Scattering Amplitudes in Field Theory, Multiple Polylogarithms and the Coaction Principle

Lance Dixon KITP Modularity Program November 25, 2020

ATIONAL ACCELERATOR LABORATORY

 $Li_2(z)$

Outline

- Introduction
- Electron g-2 and LHC
- Euler sums and iterated integrals
- The co-action principle
- Electron *g*-2 redux
- Scattering in planar N=4 SYM
- ϕ^4 theory for ε expansion of D = 3 critical exponents
- Summary and outlook

Introduction

- Earlier we heard about loop-level scattering amplitudes in string theory from Eric d'Hoker.
- String theory has a scale $\alpha' \sim M_{\text{Planck}}^{-2}$
- Most of the results Eric described were "low energy", kinematic variables $s, t, u \ll M_{\rm Planck}^2$, where the main results are polynomial in s, t, u. But because the world-sheet is a torus (at one loop), the modular parameter τ appears.
- In a field theory of massless particles, the only scales are kinematic.
- There is no "obvious" τ, but in complicated enough loop integrals, denominator singularities are parametrized by elliptic curves (or even Calabi-Yau *n*-folds).

One-loop 4-mass box integral

$$L = 1 \begin{array}{c|c} x_{1} & = \int d^{4} x_{5} \frac{x_{13}^{2} x_{24}^{2}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}} \\ = Bloch-Wigner dilogarithm \\ = Im[Li_{2}(z)] + arg(1-z) \ln|z| \\ n = 8 \\ z \overline{z} = \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} \end{array}$$

- Example of single-valued multiple polylogarithm.
- Real analytic function on $\mathbb{C}[z, \overline{z}] \{0, 1, \infty\}$
- Branch cuts in z, \overline{z} cancel each other

Two-loop train-track integral

n = 10

= elliptic polylogarithm

Brown, Levin, 1110.6917; Broedel et al., 1712.07089; Eric's talk

(analytic formula of this type not yet known) (depends on 9 variables, generically)

Paulos, Spradlin, Volovich, 1203.6362

Caron-Huot, Larsen, 1205.0801

- $\tilde{Q}(u)$ a quartic polynomial from setting 7 propagators to zero, defines elliptic curve (with punctures from additional variables)
- Recent (formal?) series representation Ananthanarayan et al., 2007.08360

L. Dixon Field theory amplitudes

One context: Loop amplitudes in planar N=4 SYM depend on 3(n-5) variables

But first:

the electron anomalous magnetic moment, a (precious) "baby" scattering amplitude

Measurement doesn't look much like particle scattering, but $a_e = (g_e - 2)/2$ can be computed from spin-flip part of $\gamma e \rightarrow e$ process as photon momentum $\rightarrow 0$.

The loop expansion

• **Feynman:** Draw all diagrams with specified incoming and outgoing particles, weight them by coupling factors at each vertex. For a given process, extra powers of coupling for each closed loop.

In quantum electrodynamics (QED), each additional loop suppressed by (Sommerfeld's) fine structure constant:

$$\frac{\mathrm{e}^2}{4\pi\hbar c} \equiv \alpha = \frac{1}{137.035999\ldots}$$

QED state of numerical art today: 5 loops, 12,672 diagrams

M. Hayakawa

30 gauge invariant sets

The most difficult set, 6354 diagrams, leading to 389 integrals. Evaluated numerically after Feynman Parameterization.

Aoyama, Hayakawa, Kinoshita, Nio, Watanabe, 2006-2017

Seven decades of g_e -2 theory

Matches incredible advances in experimental precision

What numbers appear (or don't) in g_e -2?

- $a_e^{(1)} = \frac{1}{2}$
- $a_e^{(2)} = \frac{197}{144} + \frac{\pi^2}{12} \frac{\pi^2}{2} \ln 2 + \frac{3}{4} \zeta(3)$ • $a_e^{(3)} = \frac{28259}{5184} + \frac{17101}{810} \pi^2 - \frac{298}{9} \pi^2 \ln 2 + \frac{139}{18} \zeta(3) - \frac{239}{2160} \pi^4 + \frac{100}{3} \left\{ \text{Li}_4\left(\frac{1}{2}\right) + \frac{1}{24} \left(\ln^4 2 - \pi^2 \ln^2 2\right) \right\} + \frac{83}{72} \pi^2 \zeta(3) - \frac{215}{24} \zeta(5)$
- Assign "transcendental weight" *w* to numbers in the formulas: $w[\pi] = w[\ln(x)] = 1,$ $w[\zeta(n)] = w[\operatorname{Li}_n(x)] = n$
- Apparently $w \le 2L 1$ (L = loop order), but some terms are missing
- E.g. no $\ln 2$, $\ln^2 2$ or $\ln^3 2$ in $a_e^{(2)}$
- Do missing terms at lower loops imply missing terms at higher loops? **YES**, once we understood how to write them
- Do such patterns appear in other contexts? YES

