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Introduction to Metabolism

Institute of Molecular 
Systems Biology

• Structure & principles of metabolic networks
• Quick glance at key pathways & principles of 

energy generation 
• Mechanisms of regulating metabolic flux
• How to assess metabolic fluxes?
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• Metabolism is the sum of all chemical 
reactions in an organism

• Cells are mini chemical factories with 
>1000 reactions that operate at the 
same time

• Highly conserved from bacteria to 
humans
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Two Levels to Aid 
Understanding Metabolism

Reaction level: kinetics/thermodynamics

[E] • kcat •
[S]

km + [S]
= reaction rate (flux)

Network level: structure

Speed

Direction
The standard free energy of ATP hydrolysis is 30.5 kJ/mol.
In vivo it is more like 50 kJ/mol.

Simple structure from birds eye …..



Complicated but Structured

Catabolism

Anabolism

• Catabolic pathways 
release energy by 
breaking down complex 
molecules into simpler 
compounds (eg respiration)

• Thermodynamically 
downhill (mostly!)

• Anabolic pathways 
consume energy to 
build complex 
molecules from simpler 
ones (eg protein synthesis 

from amino acids)

• Thermodynamically 
uphill (in general)
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• 46-52% C

• 20-30% O

• 10-14% N

• 8 % H

• 2-3% P

• 1-4<% K

• 0.2-1% S

• 0.01-1% Ca,Mg,Cl

• 0.02-0.2% Fe

• trace elements

• 4-10% ash

• 40-60% protein

• 15-30% RNA

• 3% DNA

• 10% lipids

• 0-5% lipopolysacch.

• 0-10% murein

• 0-5% glykogen

• 2-10% soluble metabolites

• 0.5-3% salts

Chemical

composition

Macromolecular

Composition

What is Needed to Make a Microbe 
(as an example for cells that can make everything from one C source)
Typical Cell Composition

• 5 g/L Glukose
• 6 g/L Na2HPO4
• 3 g/L KH2PO4
• 0.5 g/L NaCl
• 1 g/L NH4Cl
• 2 mM MgSO4
• 25 µM CaCl2
• Spurenelemente 
(Fe, Co, Cu, Mn, Zn, Mo)

• evtl. Vitamine 
& Aminosäuren

Minimal medium

11 carbon precursor 
molecules and 3 
cofactors



Catabolism

Bio-

synthesis

(Anabolism)

Growth

(Macro-
molecular 
synthesis)

Proteins

Fat

CO2

2x Triose-3P

Erythrose-4P

Ribose-5P

Glucose-6P

Fructose-6P

Pyruvate

PEP

Oxaloacetate

a-Ketoglutarate

Acetyl-CoA

Amino acids

Nucleotides

etc

ATP

ADP
ATP

ADP

Energy 

NADP+

NADPH

Reduction power

Glycolysis
TCA cycle
etc

Carbohydrates

Biosynthetic basis:
11 precursor metabolites in 
central (intermediary) 
metabolism.

Monomers

Proteins
DNA
RNA
Lipids

Membranes

Walls

Organelles

Etc.

Polymers



• Glycolysis  (“splitting of 
sugar”) breaks down glucose 
into two molecules of 
pyruvate

• Has two major phases:
– Energy investment phase
– Energy payoff phase

• The immediately generated 
ATP comes from substrate 
level phosphorylation !
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Key Central Metabolic Pathways: Glycolysis

2 pyruvate
2 NADH
2 ATP

1 glucose ->



Acetyl-CoA ->
•2 CO2
•1 ATP
•3 NADH
•1 FADH2

CoA

CoA

CO2

FADH2

FAD

ATP

ADP + P i

NAD+

+ 3 H+

NADH3

3

2

Acetyl CoA
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Key Central 
Pathways: TCA cycle

Complete oxidation to 
CO2 and generation of 
reducing equivalents

4 oxidation reactions 
(ie dehydrogenases)



Complete Aerobic Degradation of 
Glucose
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Glukose 2 Pyruvat
2 ATP
2 NADH

4 CO2
2 ATP
6 NADH
2 FADH2

Glycolysis Tricarboxylic acid 
cycle

How many ATP can be made from one NADH?

2 Acetyl-CoA
2 CO2
2 NADH

Pyruvat
dehydrogenase

Glucose -> 6 CO2 ∆G0’ -2870 kJ/mol
ADP + P -> ATP ∆G0’ +30.5 kJ/mol

-2870 + 4x 30.5 -> -2748 kJ/mol still unexploited!
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Respiration (ie oxidative phosphorylation): 
Electron Transport Chain and ATP Synthase 

Electron transport chain: electron transfer to oxygen 

and generation of proton gradient 

Conversion of 

proton gradient into 

ATP formation

Outside

Inside
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Stoichiometry of Oxidative Phosphorylation

4
4 2

3-4 protons must 
be translocated to 
generate an ATP 

10 H+ are maximally 
exported during 
respiration.
Bacteria have fewer coupling sites!

P-to-O ratio
ATP per Oxygen atom
Maximum 3



Maximum per glucose: About
36 or 38 ATP

+ 2 ATP+ 2 ATP + about 32 or 34 ATP

Oxidative
phosphorylation:
electron transport

and
chemiosmosis

Citric
acid
cycle

2
Acetyl
CoA

Glycolysis

Glucose
2

Pyruvate

2 NADH 2 NADH 6 NADH 2 FADH2

2 FADH2

2 NADH
CYTOSOL Electron shuttles

span membrane
or

MITOCHONDRION

Fermentation: 

Lactate, Ethanol, …. 

