major determinants of

dynamic feedback [6,31,32�]. Two recent lines of work

demonstrate approaches to systematically identify

protein–metabolite interactions, one by starting from
Current Opinion in Biotechnology 2011, 22:566–575
lipid metabolites to screen for in vitro binding proteins

[33,34] and the other starting from affinity-purified

proteins to identify the in vivo bound metabolites by

mass spectrometry [35�]. In particular the in vivo analysis

revealed an unexpected wealth of binding partners in

ergosterol biosynthesis in yeast. Presently, these

methods are limited to non-polar metabolites owing to

the problem of loosing polar ligands during washing. A

more indirect alternative is statistical inference of gene–
metabolite interactions through Bayesian integration

(calculating probabilities that a hypothesis is true) from

coordinated changes in concentration of transcript and

metabolite data [36]. Since these interactions encompass

direct and indirect relationships, they provide testable

hypotheses on regulatory protein–metabolite inter-

actions. Although protein–metabolite interactions are

lagging far behind all areas of topology mapping, it is

crucial in particular for a better understanding feedback

regulation and a start has been made.

For metabolism, all the above network topologies relate

to the level or activity of enzymes that modulate in vivo
fluxes (Figure 1). Beyond the better-known protein local-

ization into different compartments, it hence came some-

what as a surprise to find widespread physical

reorganization of metabolic enzymes into large aggregates

upon nutrient starvation as a regulatory mechanism, again

in yeast [37]. While we have already discussed the

importance of protein–protein interactions for phos-

phorylation-based regulation [24�], here it is the very

machines of metabolism themselves that aggregate rever-

sibly into discrete physical structures. The high pro-

portion of central metabolic and biosynthetic enzymes

in these large complexes indicates a nutrient-specific

function in substrate channeling, flux control, or enzyme

storage [37]. Similar proteinaceous microcompartments

have been described for ethanolamine utilization in E. coli
[38], the TCA cycle of B. subtilis [39], and the carbon

fixation machinery of cyanobacteria [40]. These dynamic

enzyme assemblies maintain somewhat separate concen-

trations of their intermediate, which facilitates fast turn-

over of labile or toxic compounds and may also prevent

undesired crosstalk between different pathways [41].

Unraveling the logic of regulatory networks
and metabolic feedback
Beyond interaction topologies, knowledge of how regu-

latory networks compute input signals into output regu-

latory responses is necessary to fully understand

regulation. This is of particular relevance for the inter-

twined and cross-talking regulatory networks. Because

unraveling of input–output regulatory logics often

requires pre-existent topological knowledge, current

attempts mainly focus on transcriptional and signaling

networks. The simplest and often used modeling abstrac-

tion for transcriptional networks is discretization of tran-

scription factors (on or off) and target genes are expressed
www.sciencedirect.com
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according to equations composed of Boolean operators

(i.e. AND, OR, NOT). Boolean networks can be easily

combined with stoichiometric metabolic models for

steady-state flux simulations. Boolean rules link environ-

mental cues and the metabolic state to the transcription of

a cell’s genome [42] that can be automatically refined

through cycles of matching experimental transcript and

flux data [43]. Simulations suggest transcriptional regu-

lation to control steady state fluxes in up to 20% of the

reactions [44]. Different from the rather crude on/off

abstraction of Boolean logic that is applicable to large

networks, quantitative models of transcriptional regula-

tion based on kinetic mechanisms or linear approximation

can be used for small-sized or medium-sized networks. At

the level of individual promoters that integrate different

transcription factors, quantitative regulation of enzyme-

encoding genes has been investigated by thermodynamic

models in vitro [45] and in vivo [46]. Examples are

quantitative input–output functions controlling uptake

gene expression upon sugar availability in E. coli [47].