Large Hadron Collider

Quantum chromodynamics at the LHC

One loop amplitudes

- Numbers are very simple.
- At one loop all integrals are reducible to scalar box integrals + simpler
- \rightarrow combinations of dilogarithms

$$Li_2(x) = -\int_0^x \frac{dt}{t} \ln(1-t)$$

't Hooft, Veltman (1974)

- + logarithms and rational terms
- Two-loop integrals are intricate, transcendental, multi-variate functions. Special values ~ those found in $g_{\rm e}\text{-}2$

Number-theory patterns in real scattering?

- Some patterns visible in QCD
- However, we can see them easiest in a "toy theory", planar N=4 SYM, whose remarkable symmetries let us compute 6-point amplitudes up to 7 loops!

+ ~ 10^9 more Feynman diagrams

Transcendental numbers

•
$$\pi = \frac{C}{D} = 4(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots)$$

Madhava-Leibniz series
1300's
1676
• Special value of a special function:
 $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$

KITP Mod20 Nov. 25, 2020

17

L. Dixon

Field theory amplitudes

Leonhard Euler

See I. Todorov, 1804.09553

- ~1726: Euler wins prize essay on ship-building, although he had never been on a ship before.
- Offer to join St. Petersburg Academy, commissioned into Russian navy (not for long).
- In 1729, Euler began to play with values of infinite series.
- In particular, the "Basel problem":

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = ???$$

1707-1783

Euler sums

Euler considered also the more general quantities, now called Riemann zeta values,

$$\zeta(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}$$

 Numerical convergence poor, important given computational tools of the day

 Euler realized that for faster convergence, one should embed ζ(n) into the alternating sums,

$$\phi(n) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^n} = (1 - 2^{1-n}) \zeta(n)$$

Euler and the dilogarithm

 Euler also recognized ζ(2) and φ(2) as special values of a function, an iterated integral now called the dilogarithm [Leibniz → J. Bernoulli → Euler]:

$$Li_{2}(x) = \sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}} = -\int_{0}^{x} \frac{dt}{t} \ln(1-t) = \int_{0}^{x} \frac{dt}{t} \int_{0}^{t} \frac{dt'}{1-t'}$$
$$Li_{2}(1) = \sum_{k=1}^{\infty} \frac{1}{k^{2}} = \zeta(2),$$
$$Li_{2}(-1) = \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} = -\phi(2)$$

L. Dixon Field theory amplitudes

KITP Mod20 Nov. 25, 2020 2

Functional equation for better convergence

- Differentiating dilogarithm, $\frac{d}{dx}\text{Li}_2(x) = -\frac{\ln(1-x)}{x}$ gives Euler's functional equation: $\text{Li}_2(x) + \text{Li}_2(1-x) + \ln x \ln(1-x) = \text{Li}_2(1)$ • Setting $x = \frac{1}{2}$ to be well inside radius of convergence 1, Euler could get "high precision numerics", and **ascertained** that $\zeta(2) = \frac{\pi^2}{6}$, and later $\zeta(2n) = -\frac{B_{2n}}{2(2n)!}(2\pi i)^n$
- But $\zeta(3) = ???$
- "For *n* odd all my efforts have been useless until now" [Euler, 1749]

Euler's useless efforts not so useless

 While failing to find polynomial relations among ζ(n), Euler introduced nested sums, or multiple zeta values (MZV's):

$$\zeta(n_1, \dots, n_d) = \sum_{k_1 > \dots + k_d > 0} \frac{1}{k_1^{n_1} \dots k_d^{n_d}}$$

- Weight = $n_1 + \dots + n_d$, depth = d
- And similar alternating [Euler-Zagier] sums with minus signs in the numerator

22

MZVs obey many identities

• For example,
$$\zeta(n_1, n_2) = \sum_{k_1 > k_2 > 0} \frac{1}{k_1^{n_1} k_2^{n_2}}$$

obeys the "stuffle" identity,

$$\zeta(n_1)\zeta(n_2) = \zeta(n_1, n_2) + \zeta(n_2, n_1) + \zeta(n_1 + n_2)$$

- The first irreducible MZV, that cannot be written in terms of $\zeta(n) \equiv \zeta_n$, is at weight 8, $\zeta(5,3) \equiv \zeta_{5,3}$. \rightarrow High loops needed to explore MZV's.
- "MZV datamine", Blümlein, Broadhurst, Vermaseren, 0907.2557 solves all known relations to weight 24, also alternating (Euler) sums to at least weight 12

k1

MZVs and Harmonic Polylogarithms (HPLs)