No O2

Accounting of ATP Production 
by Cellular Respiration

1 NADH ® 10 H+

1 FADH ®   8 H+ 3-4 H+® 1 ATP 1 NADH ® 3 ATP (2.5 – 3.3)
1 FADH ®  2 ATP

in most efficient case 

(ie mammalian cells)
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Energetic Consequence of 
Different Modes of Metabolism

2 ATP

Even with O2:
Tumors
Yeast



Glycolysis & TCA Cycle: 
At the Crossroads of Metabolism
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• Glycolysis and the TCA cycle 
are THE key pathways of central 
(or intermediary) metabolism

Catabolism
Bio-

synthesis
(Anabolism)

2x Triose-3P

Erythrose-4P

Ribose-5P

Glucose-6P

Fructose-6P

Pyruvate

PEP

Oxaloacetate

a-Ketoglutarate

Succinyl-CoA

Acetyl-CoA

Glycolytic intermediate Citric acid cycle intermediate

11 biomass precursors
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Chubukov et al, 2014 Nature Microbiology Reviews

Monomeric 

building blocks

Biomass 

polymers



Take Home Message:
Structure of Metabolism is “Simple”

• Catabolic down hill reactions bring various 
nutrients into central metabolism.

• Anabolic uphill reactions synthesize cellular 
buildings blocks from 11 central intermediates 
(driven by catabolically generated ATP).

• Central metabolism is the flexible core of it all, 
able to run into different directions depending 
on the enviromental conditions.

16



Central Metabolism Must be Flexible:
Glycolysis vs Gluconeogenesis
Mostly the same enzymes, but uphill requires energy …..
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PGI

G6P

F6P

FBP

PFK

FBA

ENO

PEP
PYK

PYR

GAPDH

BPG

PGK

2PG/3PG

DHAP/GAP

Glucose

Acetate

PGI

G6P

F6P

FBP

FBPase

FBA
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PEP

PYR

PPS
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BPG
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DHAP/GAP
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How is all of this coordinated?
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What Matters for a Reaction Flux?
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[E]  •  kcat • 
[S]

km + [S]

How can cells affect those 
variables and parameters?

Enzyme 
conc Kinetic 

parameter
Kcat – turnover

km - affinity

Reactant 
concentration

[S]

= reaction rate (=flux)



How Cells Influence Reaction Fluxes ?

20

Chubukov et al, 2014 
Nature Microbiology 
Reviews

Given the relatively slow response time and stochastic nature of transcription and 
translation events, expression of individual enzymes is not fine-tuned in 
accordance to changes in metabolic flux, but rather to set the scope of possible 
fluxes (Kochanowski, Sauer and Noor 2015 Curr Opin Microbiol)

Which fluxes are realized depends more on enzyme kinetics & regulatory small 
molecule-protein interactions: either through stable covalent binding (post-
translational modification) or through fleeting non-covalent interactions (allostery).



In Networks All is Intertwined
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We still cannot understand network behavior from the 
individual (parameterized) reactions
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Key Experimental Methods for 
Metabolic Research in Sys Bio
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Classically it was enzymology; 
ie in vitro enzyme assays
• Proteomics 

(or transcriptomics since easier)

• Metabolomics
• Flux analysis

Mass spectrometry the key 
enabling technology!



Metabolome direct

Transcriptome indirect
Proteome direct

Network 
composition [c]

Experimental Analysis of Metabolic 
Networks as Systems



Metabolome direct

Transcriptome indirect
Proteome direct

Network 
composition [c] Network 

operation
[mmol / gcells h]

‘Fluxes‘
Systems-level in vivo activity

Experimental Analysis of Metabolic 
Networks as Systems



Sauer & Zamboni 2008. Nature Biotech

[c] omics

Movement in 
time – rates
Unlike [c]dependent

‘omes, flux data

quantify the integrated

biochemical & 

regulatory response of 

the network!

Emergent Property

From Components to the Functional State:
Metabolic Flux Analysis



X

1v

2v

Infer a Non-Measurable Quantity
Stoichiometric Flux Analysis

cellS

I3

I2

I1

P2

P1100

30

Measure uptake/excretion over time

medium

70
70

30

Calculate  

Assumption: Steady state for

intracellular metabolite concentrations

What could happen if
not in steady state?
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Stationary (or steady-) state vs. dynamic state

� flowin = flowout: 
system in a stationary state = 
dynamic equilibrium

� flowin � flowout: 
system in a dynamic state

volume

time

!
0in out

dV flow flow
dt

 �  

in out
dV flow flow
dt

 �
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Reconstruction (1)

Mass balance around metabolite X
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In pseudo steady-
state:

Where:
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v – intracellular flux
r – extracellular (exchange) flux
S – stoichiometric matrix
R – reactant residuals

Allowed residuals in 
reaction reactants



Why don’t we just rely on this
computational analysis?

S I2I1 P

ATP

Typical situations where stoichiometric flux analysis 
fails: (a) parallel pathways without any related flux 
measurement, (b) certain metabolic (futile) cycles, (c) 
bidirectional reactions, and (d) split pathways when 
cofactors (gray circles) are not balanced.

To deal with such underdetermined systems, typically 
strong biological assumptions are made (e.g. on ATP 
production, cofactor balancing or cellular objective), which 
severely limit the value of obtained results.

?

?100

Measured

100

What kind of assumptions could we 
make to estimate the 2 reactions?



The Basics: 13C-based MFA

S I2I1 P

=12C

=13C
CO2

100

Measured

100

CO2
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Iterative Isotopologue Balancing
How to fit fluxes to data ?

• Global isotopologue balancing:
– provides a single flux solution for the network
– provides flux number for each reaction in the network
– is computation intensive (non linear problem)

Using a reaction and atom resolved model of metabolism 
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Chubukov et al, 2014 Nature Microbiology Reviews



Summary
• Metabolic networks are structured into mostly linear 

anabolic (& catabolic) pathways and an 
interconnected and flexible central metabolism.

• Most energy is conserved in redox cofactors which 
respiration converts into ATP (with varying 
stoichiometries!).

• Flux regulation: gene expression sets more the 
scope, while PTMs and metabolite binding actually 
regulate the fluxes.