Crucial for inference of such quantitative input–output

logics in more complex networks is the experimentally

cumbersome quantification of transcription factor activi-

ties, which must be done by either fluorescent reporter

promoters [46] or linear regression analysis of target gene

expression on the basis of the known topology [48]. A

further major challenge is unraveling the dynamic nature

of regulatory responses. By considering temporal motifs,

the timing of transcriptional regulation was demonstrated

to often follow the topological order of metabolic path-

ways [49], although this particular case illustrates the

danger of missing major mechanistic interrelations when

focusing only on one layer of regulation [50]. In combi-

nation with modulated transcript half-lives, already the

transcriptional network can perform complex tasks such

as reliably responding to a slowly changing environment,

while effectively ignoring fast fluctuations, as was nicely

shown for yeast sugar catabolism [51]. Current efforts

highlight transcriptional networks as the regulatory net-

work of preference to study quantitative and temporal

aspects of such input–output regulatory logics (see [52�]
for a recent review).

Faster than the minute-time scale of transcription net-

work responses, signaling networks simultaneously inte-

grate intracellular and extracellular signals and their

input–output logic must additionally consider protein

modification and metabolite interactions that occur on a

seconds-time scale. Reconstructing such signaling net-

works at genome-scale comes within reach [53], but

current applications are small-scaled. By explicitly in-

cluding extracellular signaling in a kinetic model, it was

demonstrated that S. cerevisiae evolved for economic

stress protection: almost no response to fast pulse-like

osmotic changes but well-adapted to periodic changes at

a certain frequency [54]. Considering crosstalk between

transcription and signaling is starting to reveal particular
www.sciencedirect.com
input–output logics that control yeast metabolism, such

as an incoherent feed forward loop that leads to a

transient expression pulse of a glucose transporter [55]

and a low-energy check point by the Snf1 kinase that

controls transcription of enzymes in central and redox

metabolism [56]. Overall, the fast time-scales of sig-

naling networks render unraveling their input–output

logics cumbersome, where quantitative and dynamic

data are limiting.

While the previous sections dealt with regulatory mech-

anisms that feed into metabolism, we discuss in the

following the opposite direction: feedback signals coming

from metabolism into regulatory networks [57]. Fre-

quently, metabolite-binding to transcription factors

changes their activity [44,45,46], and metabolite-binding

to catalytic RNAs (ribozymes) at so-called riboswitches

can also modulate splicing, translation, or RNA stability

[58]. The enrichment of kinases and phosphatases in

metabolite–protein interaction screens [33,35�] suggests

that also post-translational modifications may be subject

to metabolic feedback. In some cases, these metabolic

feedbacks have been quantified through modeling, such

as the intracellular dynamics of fructose-1-6-bisphosphate

in E. coli, which is hypothesized to signal glucose limita-

tion to central metabolism via the Cra-regulated tran-

scription network [31]. According to control system

theory, homeostasis and adaptation is best achieved when

internal signals report the systems’ state – metabolite

levels or flux rates in the case of metabolism – to the

regulatory circuits (Figure 1a, red arrow). But how does

metabolic feedback through metabolite levels relate to

the flux output of metabolism? Kinetic modeling demon-

strated that E. coli senses concentration changes in few

metabolites that report the central metabolic flux state to

transcription factors [59��]. Provided that a small amount

of new nutrients can enter the cell, this distributed flux-

sensing enables to mount appropriate responses to all

carbon sources with only a handful of internal signals.

Only few metabolites appear to qualify as potential flux

sensors (i.e. their concentration is strictly correlated to the

pathway flux) and at least some of them appear to be

conserved across species boundaries [60]. Typically, such

flux sensing is not restricted to transcriptional responses

but involves also allosteric feedback at the level of

enzymes [61]. First larger reconstructions of regulatory

networks indeed highlight the strong involvement of

internal metabolites in the general regulation of metab-

olism [62�,53].