Remiddi, Vermaseren, hep-ph/9905237

• Classical polylogs $\operatorname{Li}_n(x) = \int_0^x \frac{dt}{t} \operatorname{Li}_{n-1}(t) = \sum_{k=1}^\infty \frac{x^k}{k^n}$

evaluate to Riemann zeta values $\operatorname{Li}_n(1) = \sum_{k=1}^{\infty} \frac{1}{k^n} = \zeta_n$

• Define HPLs $H_{\vec{w}}(x), w_i \in \{0,1\}$ by iterated integration:

$$H_{0,\vec{w}}(x) = \int_0^x \frac{dt}{t} H_{\vec{w}}(t), \quad H_{1,\vec{w}}(x) = \int_0^x \frac{dt}{1-t} H_{\vec{w}}(t)$$

• Then
$$H_{n_1,...,n_d}(1) \equiv H_{\underbrace{0,\ldots,0,1}_{n_1},\ldots,\underbrace{0,\ldots,0,1}_{n_d}}(1) = \zeta_{n_1,...,n_d}$$

- Weight n =length of binary string; 2^n HPLs at weight n
- Derivatives of just two types:

 $dH_{0,\vec{w}}(x) = H_{\vec{w}}(x) \ d\ln x \quad dH_{1,\vec{w}}(x) = -H_{\vec{w}}(x)d\ln(1-x)$

HPLs and massless $2 \rightarrow 2$ scattering

 $s + t + u = 0 \rightarrow$ one dimensionless variable, $x = -\frac{t}{s}$

• Only interesting limits are

 $s \rightarrow 0$, $t \rightarrow 0$, $u \rightarrow 0$

 $\rightarrow x \rightarrow \infty$, $x \rightarrow 0$, $x \rightarrow 1$

- Match singular points of HPLs $H_{\vec{w}}(x)$.
- HPLs $H_{\vec{w}}(x)$ with weight ≤ 4 describe all massless QCD amplitudes through 2 loops

Anastasiou, Glover, Oleari, Tejeda-Yeomans; Bern, LD, de Freitas (~2000)

 weight ≤ 6 for planar N=4 SYM and later QCD amplitudes through 3 loops Bern, LD, Smirnov, hep-th/0505205; Henn, Mistlberger, 1608.00850; Henn, Mistlberger, Smirnov, Wasser, 2002.09492

Generic iterated integrals

Chen; Goncharov; Brown

• Generalized polylogarithms of weight *n* are *n*-fold iterated integrals, defined (for $a_n \neq 0$) by

$$G(a_1, a_2, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

 Important property of space *G* of such functions: Hopf co-algebra Δ maps functions to products of

"functions":

$$\Delta \mathcal{G} \subseteq \mathcal{G} \otimes \mathcal{G}'$$

Goncharov, math/0208144; Brown, 1102.1312

- ∆ basically arises from chopping iterated integration contours into pieces.
- Weight is preserved, so $\Delta = \sum_{p,q=1}^{\infty} \Delta_{p,q}$ where $\Delta_{n-q,q} f^{(n)} = \sum_{k} f^{k,(n-q)} \otimes g^{k,(q)}$

Iterated integrals (cont.)

- Co-action $\Delta_{n-q,q} f^{(n)} = \sum_k f^{k,(n-q)} \otimes g^{k,(q)}$
- Special case q = 1 is just the derivative:

$$\Delta_{n-1,1}f = \sum_{s_k \in \mathcal{S}} f^{s_k} \otimes \ln s_k(x_a)$$

is equivalent to
$$\frac{\partial f}{\partial x_a} = \sum_{s_k \in S} f^{s_k} \frac{\partial \ln s_k}{\partial x_a}$$

- $S = \text{finite set of rational expressions, "symbol letters" <math>s_k$, depending on coordinates x_a
- f^{s_k} are pure functions, weight n-1
- Iterate the $\{n-1,1\}$ coproduct *n* times:
- → Symbol = $\{1, 1, ..., 1\}$ component of Δ

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Symbol example

•
$$\frac{d}{dx}\operatorname{Li}_n(x) = \frac{\operatorname{Li}_{n-1}(x)}{x}$$
, $\frac{d}{dx}\operatorname{Li}_2(x) = -\frac{\ln(1-x)}{x}$