• Intracellular fluxes cannot be measured, but need to 
be inferred computationally. Some methods exploit 
isotopic tracing for higher confidence inference.

32
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Central Metabolism and 
Growth-Lag Tradeoffs

Institute of Molecular
Systems Biology

• Allosteric regulation topology
• Growth-lag tradeoff
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Metabolism
After decades of discovery 
and detailed mechanisms: 
metabolism is the furthest in 
terms of knowledge.

Not only a workhorse 
network but also an internal  
signal generator !

Metabolite-protein interactions are the basis of
these signals and drivers of network coordination
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Non-Covalent vs Covalent (Post-
Translational) Metabolite Regulation

• Both are fast and reversible
• But PTMs can achieve lasting changes and combinatorics, 

however, at a cost of additional, modifying enzymes

Hypothesis: non-covalent metabolite-protein interactions 
are are more ancient and mainly used to regulate 
conserved biological processes that maintain cellular 
homeostasis, for example metabolism and transcription -
in Pro- and Eukaryotes alike.
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Non-Covalent vs Covalent (Post-
Translational) Metabolite Regulation 
in Enzymes of Pro- and Eukaryotes

T
ot

al
 n

um
be

r

Chris 
Gruber

Phosphorylation

Gruber, Diether & Sauer unpublished

Non-covalent
interactions are
equally abundant 
across kingdoms

Metabolite-protein 
interactions

E.
 c

ol
i

Ye
as

t

H
um

an

E.
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ol
i Ye

as
t

H
um

an

Average phosphorylation:
1.7 in E. coli and 36 in human reactions
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What Is Our Present Knowledge of 
Metabolite-Enzyme Regulation?
• In contrast to metabolic networks, there is no equivalent regulation 

network let alone a model .......

• Developed a framework leveraging the vast, but fragmented, 
biochemical literature to reconstruct metabolite-protein regulatory 
network 

• Genome-scale architecture of E. coli small molecule regulatory 
network: 
– 1,669 unique regulatory interactions between 321 metabolites 

and 364 enzymes
– > 83% interactions are inhibitory

– ≈ 50% of enzymes regulated

Reznik*, Christodoulou*, Sauer, Segre & Noor 2017  Cell Reports

Dimitris
Christodoulou

Elad Noor

Collaboration with Ed Reznik & Daniel Segre 
Boston University
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Combining metabolomics data from many 
conditions with metabolic control analysis, 
we showed:

– fundamental trade-off between regulation and enzymatic activity,

– an inherent cost associated with metabolite regulation,

– Under physiological conditions, most enzymes operate at or 
near saturation.

Reznik*, Christodoulou*, Sauer, Segre & Noor 2017  Cell Reports

Pr
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[S]
[S] + KS

Inhibitors
(n = 798)

Substrates
(n = 3320)

KS = KM or KI
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A Chemoproteomic Map of 
Metabolite-Protein Interactions
A method developed by the Picotti Lab @ ETH

Limited proteolysis 
w/o metabolites

Piazza, Kochanowski, Noor, Sauer & Picotti. Cell 2018

Limited proteolysis 
with metabolites

Captures different 
interactions:

– catalytic
– allosteric
– protein complex

E. coli interactome atlas for 20 metabolites 
(CCM, 4 amino acids, 7 nucleotides, cAMP)

1678 interactions; ¾ unknown (!) 
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Chemoproteomic Mapping of 
Metabolite-Protein Interactions
collaboration with Picotti Lab @ ETH

Strength
• Proteome-wide discovery !!!
• All types of interactions (… but regulatory ones need to

be inferred indirectly)
Weakness
• Metabolite centric: no comprehensive mapping of a 

specific subnetwork

How deep is our knowledge of regulatory
metabolite-protein interactions ?
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How Many Met-Prot Interactions are in 
Central Metabolism?

Purified 29 central 
enzymes of E. coli

no isomerases, no hetero complexes

55 metabolites
distributed in 4 mixes

Maren
Diether

collaboration with Allain Lab @ ETH

NMR

metabolitesenzyme

en
zy

m
e

metabolites

1D 1H NMR (T1rho)
spectroscopy

Diether, Nikolaev, Allain & Sauer. MSB 2019
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False positive rate

40 regulatory, 43 
catalytic interactions 
were known already
Cutoffs set for low 
false positive rate 
(30% recovery)

Subnetwork Focused Mapping of 
Metabolite-Protein Interactions

Diether, Nikolaev, Allain & Sauer. MSB 2019
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Metabolites

29
 c

en
tr

al
 e

n
zy

m
es

Subnetwork Focused Mapping of 
Metabolite-Protein Interactions

Amino acids Nucleotides Central met

Diether, Nikolaev, Allain & Sauer. MSB 2019

C: known catalytic interact
R: known reg. interact
detected - not detected
Box: likely allosteric



12

3.4 interactions 
per enzyme

1 interaction 
per enzyme

Average 
numbers

Interactions are 
Less Frequent 
in TCA Cycle

P-value: 0.004

Diether, Nikolaev, Allain & Sauer. MSB 2019
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Hattori et al. (2010) Nucleic Acids Res.

NMR Detects ‘Likely’ Allosteric and 
Competitive Interactions

76 new interactions

Equally distributed between 
‘likely allosteric’ and ‘likely 

competitive’

Diether, Nikolaev, Allain & Sauer. MSB 2019
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• ~ 100 interactions detected - 76 are novel (!) 
• Doubled number of regulatory interactions in 

central metabolism -> much larger interaction
network than currently known

• Based on chemical similarity ~ about 50% of 
novel interactions are allosteric! 

• So far, 8 out of 11 tested interactions 
functionally validated

Conclusion

Diether, Nikolaev, Allain & Sauer. MSB 2019
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Working towards a „comprehensive“ met-
prot interaction map of central
metabolism.

But a long way from network topology to
understand in vivo function in cellular
context .........

Which regulatory interactions govern a 
given adaption, and precisely how do 
they do it?