Lastly, even without dedicated regulatory mechanisms,

substrate and product levels have a strong impact on the

reaction rate and can have feedback-like consequences

for the network (Figure 1). Quantitative metabolomics

and ordinary-differential-equation-based modeling

revealed substrate competition for the active site of

saturated enzymes as a key determinant of fluxes in
Current Opinion in Biotechnology 2011, 22:566–575
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nitrogen assimilation of E. coli [63��]. Such competitive

inhibition was shown for E. coli, whose metabolite con-

centrations exceeded the in vitro-determined Km for most

of the 100 tested substrate–enzyme pairs [64]. Consistent

with the E. coli exception of near Km substrate concen-

trations in lower glycolysis, not only metabolite concen-

trations in S. cerevisiae glycolysis but also TCA cycle were

found to be near the Km values [65�]. The consequence of

near Km concentrations was an inverse relationship be-

tween genetically induced fold-changes in yeast sub-

strate metabolites and their enzymes upon local and

global perturbations, suggesting that reaction rates are

jointly limited by enzyme capacity and metabolite con-

centrations [65�]. Hence small variations in enzyme

capacity are buffered by a converse change in substrate

concentration that maintains a constant reaction flux

(homeostasis) over a range of enzyme capacities

(Figure 1). Whether indeed near Km substrate concen-

trations prevail more generally in central metabolism and

above Km concentrations are the typical situation in the

remainder of metabolism will be an issue for the near

future.

Assessing and quantifying flux control of
regulators
The previous sections summarized current progress in

mapping out regulatory networks and the comparatively

slower unraveling of their input–output responses to

regulatory signals. From knowing that a particular regu-

lation event is happening, however, we cannot infer its

functional consequences because regulation is concep-

tually different from the control it exerts on a given

biological functional output; that is, flux in metabolism.

Here, the term regulation refers to a mechanism able to

modulate enzyme activity by some molecular interaction

(Figure 1). Instead, we speak of control when a regulator

directly changes the overall pathway flux. Therefore,
Figure 2
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Difference between regulation and control of metabolic fluxes. A linear

metabolic pathway with three enzymes E1, E2, and E3 overarched by a

regulator that modulates enzyme capacities (thickness of green

rectangles). (a) Despite greater capacity of enzymes E1 and E2, capacity

of enzyme E3 limits the overall steady state flux (thickness of blue

arrows). (b) A regulatory event exerted by the regulator increases the

three enzymatic capacities. Of the three observable regulatory events,

only upregulation of E3 (red arrow) has an actual effect on the metabolic

flux because it constrains the overall steady-state flux.
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regulation is a local property influencing individual

enzyme activities, while control is a global property

effecting fluxes in the overall network (Figure 2) [66].

In metabolism, it is particularly important to distinguish

both terms because control of metabolic fluxes is shared

among many regulators that act simultaneously at differ-

ent regulatory layers. Typically, only few of the many co-

occurring regulatory events actually exert flux control at a

given time and condition, hence it is crucial i) to assess

whether a regulatory interaction has an impact on in vivo
flux and ii) to quantify the extent of its flux control.

To address the first point, the most reliable method to

determine intracellular fluxes is based on 13C-exper-

iments [1]. Since 13C-flux analysis is now feasible at a

throughput of several hundred parallel experiments, it

can be used to assess the impact of genetically manipu-

lated regulation events. Precisely this approach has been

used to systematically identify transcription factors that

control the distribution of flux through different meta-

bolic pathways. Intracellular fluxes were quantified in

more than 100 transcription factor deletion mutants of

yeast [67�] and E. coli [68] under different conditions.

Although up to 2/3 of the factors were active on some

cellular process based on a detectable growth phenotype,

only about a handful of them actually controlled the

distribution of flux under a given condition in either

organism. Although many transcription factors influence

enzyme abundance and fluxes in particular pathways,

only up to a handful controlled the distribution of fluxes

per condition. The transcriptional control of flux distri-

butions during sugar catabolism focused on the switch

between respiratory and fermentative metabolism, which

in the case of yeast involved a network of 23 of 119 tested

transcription factors that fine-tuned the response under

five different conditions [67�]. Since flux data can only

reveal the affected pathways, it required ‘omics’ data from

the relevant transcription factor mutants to derive testable

hypotheses on the actual target genes that caused the

observed flux increase. Rather than perturbing (potential)