 $\rightarrow \Delta_{1,\dots,1}[\operatorname{Li}_n(x)] = -(1-x) \otimes x \otimes \dots \otimes x$

→
$$\Delta_{1,1}$$
[Li₂(x) + Li₂(1 - x) + ln x ln(1 - x)]
= -(1 - x) ⊗ x - x ⊗ (1 - x) + x ш (1 - x)
= 0

(Symbol of Euler functional equation)

L. Dixon Field theory amplitudes

Symbols and co-actions

- Symbol trivializes all complicated polylogarithmic identities
- → incredibly useful for simplifying massively complicated expressions for two-loop QCD amplitudes Duhr, 1203.0454
- However, differentiating *n* times loses all information about constants, MZVs, etc.
- Components $\Delta_{n-3,3}$, $\Delta_{n-5,5}$, ... more useful for diagnosing structure of numbers like MZVs Brown, 1102.1310
- \exists map between MZV's and non-abelian "*f* alphabet" f_3, f_5, f_7, \ldots which makes the action of Δ manifest. $\zeta(2i + 1) \rightarrow f_{2i+1}, \ \zeta(5,3) \rightarrow -5f_5f_3 \equiv -5f_{5,3}$
- Similar alphabet for alternating sums, adding $f_1 \sim \ln 2$

Back to g_e -2

- What do two- and three-loop terms look like in *f* alphabet?
- O. Schnetz, 1711.05118, HyperlogProcedures MAPLE program

•
$$\frac{197}{144} + \frac{\zeta_2}{2} + 3\zeta_2 f_1 - f_3$$

• $\frac{28259}{5184} + \frac{17101}{135}\zeta_2 + \frac{596}{3}\zeta_2 f_1 - \frac{278}{27}f_3 + \frac{511}{24}\zeta_4$
 $- \frac{350}{9}f_{1,3} - \frac{83}{9}\zeta_2 f_3 + \frac{86}{9}f_5$

- $\Delta_{n-q,q}$ for q=2i+1 means: "clip f_{2i+1} from the left"
- Operation always lands on something seen at lower loops
- Conversely: no naked *f*₁ at two loops
 → no *f*₁, *f*_{1,1}, *f*_{1,1,1}, *f*_{3,1}, ... expected at higher loops

30

Co-action principle

Schnetz, 1302.6445; Brown, 1512.06409; Panzer, Schnetz, 1603.04289;...

- Suppose H ⊂ G is some subspace of a space of generalized polylogs or MZVs which is picked out by "physics" in some way.
- Then the left factor in the co-action should be stable, i.e.

$\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{K}$

- Note: left ← → right here, versus f alphabet ordering
- This principle makes many predictions which can be tested in a variety of multi-loop settings.

Cosmic Galois Group

- There is a group action C dual to Δ
- The restriction $\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{K}$ corresponds to invariance under the group, $\mathcal{C} \times \mathcal{H} \rightarrow \mathcal{H}$
- Group C is infinite dimensional analog of Galois group associated with roots of a polynomial equation
- Because this property appears "everywhere", termed "cosmic Galois group" Cartier (1996,2000); Andre (2008); Brown, 1512.06409, 1512.06410
- Precisely how the group acts (what numbers appear) depends on the physical problem

g_e -2 at four loops

- Computed
 "almost" analytically
 Laporta arXiv:1704.06996
- Contains non-polylog terms. Also, polylog terms require two different *f* alphabets, one associated with $G(a_1, ..., a_n; 1)$ where a_i are 4th roots of unity, f_i^4 another with 6th roots, $f_i^6 + g_1^6$
- **Co-action principle satisfied:** Clipping an f_i from left lands on a stable subspace, called the Galois conjugates.