From to Topology to Function …..
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Avoiding Confounding (other) Regulation 
When Assessing Allosteric Metabolite-
Protein Regulation

Enzyme

Regulatory
metabolite

Assumption: allosteric 
effects dominate very 

rapid (!) responses 

Hannes Link Karl Kochanowski
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Gluconeogenesis to Glycolysis Switch of 
E. coli within 30 Seconds

Akin to Rabinowitz
methodGlucose

Pyruvate

Link, Kochanowski & Sauer 2013 Nature Biotechnology

Glucose
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Dynamic [Metabolite] Response (30 s)

Glucose

Fructose

G6P F6P FBP

DHAP 3PG PEP
Time (sec)

ATP ADP AMP

Cofactors do not change !

Link, Kochanowski & Sauer 2013 Nature Biotechnology

PGI

G6P

F6P

FBP
PFKFBPase

FBA

ENO

PEP
PYK

PYR
PPS

GAPDH

BPG
PGK

2PG/3PG

DHAP/GAP

Glucose

C
on

ce
nt

ra
tio

n
[m

M
]

Metabolite conc are
hard to interpret ….
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FBP

U-13C Glucose

G6P

PEP

Dynamic 13C-Experiments Demonstrate:
Flux Reversion within 5 Seconds

Time [s]

Fully 13C-labelled 
fraction

80%

50%

glucose pyruvate

glucose pyruvate

glucose pyruvate

Link, Kochanowski & Sauer 2013 Nature Biotechnology

PGI

G6P

F6P

FBP
PFKFBPase

FBA

ENO

PEP
PYK

PYR
PPS

GAPDH

BPG
PGK

2PG/3PG

Pyruvate

DHAP/GAP

• Combine short-term 
metabolite dynamics 
with ODE modeling

• Infer allosteric regulation 
relevant for a given 
adaptation

• Identify novel allostery
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Can E. coli always shift rapidly between 
glycolytic & gluconeogenic C-sources?

Markus Basan Dimitris Christodoulou

In collaboration with Terry Hwa (UCSD) 
and Johan Paulsson (Harvard)

Nature | Vol 584 | 20 August 2020 | 471

symbols and line) between the inverse lag time, 1/Tlag, a measure of 
adaptability, and λpre, that is:

T
α λ λ

1
= ⋅ ( − ), (1)

lag
0 pre

in which α is a dimensionless proportionality constant.
To test the generality of this relation, we analysed lag times in 144 

transitions (Supplementary Tables 2, 3), finding long lag times for shifts 
from six glycolytic to six gluconeogenic carbon sources (Extended Data 
Fig. 2a–f). Notably, all of these shifts exhibited similar linear relations 
between the preshift growth rate and the inverse lag time, but with 
different proportionality constants, α, for different postshift carbon 
sources, all with the same critical growth rate, λ0, of approximately 1.1 
doublings per hour (Fig. 1d and Extended Data Fig. 2). Some degree of 
correlation also exists between the lag time and postshift growth rates 
(Extended Data Fig. 2g), as observed previously13, but the pattern is 
much weaker compared with those seen in Fig. 1c, d. We also examined 
several classic diauxic shifts, where both carbon sources were present in 
preshift, and found the lag times in most cases to be very similar to those 
for the complete shifts that we study here (Extended Data Fig. 1b–d).

To investigate the origin of the extended lag time in our shifts, we 
first tested whether dormant and heterogeneous subpopulations may 
play a part. Using two complementary methods (Supplementary Note 1 
and Extended Data Figs. 3, 4), we quantified cell-to-cell variability fol-
lowing the shift from glucose to acetate. The results revealed some 
heterogeneity in lag times, but no distinct subpopulations: none of 
the cells resumed growth immediately after the shift, and virtually all 
cells resumed growth shortly after the average lag time.

To determine whether the observed correlation between lag time and 
preshift growth is due to a limitation in central metabolism (referred to 
as a ‘metabolic limitation’), we quantified metabolite pools throughout 
the lag phase of the glucose-to-acetate transition (Fig. 2a). By com-
paring the dynamics of metabolite pools and fluxes with steady-state 
levels during exponential growth on glucose and acetate, we can infer 
metabolic bottlenecks. Over the course of the lag phase, the concen-
trations of different metabolites increased in a sequential manner 

(Fig. 2b) that matched their position in gluconeogenesis: metabolites 
in the tricarboxylic acid (TCA) cycle (citrate and malate) started to 
accumulate at 1–2 h into the lag phase, and also overshot their postshift 
steady-state values (Fig. 2b, dashed black line) by several-fold once 
growth resumed at approximately 4 h after shift (Fig. 2a). The levels 
of metabolites in upper glycolysis increased even later (Fig. 2b and 
Extended Data Fig. 5a). Notably, the increase in the latter coincided 
with the time of growth resumption (Fig. 2a). In particular, the pool 
of the key regulatory metabolite fructose-1,6-bisphosphate (FBP) 
plunged rapidly by 200-fold within 30 min of the shift and remained 
well below its postshift steady-state level until 30 min before growth 
resumption (Extended Data Fig. 5c). This finding is not compatible 
with the mechanism recently proposed to underlie lag phases to glu-
coneogenesis based on a postulated high FBP pool in the majority of 
the cell population during lag phase12.

Estimating the fluxes by multiplying measured metabolite concen-
trations and the turnover rates derived from 13C-labelling dynamics, 
we observed a sequential pattern that followed their position in glu-
coneogenesis (Fig. 2c). TCA cycle metabolites quickly became fully 
13C-labelled. By contrast, a gluconeogenic flux to upper glycolysis was 
hardly detectable even 30 min after the shift, and was still below 1% of 
the steady-state level 1.5 hours after shift.