individual regulation events, the typical approach follows

the reverse logic, inferring regulatory relevance from

‘omics’ data. Two good examples are i) the control of flux

direction and branching in central metabolism of Salmo-
nella through enzyme acetylation [28��] and ii) unexpect-

edly strong carbon catabolite repression through the TCA

cycle intermediate malate in B. subtilis [69]. To extend

beyond central metabolism, genome-scale fluxes can be

estimated through stoichiometric modeling, albeit with

less confidence, and such data have been used to identify

the relevant transcript [70] or enzyme [71] changes from

flux-transcript (or protein) correlations under different

conditions in yeast. While these analyses did not directly

reveal the underlying mechanism, they allowed to hypoth-

esize which fluxes are likely to be transcriptionally con-

trolled [70]. The obvious next question is which regulators

are responsible for this transcriptional control? Starting
www.sciencedirect.com
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from the regulatory network topology or inferring the most

likely transcription factor for observed transcriptional

changes [11], it should be possible to design conclusive

experiments on flux control.

The second point is to quantify the extent to which a

regulation process actually controls a flux under a certain

condition. For this we need to know i) how much pathway

flux is affected by enzyme activity and ii) how much

enzyme regulators affect this activity. Historically, the

first question has been addressed in the context of meta-

bolic control analysis and, with a different focus, by

biochemical systems theory [66]. The task boils down

to estimating numerical coefficients with predictive

power from data; that is, numbers quantifying the flux

change that will happen upon modulation of enzyme

activities at a given steady state. Based on an approxi-

mated kinetic model of central metabolism in hepatoma

cells, glucose-6-phosphate dehydrogenase and oxidative

phosphorylation were shown to exhibit negative and

positive flux control, respectively, on the glycolytic flux

[72]. Similarly, approximated kinetics highlighted the

predominance of enzyme concentration rather than allo-

steric regulation in controlling glycolytic flux in Lactococ-
cus lactis [73]. The second question on which regulator is

relevant can only partially be addressed by such

approaches because the mechanisms that regulate those

putatively controlling reactions typically remain

unknown. In this case, the approach of regulation analysis

helps delineating which regulatory layer is responsible for

establishing fluxes through a given enzyme [74]. In its

time-dependent extension, it allows to derive quantitat-

ive coefficients for hierarchical (i.e. expression and post-

translational modification) and metabolic regulation [75].

For the glycolytic enzymes of yeast, it was thereby shown

that there is no particular temporal or enzyme preference

for protein degradation or allosteric regulation during the

first 4 h of nitrogen starvation. More resolution on the

specific regulatory mechanism controlling reactions that

limit flux is possible by using detailed kinetic models,

when the regulation topology is known and rich data are

available. This was done with a differential equation

model populated with in vitro kinetic parameters of

aspartate metabolism in Arabidopsis, which revealed allo-

steric interaction as being the key controlling event to

decouple flux rerouting in competing pathways [76].

Using in vitro as well as in vivo estimated parameters, a

kinetic model of ammonia assimilation in E. coli surpris-

ingly revealed active-site competitive inhibition of glu-

tamine synthetase by non-substrate metabolites as a key

controlling mechanism during dynamic nitrogen pertur-

bations [63��].

Understanding evolution of metabolic
regulatory circuits
Are the diverse and overlapping regulatory mechanisms

that act on different metabolic pathways in different
www.sciencedirect.com
organisms ‘frozen’ accidents of evolution or potentially