 $a_e \cong \frac{1}{2} \left(\frac{\alpha}{\tau} \right)$ $+\left(\frac{197}{144}+\frac{1}{12}\pi^{2}+\frac{27}{32}f_{3}^{6}-\frac{1}{4}g_{1}^{6}\pi^{2}\right)\left(\frac{\alpha}{\pi}\right)^{2}$ $+ \left(\frac{28259}{5184} + \frac{17101}{810}\pi^2 + \frac{139}{16}f_3^6 - \frac{149}{9}g_1^6\pi^2 - \frac{525}{32}g_1^6f_3^6 + \frac{1969}{8640}\pi^4 - \frac{1161}{122}f_5^6\right)$ $+ \frac{83}{64} f_3^6 \pi^2 \left(\frac{\alpha}{\pi} \right)^3$ $+ \left(\frac{1243127611}{130636800} + \frac{30180451}{155520}\pi^2 - \frac{255842141}{2419200}f_3^6 - \frac{8873}{36}g_1^6\pi^2 + \frac{126909}{2560}\frac{f_4^6}{i\sqrt{3}}\right)$ $-\frac{84679}{1280}g_1^6f_3^6+\frac{169703}{3840}\frac{f_2^6\pi^2}{\pi^2}+\frac{779}{108}g_1^6g_1^6\pi^2+\frac{112537679}{3110400}\pi^4-\frac{2284263}{25600}f_5^6$ $+\frac{8449}{96}g_1^6g_1^6f_3^6-\frac{12720907}{345600}f_3^6\pi^2-\frac{231919}{97200}g_1^6\pi^4+\frac{150371}{256}\frac{f_6^6}{i\sqrt{3}}+\frac{313131}{1280}g_1^6f_5^6$ $-\frac{121383}{1280}f_2^6f_4^6-\frac{14662107}{51200}f_3^6f_3^6+\frac{8645}{128}\frac{f_2^6g_1^6f_3^6}{\frac{1}{28}}-\frac{231}{4}g_1^6g_1^6g_1^6f_3^6-\frac{16025}{48}\frac{f_4^6\pi^2}{\frac{1}{28}}$ $+\frac{4403}{384}g_1^6f_3^6\pi^2-\frac{136781}{1920}f_2^6f_2^6\pi^2+\frac{7069}{75}f_2^4f_2^4\pi^2-\frac{1061123}{14400}f_3^6g_1^6\pi^2$ $+\frac{1115}{72}\frac{f_2^6g_1^6g_1^6\pi^2}{i\sqrt{3}}+\frac{781181}{20736}\frac{f_2^6\pi^4}{i\sqrt{3}}-\frac{4049}{1080}g_1^6g_1^6\pi^4+\frac{90514741}{54432000}\pi^6$ $-\frac{95624828289}{2050048}f_7^6-\frac{29295}{512}g_1^6f_2^6f_4^6+\frac{107919}{512}g_1^6f_3^6f_3^6+\frac{337365}{256}f_3^6g_1^6f_3^6$ $-\frac{55618247}{409600}f_5^6\pi^2 - \frac{1055}{256}g_1^6f_2^6f_2^6\pi^2 + \frac{26}{3}f_1^4f_2^4f_2^4\pi^2 + \frac{553}{4}g_1^6f_3^6g_1^6\pi^2$ $-\frac{35189}{1024}f_3^6g_1^6g_1^6\pi^2+\frac{79147091}{2211840}f_3^6\pi^4-\frac{3678803}{4354560}g_1^6\pi^6$ $+\sqrt{3}(E_{4a}+E_{5a}+E_{6a}+E_{7a})+E_{6b}+E_{7b}+U\left(\frac{\alpha}{\pi}\right)^4.$

"Galois conjugates" through weight 5

wt.	dim.	words						
0	1	1						
1	0							
2	1	π^2						
3	2	f_{3}^{6}	$g_1^6\pi^2$					
4	6	f_{4}^{6}	$g_1^6 f_3^6$	$f_2^6 \pi^2$	$f_2^4 \pi^2$	$g_{1}^{6}g_{1}^{6}\pi^{2}$	π^4	
5	4	f_{5}^{6}	$g_1^6 g_1^6 f_3^6$	$f_3^6\pi^2$	$g_{1}^{6}\pi^{4}$			

- Weights 1 to 4 "expected to be stable"
- Weight 5 will undoubtedly have additions once next loop order is computed...

34

Co-action for QCD scattering amplitudes?

- Same Galois conjugates for g_e -2 appear in quark (chromo) magnetic moments through 3 loops, also q² dependence of form factors Bonciani, Mastrolia, Remiddi, hep-ph/0307295; Lee, Smirnov, Smirnov, Steinhauser, 1801.08151, 1804.07310; ...
- Also evidence for interesting number theory in QCD β function, e.g. no π 's until 5 loops, when π^4 appears; predictions of π dependence at 6,7 loops Baikov, Chetyrkin, Kühn, 1606.08659; Baikov, Chetyrkin, 1804.10088, 1808.00237
- Unfortunately, know very few full QCD amplitudes beyond two loops, where co-action principle becomes more predictive.
- Can say a lot more for QCD's maximally supersymmetric cousin, N=4 supersymmetric Yang Mills theory (N=4 SYM), especially in (planar) limit of a large number of colors where it has many secret symmetries.