The observed metabolic dynamics suggest that gluconeogenic 
flux limits the biosynthesis of biomass components derived from 
intermediates in upper glycolysis. In particular, metabolites such as 
erythrose-4-phosphate and ribose-5-phosphate—which branch off 
from upper glycolysis and are required for the biosynthesis of specific 
amino acids and nucleotides—may limit biomass production. Because 
biomass synthesis requires fixed stoichiometric ratios of building 
blocks, metabolites in the TCA cycle and lower glycolysis accumulate 
far beyond their steady-state concentrations (Fig. 2b), as they cannot 
be incorporated into biomass in the absence of sufficient metabolites 
from upper glycolysis. In accordance with this hypothesis, we found 
the absolute concentrations of key metabolites in upper glycolysis 
(for example, F6P) to be small compared with the affinity constants 
of the key enzymes required to produce erythrose-4-phosphate and 
ribose-5-phosphate (Supplementary Table 4).
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Fig. 1 | Phenomenological characterization of lag phase. a, Illustration of a 
typical growth curve. The lag time is defined as the time lost during transition 
to new conditions (from preshift to postshift) as compared with an 
instantaneous switch to final steady-state growth. OD600, optical density at 
600 nm. b, Illustration of our medium-transfer protocol. c, Circles show lag 
times of the wild type after shifts from different glycolytic carbon sources to 
acetate minimal medium. Squares show lag times resulting when preshift 
growth is instead varied by titrating the uptake rates of lactose as an example of 
a glycolytic carbon source (using E. coli strain NQ381, which has a titratable 
lactose-uptake system). The preshift glycolytic carbon sources—ordered from 
fast growth rates to slow growth rates—are glucose-6-phosphate, glucose, 
mannitol, maltose, glycerol, galactose and mannose, which are all readily 
metabolized by wild-type E. coli, yet result in very different growth rates. The 
solid line represents the empirical relation given by equation (1). d, Inverse lag 
times for shifts from different glycolytic to gluconeogenic carbon sources, 
plotted against preshift growth rates. Colours indicate shifts to the postshift 

carbon sources shown in the inset; different circles of the same colour indicate 
different preshift carbon sources, and squares indicate the use of titratable 
lactose uptake in preshift. Lines show nonlinear least-squares mean fits of 
equation (1) to lag-time data as a function of preshift growth rates for the shifts 
to acetate (magenta line) and to succinate and pyruvate (black line) from our 
batch culture experiments (Supplementary Table 2), assuming a λC of 
approximately 1.1 h−1. For the shift to malate, we performed an additional fit, 
again assuming a λC of approximately 1.1 h−1 (green line). Nonlinear 
least-squares mean fits of equation (1) to individual shifts are shown in 
Extended Data Fig. 2 and the resulting 95% confidence intervals of parameters 
are as follows: acetate, λC = (1.10 ± 0.01) h−1, α = 0.78 ± 0.10, n = 17; pyruvate, 
λC = (1.12 ± 0.03) h−1, α = 0.33 ± 0.07, n = 17; succinate, λC = (1.13 ± 0.04) h−1, 
α = 0.33 ± 0.09, n = 14; fumarate, λC = (1.08 ± 0.02) h−1, α = 0.23 ± 0.07, n = 5; 
lactate, λC = (1.09 ± 0.05) h−1, α = 0.22 ± 0.15, n = 5; malate, λC = (1.17 ± 0.09) h−1, 
α = 0.22 ± 0.11, n = 5. The mean critical growth rate and standard deviation 
resulting from the individual fits are given by λC = (1.11 ± 0.03) h−1.

Basan, Honda …… Paulsson, Hwa & Sauer 2020 Nature

Article

Extended Data Fig. 1 | Growth curves for shifts. a, Growth curves following 
shifts from different glycolytic carbons to acetate by filtration. Long lag phases 
can consist of several hours without detectable biomass production. There are 
large variations in the duration of lag phases following shifts from different 
carbon sources. The duration of the lag phase correlates with the preshift 
growth rate (Fig. 1): fast growth before the shift results in very long lag times. 
b–d, Comparisons of lag times following filtration shifts and in diauxie 
experiments (which involve no shift, but rather growth on medium containing 

two sugars, with one sugar running out). b, Shift from 1.7 mM glucose to 60 mM 
acetate. Here the diauxie medium contained glucose plus acetate. c, Shift from 
1.7 mM glucose to 30 mM succinate. d, Shift from 1.7 mM glucose to 40 mM 
pyruvate. Lag times resulting from filtration shifts and from classical diauxie 
experiments are mostly comparable. In c, the presence of pyruvate in the 
medium in addition to glucose adversely affected the growth rate, resulting in 
a shorter lag time in the diauxie shift, consistent with our general observation 
of the growth-rate dependence of lag times.

Shift from sugars to acetate

Lag time
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Fast Growth Rate -> Long Lag Phase
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symbols and line) between the inverse lag time, 1/Tlag, a measure of 
adaptability, and λpre, that is:

T
α λ λ

1
= ⋅ ( − ), (1)

lag
0 pre

in which α is a dimensionless proportionality constant.
To test the generality of this relation, we analysed lag times in 144 

transitions (Supplementary Tables 2, 3), finding long lag times for shifts 
from six glycolytic to six gluconeogenic carbon sources (Extended Data 
Fig. 2a–f). Notably, all of these shifts exhibited similar linear relations 
between the preshift growth rate and the inverse lag time, but with 
different proportionality constants, α, for different postshift carbon 
sources, all with the same critical growth rate, λ0, of approximately 1.1 
doublings per hour (Fig. 1d and Extended Data Fig. 2). Some degree of 
correlation also exists between the lag time and postshift growth rates 
(Extended Data Fig. 2g), as observed previously13, but the pattern is 
much weaker compared with those seen in Fig. 1c, d. We also examined 
several classic diauxic shifts, where both carbon sources were present in 
preshift, and found the lag times in most cases to be very similar to those 
for the complete shifts that we study here (Extended Data Fig. 1b–d).