understandable through design principles that would

drive evolution towards a particular regulatory configur-

ation? For the simple case of linear pathways, metabolic

control theory predicts adaptive evolution to occur first at

enzymes with highest flux control, typically in the initial

reaction steps [77]. Since flux control is a property specific

to a steady state and thus highly condition dependent,

evolution theories based on fitness maximization appear

to have higher predictive power [78,79�]. For the example

of maximizing benefit and cost of protein expression in

lactose catabolism of E. coli, predictive power was vali-

dated experimentally by evolving multiple cost–benefit

solutions in different environments [80]. These and other

studies suggest that initial regulatory changes occur at the

level of gene expression, a view fully consistent with the

computationally inferred rate of evolutionary rewiring in

various networks from comparative genomics and proteo-

mics data [81]: evolution proceeds continuously slower

from transcriptional regulation, phosphorylation, genetic

interaction, protein–protein interaction to the slowest

changes in metabolism itself. Rapid optimization of meta-

bolic gene expression was empirically shown by transcrip-

tomic and proteomic data from laboratory evolution

experiments within 1000 generations [79�]. Overall, the

transcriptional network is remarkably robust to rewiring,

as was demonstrated by systematic transcription factor

knockout studies [67�,68] and addition of 600 rewired

links between promoters and transcription factors of E.
coli [82]. In addition to simply modulating the strength of

a given regulatory link, complete absence or addition of

entirely novel links can improve condition-specific fitness

[68,82] and thus broaden the possibilities for adaptive

evolution.

There are clearly common principles underlying the

evolution of regulatory circuits that govern metabolism.

While our current understanding of these principles is

coincidental, many identified architectures optimize

properties such as resource allocation [78,79�], robust-

ness-to-noise [83], and response time [55,84] under the

framework of evolutionary cost-and-benefit to increase an

organisms’ fitness. A major obstacle in understanding the

evolutionary fitness of regulatory circuits is our limited

knowledge of detailed molecular mechanisms and kinetic

parameters. Sidestepping the requirement for such

detailed knowledge, a recently developed theoretical

framework introduces an approach to formally define

the design space of biological circuits [85]. By enumerat-

ing phenotypes with quantitatively distinct behaviors

[32�], it represents a conceptual step towards linking a

genotype to the phenotypic advantages it confers to the

organisms. Verified through experimental data, this

design space framework demonstrated that the non-

obvious dimerization rate of the oxygen-sensing tran-

scription factor Fnr of E. coli is crucial for optimal regu-

lation of anaerobic metabolism [86].
Current Opinion in Biotechnology 2011, 22:566–575
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Conclusions
After about ten years of renaissance in metabolic research,

the currently most important contributions are providing

novel understanding of how metabolic fluxes are estab-

lished and regulated. Reconstruction of various regulatory

network topologies is steaming. In particular reconstruc-

tions of post-translational modification networks such as

protein phosphorylation [8,24�] or acetylation [28��], are

now in full focus. The past two years clearly showed that

we have underestimated the broad importance of such

modifications for microbes and their intermediary and

energy metabolism. With the growing knowledge of

regulatory network topology, the functional relevance

of these regulatory events becomes an even more pressing

need, and is presently most advanced for transcriptional

networks. A major knowledge gap resides in the regulat-

ory network of protein–metabolite interactions, simply

because we lacked pertinent methods for systematic

analyses – but a start has now been made.

Perhaps most dramatic was the conceptual shift in our

perception of metabolism from an engine of cellular

operation to an engine that is also steering many pro-

cesses in microbial [6] and higher cells [87]. Metabolism

provides the input and feedback signals for regulatory

circuits that govern many important decisions on cell

proliferation, differentiation, death, and naturally

metabolism itself. Pivotal for a deeper understanding

of this active regulatory role are i) methods to detect

and quantify protein–metabolite interactions and ii)

computational methods to integrate regulatory events

dynamically across all relevant levels of molecular inter-

actions.

As we move towards a more quantitative representation of

metabolic regulation, we must assess the actual control

that an occurring regulatory event exerts on establishing

metabolic fluxes. Beyond dynamic component concen-

trations and flux data – which need also further exper-

imental method development – this requires validated

and ready-to-use computational methods to extract con-

trol information from dynamic data. Since control is a

highly condition-specific property, empirical assessment

of control under many different conditions would be an

endless task. More effective would be to fit kinetic

models to data, perhaps using approximate kinetic laws,

from which control can be estimated for all conditions that

can be simulated. Lastly, such models may be key in

fostering understanding of principles behind the evol-

ution of different regulatory circuits, properly accounting

for flux control across environmental scenarios and the

fitness advantage it confers.
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