N=4 SYM particle content

Brink, Schwarz, Scherk; Gliozzi, Scherk, Olive (1977)

Solving for Planar N=4 SYM Amplitudes

Images: A. Sever, N. Arkani-Hamed

Bootstrapping amplitudes through 7 loops

S. Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1903.10890 and 1906.07116; ²⁴ LD, Dulat, 20mm.nnnn

- Six-gluon amplitude is first one not fixed by symmetries, depends on u, v, w (dual conformal cross ratios).
- Amplitude lives in remarkably small space of polylogarithmic hexagon functions, the weight 2L part at L loops.
- Space small enough that one can bootstrap the amplitude by writing a linear combination of functions and imposing constraints → unique solution.
- At u = v = w = 1, the amplitudes, and all of their iterated {n-q,1,...,1} coproducts (derivatives) evaluate to MZVs.

f basis for $\mathcal{H}^{hex}(1,1,1)$

The values of the MHV amplitudes $\mathcal{E}^{(L)}(1,1,1)$ for L = 1 to 7 in the f-basis are:

$$\begin{split} \mathcal{E}^{(1)}(1,1,1) &= 0, \\ \mathcal{E}^{(2)}(1,1,1) &= -10\,\zeta_4, \\ \mathcal{E}^{(3)}(1,1,1) &= \frac{413}{3}\,\zeta_6, \\ \mathcal{E}^{(4)}(1,1,1) &= -\frac{5477}{3}\,\zeta_8 + 24\left[5f_{3,5} - 2\zeta_2 f_{3,3}\right], \\ \mathcal{E}^{(5)}(1,1,1) &= \frac{379957}{15}\,\zeta_{10} - 384\left[7f_{3,7} - \zeta_2 f_{3,5} - 3\zeta_4 f_{3,3}\right] - 312\left[5f_{5,5} - 2\zeta_2 f_{5,3}\right], \\ \mathcal{E}^{(6)}(1,1,1) &= -\frac{2273108143}{6219}\zeta_{12} + 2264\left[7f_{3,9} - 6\zeta_4 f_{3,5}\right] + 6536\left[5f_{3,9} - 3\zeta_6 f_{3,3}\right] \\ &\quad - 3072\left[\zeta_2 f_{3,7} - \zeta_6 f_{3,3}\right] + 5328\left[7f_{5,7} - \zeta_2 f_{5,5} - 3\zeta_4 f_{5,3}\right] \\ &\quad + 4224\left[5f_{7,5} - 2\zeta_2 f_{7,3}\right], \end{split}$$

L. Dixon Field theory amplitudes

KITP Mod20 Nov. 25, 2020

40

The values of the NMHV amplitudes $E^{(L)}(1,1,1)$ for L = 1 to 6 in the *f*-basis are

$$\begin{split} E^{(1)}(1,1,1) &= -2\,\zeta_2\,,\\ E^{(2)}(1,1,1) &= 26\,\zeta_4\,,\\ E^{(3)}(1,1,1) &= -\frac{940}{3}\,\zeta_6\,,\\ E^{(4)}(1,1,1) &= \frac{36271}{9}\,\zeta_8 - 24\left[5f_{3,5} - 2\zeta_2 f_{3,3}\right],\\ E^{(5)}(1,1,1) &= -\frac{1666501}{30}\,\zeta_{10} + 528\left[7f_{3,7} - \zeta_2 f_{3,5} - 3\zeta_4 f_{3,3}\right] + 384\left[5f_{5,5} - 2\zeta_2 f_{5,3}\right],\\ E^{(6)}(1,1,1) &= \frac{5066300219}{6219}\zeta_{12} - 4664\left[7f_{3,9} - 6\zeta_4 f_{3,5}\right] - 11384\left[5f_{3,9} - 3\zeta_6 f_{3,3}\right] \\ &\quad + 5664\left[\zeta_2 f_{3,7} - \zeta_6 f_{3,3}\right] - 8928\left[7f_{5,7} - \zeta_2 f_{5,5} - 3\zeta_4 f_{5,3}\right] \\ &\quad - 6528\left[5f_{7,5} - 2\zeta_2 f_{7,3}\right]. \end{split}$$