To investigate the origin of the extended lag time in our shifts, we 
first tested whether dormant and heterogeneous subpopulations may 
play a part. Using two complementary methods (Supplementary Note 1 
and Extended Data Figs. 3, 4), we quantified cell-to-cell variability fol-
lowing the shift from glucose to acetate. The results revealed some 
heterogeneity in lag times, but no distinct subpopulations: none of 
the cells resumed growth immediately after the shift, and virtually all 
cells resumed growth shortly after the average lag time.

To determine whether the observed correlation between lag time and 
preshift growth is due to a limitation in central metabolism (referred to 
as a ‘metabolic limitation’), we quantified metabolite pools throughout 
the lag phase of the glucose-to-acetate transition (Fig. 2a). By com-
paring the dynamics of metabolite pools and fluxes with steady-state 
levels during exponential growth on glucose and acetate, we can infer 
metabolic bottlenecks. Over the course of the lag phase, the concen-
trations of different metabolites increased in a sequential manner 

(Fig. 2b) that matched their position in gluconeogenesis: metabolites 
in the tricarboxylic acid (TCA) cycle (citrate and malate) started to 
accumulate at 1–2 h into the lag phase, and also overshot their postshift 
steady-state values (Fig. 2b, dashed black line) by several-fold once 
growth resumed at approximately 4 h after shift (Fig. 2a). The levels 
of metabolites in upper glycolysis increased even later (Fig. 2b and 
Extended Data Fig. 5a). Notably, the increase in the latter coincided 
with the time of growth resumption (Fig. 2a). In particular, the pool 
of the key regulatory metabolite fructose-1,6-bisphosphate (FBP) 
plunged rapidly by 200-fold within 30 min of the shift and remained 
well below its postshift steady-state level until 30 min before growth 
resumption (Extended Data Fig. 5c). This finding is not compatible 
with the mechanism recently proposed to underlie lag phases to glu-
coneogenesis based on a postulated high FBP pool in the majority of 
the cell population during lag phase12.

Estimating the fluxes by multiplying measured metabolite concen-
trations and the turnover rates derived from 13C-labelling dynamics, 
we observed a sequential pattern that followed their position in glu-
coneogenesis (Fig. 2c). TCA cycle metabolites quickly became fully 
13C-labelled. By contrast, a gluconeogenic flux to upper glycolysis was 
hardly detectable even 30 min after the shift, and was still below 1% of 
the steady-state level 1.5 hours after shift.

The observed metabolic dynamics suggest that gluconeogenic 
flux limits the biosynthesis of biomass components derived from 
intermediates in upper glycolysis. In particular, metabolites such as 
erythrose-4-phosphate and ribose-5-phosphate—which branch off 
from upper glycolysis and are required for the biosynthesis of specific 
amino acids and nucleotides—may limit biomass production. Because 
biomass synthesis requires fixed stoichiometric ratios of building 
blocks, metabolites in the TCA cycle and lower glycolysis accumulate 
far beyond their steady-state concentrations (Fig. 2b), as they cannot 
be incorporated into biomass in the absence of sufficient metabolites 
from upper glycolysis. In accordance with this hypothesis, we found 
the absolute concentrations of key metabolites in upper glycolysis 
(for example, F6P) to be small compared with the affinity constants 
of the key enzymes required to produce erythrose-4-phosphate and 
ribose-5-phosphate (Supplementary Table 4).
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Fig. 1 | Phenomenological characterization of lag phase. a, Illustration of a 
typical growth curve. The lag time is defined as the time lost during transition 
to new conditions (from preshift to postshift) as compared with an 
instantaneous switch to final steady-state growth. OD600, optical density at 
600 nm. b, Illustration of our medium-transfer protocol. c, Circles show lag 
times of the wild type after shifts from different glycolytic carbon sources to 
acetate minimal medium. Squares show lag times resulting when preshift 
growth is instead varied by titrating the uptake rates of lactose as an example of 
a glycolytic carbon source (using E. coli strain NQ381, which has a titratable 
lactose-uptake system). The preshift glycolytic carbon sources—ordered from 
fast growth rates to slow growth rates—are glucose-6-phosphate, glucose, 
mannitol, maltose, glycerol, galactose and mannose, which are all readily 
metabolized by wild-type E. coli, yet result in very different growth rates. The 
solid line represents the empirical relation given by equation (1). d, Inverse lag 
times for shifts from different glycolytic to gluconeogenic carbon sources, 
plotted against preshift growth rates. Colours indicate shifts to the postshift 

carbon sources shown in the inset; different circles of the same colour indicate 
different preshift carbon sources, and squares indicate the use of titratable 
lactose uptake in preshift. Lines show nonlinear least-squares mean fits of 
equation (1) to lag-time data as a function of preshift growth rates for the shifts 
to acetate (magenta line) and to succinate and pyruvate (black line) from our 
batch culture experiments (Supplementary Table 2), assuming a λC of 
approximately 1.1 h−1. For the shift to malate, we performed an additional fit, 
again assuming a λC of approximately 1.1 h−1 (green line). Nonlinear 
least-squares mean fits of equation (1) to individual shifts are shown in 
Extended Data Fig. 2 and the resulting 95% confidence intervals of parameters 
are as follows: acetate, λC = (1.10 ± 0.01) h−1, α = 0.78 ± 0.10, n = 17; pyruvate, 
λC = (1.12 ± 0.03) h−1, α = 0.33 ± 0.07, n = 17; succinate, λC = (1.13 ± 0.04) h−1, 
α = 0.33 ± 0.09, n = 14; fumarate, λC = (1.08 ± 0.02) h−1, α = 0.23 ± 0.07, n = 5; 
lactate, λC = (1.09 ± 0.05) h−1, α = 0.22 ± 0.15, n = 5; malate, λC = (1.17 ± 0.09) h−1, 
α = 0.22 ± 0.11, n = 5. The mean critical growth rate and standard deviation 
resulting from the individual fits are given by λC = (1.11 ± 0.03) h−1.
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Preshift growth
controled by titrating
lactose uptake

Growth-lag relationship
depends on influx rather than
specifics of C-source

• Linear relationship btw inverse lag 
time (1/Tlag) (ie adaptability) and
preshift growth rate 

• Found a general linear relationship
for shifts from 6 glycolytic to 6 
gluconeogenic C-sources

Shift from various C-
sources to acetate
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Why are the Shifts Rapid Towards 
Glycolysis But Slow in the Other 
Direction?
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Why are the Shifts Rapid Towards 
Glycolysis But Slow in the Other 
Direction?