Caveat

• To squeeze amplitudes into a space \mathcal{H}^{hex} that obeys a co-action principle, we need to adjust their normalization slightly: $\mathcal{E} \rightarrow \frac{\mathcal{E}}{\rho}, \quad E \rightarrow \frac{\mathcal{E}}{\rho}$

$$\rho(g^2) = 1 + 8(\zeta_3)^2 g^6 - 160\zeta_3\zeta_5 g^8 + \left[1680\zeta_3\zeta_7 + 912(\zeta_5)^2 - 32\zeta_4(\zeta_3)^2\right] g^{10} - \left[18816\zeta_3\zeta_9 + 20832\zeta_5\zeta_7 - 448\zeta_4\zeta_3\zeta_5 - 400\zeta_6(\zeta_3)^2\right] g^{12} + \left[221760\zeta_3\zeta_{11} + 247296\zeta_5\zeta_9 + 126240(\zeta_7)^2 - 3360\zeta_4\zeta_3\zeta_7 - 1824\zeta_4(\zeta_5)^2 - 5440\zeta_6\zeta_3\zeta_5 - 4480\zeta_8(\zeta_3)^2\right] g^{14} + \mathcal{O}(g^{16}).$$

• We have ascertained what ρ is to all orders (related to determinant of BES kernel) Basso, LD, Papathanasiou, 2001.05460

6-gluon amplitude → many "cyclotomic" polylogs at unity

Saturation

 Take iterated {n-1,1} coproducts of these amplitudes → generate more and more lower weight functions until space is "saturated" and number declines again

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
L = 1	1	3	4												
L = 2	1	3	6	10	6										
L = 3	1	3	6	13	24	15	6								
L = 4	1	3	6	13	27	53	50	24	6						
L = 5	1	3	6	13	27	54	102	118	70	24	6				
L = 6	1	3	6	13	27	54	105	199	269	181	78	24	6		
L = 7 +	1	3	6	13	27	54	105	200	338	331	210	85	27	6	1

• Verifies that we have exactly the right function space (weight \leq 7) Bottom up: 1 3 6 13 27 54 105 200 372 679 1214 2136 ...

ϕ^4 theory

Leptons Quarks Photon Weak Bosons Gluons

Theory of Higgs boson, neglecting all other Standard Model couplings.

Pure O(N) symmetric ϕ^4 theory in $D = 4 - 2\varepsilon$ experimentally relevant for ε expansion approach to critical exponents in D = 3Wilson, Fisher (1972); Guillou, Zinn-Justin; Kleinert, Vasil'ev,...

High order computations required since $\varepsilon = 1/2$

- ε expansion recently completed to 6 loops
- → 3-4 digits accuracy for critical exponents after Borel resummation Kompaniets, Panzer, 1705.06483
- Many primitive divergences known to much higher orders.

Co-action principle in ϕ^4 theory

- Earlier: Hopf algebra associated with nested structure of renormalization; knots and Feynman diagrams Broadhurst, Kreimer, hep-th/9504352, hep-th/9810087
- Co-action principle first formulated for ϕ^4 theory
- Much data now for primitive graphs, those with no subdivergences
 Schnetz, 1302.6445; Panzer, Schnetz, 1603.04289

Panzer, Schnetz, 1603.04289

• "Period" = UV divergence of ϕ^4 graph containing no subdivergences

Here, co-action principle works "graph by graph",
 i.e. result of clipping f_i on left is the period for a subgraph of original graph

Proof: Brown, 1512.06409

In the following table we demonstrate that the known ϕ^4 periods up to eight loops obey the coaction conjecture. For this we express the infinitesimal coaction in terms of ϕ^4 periods.