Basan, Honda …… Paulsson, Hwa & Sauer 2020 Nature

• Metabolites in upper glycolysis increase very late
• Typically when growth resumes …..

(eg FBP drops 200x from growth on glucose in the lag phase)

• 13C-flux tracing confirms almost no gluconeogenic
flux, while TCA cycle flux is rapid during lag

Hypothesis: Gluconeogenic 
flux limits biosynthesis of 
biomass components derived 
from upper glycolysis.
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After the shift to acetate, gluconeogenic flux is essential for biomass 
production and enzyme synthesis. Although many glycolytic enzymes 
can operate reversibly and can thereby also catalyse gluconeogenesis, 
several glycolytic reactions are thermodynamically strongly favoured 
in the glycolytic direction, such that they can be considered effectively 
irreversible. As illustrated in Fig. 2d, in a simplified picture of central 
metabolism, gluconeogenesis can be considered as a linear pathway 
consisting of ‘lower gluconeogenenic’ reactions (catalysed by phos-
phoenolpyruvate carboxykinase, Pck; malate dehydrogenases, MaeA 
and MaeB; and phosphoenolpyruvate synthetase, Pps) and ‘upper 

gluconeogenic’ reactions (catalysed primarily by the essential enzyme 
fructose-1,6-bisphosphatase, Fbp). These dedicated gluconeogenic 
enzymes are required for gluconeogenesis, but many of them are 
expressed at low levels during preshift growth and immediately after 
the shift when compared with their abundances in the postshift steady 
state (Extended Data Fig. 6), presumably because the activities of the 
gluconeogenic enzymes can lead to substantial futile cycling that dis-
sipates energy. Consistent with the observed increase in lag time with 
higher preshift growth rates (Fig. 1c), the abundances of the lower 
gluconeogenic enzymes (quantified previously through proteomics3) 
decrease with higher preshift growth rates (Fig. 3a).

Quantitative proteomics measurements showed that the abundances 
of gluconeogenic enzymes increased very gradually, coinciding with 
exit from the lag phase (Extended Data Fig. 6). During the lag phase, 
formation of these lower gluconeogenic enzymes requires precur-
sors (for example, specific amino acids), whose synthesis rate is in  
turn limited by the gluconeogenic flux. Hence, right after the shift, the 
cell is trapped in a state in which a bottleneck in gluconeogenic flux lim-
its the synthesis of amino acids and hence the production of enzymes 
needed to alleviate the bottleneck (Extended Data Fig. 7a). Indeed, 
reducing the requirements of metabolites resulting from gluconeo-
genic flux, such as erythrose-6-phosphate, by adding the three aromatic 
amino acids derived from it (tryptophan, phenylalanine and tyros-
ine) to the postshift medium (Fig. 2e) reduced the lag time by roughly  
50%, even though individually these amino acids do not support 
growth14.

For rapid adaptations dominated by simple catabolic bottlenecks, 
a kinetic model of growth adaptation based on the dynamic realloca-
tion of proteomic resources has been shown to give quantitatively 
accurate descriptions of adaptation dynamics15. However, for the very 
long lag phases studied here, severe internal metabolic bottlenecks 
are involved owing to the reversal of central carbon fluxes. Guided 
by the metabolomic and proteomic data (Fig. 2), we constructed a 
minimalistic mathematical model. We assumed that the gluconeo-
genic flux is the bottleneck for the amino-acid synthesis required for 
de novo production of gluconeogenic enzymes during the lag phase 
(illustrated in Extended Data Fig. 7a and resulting in the equation 
therein). As illustrated in Extended Data Fig. 7b and explained in Sup-
plementary Note 2, the gluconeogenic flux is determined by the scaling 
of metabolite concentrations at lower and upper gluconeogenesis, 
which are in turn determined by the levels of lower gluconeogenic 
enzymes, resulting in the equations in Extended Data Fig. 7b. Solving 
the resulting differential equation, we arrive at a simple expression 
for the inverse lag time:

T
φ

1
∝ (2)

lag
GNG, lower
pre

in which φGNG, lower
pre  denotes the preshift abundance of lower gluco-

neogenic enzymes that provide the initial condition. The abundances 
of these enzymes rise throughout the lag phase (Extended Data Fig. 6), 
and their abundances in preshift conditions14 are well-described by a 
linear decrease with increasing preshift growth rate, λpre, that is:

φ λ λ∝ ( − )GNG, lower
pre

C pre

in which φGNG, lower
pre  is vanishing at a characteristic growth rate, λC, of 

approximately 1.1 h−1 (Fig. 3a, lines). This resembles the linear cyclic 
AMP (cAMP)-mediated increase in catabolic protein abundances for 
carbon-limited growth14. Inserting this growth-rate dependence into 
equation (2), we obtain T λ λ1/ ∝ ( − )Clag pre , which is identical to the 
empirical relation equation (1), with the same critical growth rate λ0 of 
roughly 1.1 h−1. Thus, our model successfully recapitulates the observed 
growth-rate/lag-time relations (Fig. 1d) up to an overall scaling factor, 
α (equation (1)).
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Fig. 2 | Metabolic characterization of lag phase during shifts to acetate.  
a, Normalized cell density during lag phase following three shifts from glucose 
to acetate, used for metabolite measurements (triangles) and for flux 
measurements (squares and circles). b, Temporal profiles of metabolites—
glucose-6-phosphate (G6P), FBP, malate and citrate—throughout lag phase 
following a shift from glucose to acetate, normalized by their respective values 
in postshift medium during exponential steady-state growth (dashed line). 
Steady-state metabolite concentrations during exponential growth were 
measured in separate experiments by taking three metabolite measurements 
throughout the exponential growth curve from each of two biological repeats. 
The metabolite concentrations during the lag phase were then normalized by 
these steady-state concentrations. Time zero values are measured preshift 
levels. For FBP, this value (approximately 157) falls outside the scale. c, Fluxes to 
different metabolites (b) at three time points during the lag phase from glucose 
to acetate, as a percentage of steady-state flux during growth on acetate 
(measured in separate steady-state experiments for two biological repeats).  
d, Illustration of glycolysis/gluconeogenesis. The large fading blue arrow 
indicates the directionality of gluconeogenesis and illustrates the decrease in 
normalized fluxes and metabolite pools. Green arrows indicate irreversible 
gluconeogenic reactions catalysed by gluconeogenic enzymes (GNGs); red 
arrows indicate the residual activity of glycolytic enzymes acting in the 
opposite direction. Erythrose-4-phosphate (E4P) and ribose-5-phosphate 
(R5P) are derived from fructose-6-phosphate (F6P)/G6P and are required for 
the biosynthesis of specific amino acids and nucleotides. PEP, 
phosphoenolpyruvate. e, The addition of three non-degradable amino acids 
derived from upper glycolysis—tyrosine (Tyr), tryptophan (Trp) and 
phenylalanine (Phe)—to the postshift growth medium substantially reduces lag 
times in shifts to acetate from preshift growth on glucose and on G6P.

Supplementing AA from upper glycolysis 
& PP pathway reduces lag phase!
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Why do Cells Have Such a Hard Time 
to Revert Glycolysis?

Basan, Honda …… Paulsson, Hwa & Sauer 2020 Nature

• Dedicated gluconeogenic enzymes
must be synthesized in the lag phase

• But their glycolytic counterparts are
still present – the faster cells grew
before the shift the more of them
are present!!!!

• The lingering huge glycolytic capacity
counteracts the upward flux

After the shift, cells are trapped in state 
where gluconeogenesis limits synthesis 
of AA, which in turn limits production of 
the very enzymes needed to alleviate the 
bottleneck

lower
glycolysis

upper
glycolysis
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Why can E. coli not Avoid Depletion of 
Gluconegenic Metabolites?

Basan, Honda …… Paulsson, Hwa & Sauer 2020 Nature

Consistently, overexpression of
irreversible glycolytic enzymes
increases lag phase over the
control (ArgA)

Hypothesis: Allosteric regulation of 
opposing glycolytic enzymes does 
not achieve complete inhibition

Extended Data Fig. 8 | Preshift overexpression of glycolytic enzymes. a–d, 
Lag times following shifts from glucose to: a, acetate; b, pyruvate; c, malate; d, 
succinate. The graphs compare the effects of preshift overexpression of the 
glycolytic enzymes PykF (strain NQ1543) and Pfk (strain NQ1544) with a control 
enzyme, ArgA (strain NQ1545). Each protein was overexpressed from the same 
plasmid (pNT3) using the tac promoter. Horizontal lines and error bars indicate 
means and standard deviation (n = 4). Lag times more than doubled as a result 

of preshift overexpression of Pfk or PykF. Thus, the residual activity of 
glycolytic enzymes is important in lag phase, despite the allosteric regulation 
of these glycolytic enzymes. Consistent with this picture, the concentration of 
PEP—a key regulatory metabolite and repressor of glycolytic flux—remained 
low throughout lag phase, even compared with steady-state levels on glycolytic 
carbons (Extended Data Fig. 5).
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Conclusion

Basan, Honda …… Paulsson, Hwa & Sauer 2020 Nature
Extended Data Fig. 7 | See next page for caption.

• A series of low metabolite pools in upper gluconeogenesis
causes long lag phases

• Because for fast glycolytic growth the distribution of enzymes
strongly favors glycolysis of gluconeogenesis

• Classical tradeoff between the fitness measures optimal 
growth and adaptability: Maximum growth in one condition
increases time to adapt to other conditions. 
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Tradeoff Between Maximum Growth 
and Adaptability

Basan, Honda …… Paulsson, Hwa & Sauer 2020 Nature

• A unique perspective on why cells grow at a certain rate in a given
condition:
Can be advantageous to grow slower for the benefit of shorter adaptation

• Growth rate is a reflection of ecological likelihood that conditions will 
change:

• eg although chemically very similar, E. coli grows slow on fructose and mannose but 
fast on glucose. Deleting Cra – the TF that activates gluconeogenesis and represses
glycolysis – increases the growth rate on fructose and mannose BUT prevents shift
to many gluconeogenic substrates!

• Thus Cra may be designed to slow growth on glycolytic substrates to enable
adaptation to gluconeogenesis

• We found similar tradeoffs in other respiro-fermentative microbes, eg
B. subtilis and S. cerevisiae

• In contrast, anaerobes – that do not grow on gluconeogenic C-sources -
do not show this tradeoff; ie. the gut microbe B. thetaiotaomicron grew
equally fast on all tested C-sources
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Take Home Messages  ......
• Non-covalent met-prot interactions regulate conserved 

homeostatic processes (in pro- and eukaryotes).

• Still largely unknown met-prot interaction network.  
“Comprehensive” interaction map on horizon for E. coli.

• Understanding the function of allosteric regulation requires 
dynamic data and computer models.

• Allosteric regulation works not «perfectly», eg cannot entirely
shut off an unnecessary activity.

• Consequently there is a fundamental tradeoff btw the fitness
traits of maximum growth and adaptability.

• A series of low metabolite pools in upper gluconeogenesis
causes long lag phases after shifts from sugars to organic acids
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