period	$\sum_{m} f_m^N \delta_m(P_{\bullet})$
P_1	0
P_3	$6f_3P_1$
P_4	$20f_5P_1$
P_5	$\frac{441}{8}f_7P_1$
$P_{6,1}$	$168f_9P_1$
$P_{6,2}$	$\frac{2}{3}f_3P_3^2 + \frac{1063}{9}f_9P_1$
$P_{6,3}$	$\frac{63}{5}f_3P_4 - 30f_5P_3$
$P_{6,4}$	$-\frac{648}{5}f_3P_4 + 720f_5P_3$
$P_{7,1}$	$\left \frac{33759}{64} f_{11} P_1 \right $
$P_{7,2}$	$\frac{7}{12}f_3P_3P_4 - \frac{5}{18}f_5P_3^2 - \frac{195379}{192}f_{11}P_1$
$P_{7,3}$	$\frac{1}{3}f_3P_3P_4 - \frac{31}{9}f_5P_3^2 - \frac{960211}{240}f_{11}P_1$
$P_{7,4}, P_{7,7}$	$\frac{160}{21}f_3P_5 - 20f_5P_4 + 70f_7P_3$
$P_{7,5}, P_{7,10}$	$-\frac{24}{7}f_3P_5+45f_5P_4-\frac{63}{2}f_7P_3$
$P_{7,6}$	$\frac{7}{12}f_3P_3P_4 + \frac{145}{18}f_5P_3^2 + \frac{502247}{64}f_{11}P_1$
$P_{7,8}$	$\int f_3(7P_{6,3} - \frac{161}{30}P_3P_4) + \frac{527}{9}f_5P_3^2 + \frac{2756439}{20}f_{11}P_1$
$P_{7,9}$	$\int f_3(\frac{7}{2}P_{6,3} - \frac{133}{80}P_3P_4) - \frac{217}{24}f_5P_3^2 + \frac{4136619}{160}f_{11}P_1$
$P_{7,11}$	$\int_{2}^{6} \left(-\frac{2755}{864}P_{6,1} + \frac{35}{27}P_{3}^{3}\right) + \frac{14}{9}f_{4}^{6}P_{5} + \frac{1017}{22}f_{6}^{6}P_{4} - \frac{36918}{43}f_{8}^{6}P_{3}$
$P_{8,1}$	$1716f_{13}P_1$
$P_{8,2}$	$\int f_3(\frac{145}{147}P_3P_5 - \frac{27}{80}P_4^2) + \frac{29}{40}f_5P_3P_4 + \frac{47}{16}f_7P_3^2 + \frac{94871691}{22400}f_{13}P_1$
$P_{8,3}$	$\int f_3(2P_4^2 - \frac{320}{189}P_3P_5) - 13466f_{13}P_1$
$P_{8,4}$	$\int f_3(\frac{27}{80}P_4^2 + \frac{1}{147}P_3P_5) + \frac{11}{40}f_5P_3P_4 - \frac{97}{16}f_7P_3^2 - \frac{76207221}{22400}f_{13}P_1$
$P_{8,5}$	$\frac{789}{112}f_3P_{6,1} - \frac{2930}{147}f_5P_5 + \frac{3549}{40}f_7P_4 - 180f_9P_3$
$P_{8,6}, P_{8,9}$	$\left \frac{488}{441} f_3 P_3 P_5 - \frac{29}{2} f_7 P_3^2 - \frac{1717423}{336} f_{13} P_1 \right $
$P_{8,7}, P_{8,8}$	$ \left -\frac{81}{10}f_5P_3P_4 + \frac{75}{4}f_7P_3^2 - \frac{9819147}{2800}f_{13}P_1 \right $

Summary

- Many important physical quantities expressed in terms of the (conjecturally) transcendental MZVs, and related generalizations.
- Properties of numbers unveiled by embedding them into (polylogarithmic) functions with an associated Hopf co-algebra
- Whenever there is a lot of theoretical data $-g_e$ -2, planar N=4 SYM amplitudes, ϕ^4 theory the relevant numbers appear to obey a co-action

principle.

Outlook

- In many cases, polylogarithms and MZVs do not suffice for multi-loop Feynman integrals
 need elliptic polylogarithms or "worse".
- How exactly co-action works there is still in infancy
- To how many arenas of QFT can these ideas be applied?
- One slightly negative result comes from 7-point planar N=4 SYM amplitudes: ζ values recently fixed [LD, Liu, 2007.12966]; few "missing ζ values"
- Does any general principle lurk behind what is there (including the rational numbers??) as well as what is not there?

Extra Slides

3 loop g-2 goes bananas

General-mass banana integral has K3 singularities, but equal-mass case (for $p^2 \neq m^2$) is elliptic. No punctures. Iterated integrals of modular forms for $\Gamma_1(6)$ Broedel, Duhr, Dulat, Marzucca, Penante, Tancredi, 1907.03787 See also Bloch, Kerr, Vanhove, 1406.2664 [unequal mass 3-loop banana] and Bloch, Vanhove, 1309.5865 [elliptic dilog for 2-loop sunset]

L. Dixon Field theory amplitudes

"Calabi-Yau" Polylogarithms

Bourjaily, McLeod, Vergu, Volk, von Hippel, Wilhelm, 1910.01534

- Singularity is a Calabi-Yau hypersurface in WP^{1,1,1,1,4}
- Has L = 3, n = 9
- However, in contrast to train-track integrals, it can't be identified directly with any particular planar N=4 SYM amplitude, so the CY polylogarithmic part could cancel out of the amplitude.

How are QCD and N=4 SYM related?

At tree level they are essentially identical

Consider a tree amplitude for *n* gluons. Fermions and scalars cannot appear because they are produced in pairs

Hence the amplitude is the **same** in QCD and N=4 SYM. So the QCD tree amplitude "secretly" obeys all identities of N=4 supersymmetry:

0

000

independent of *i*,*j*

n 1

0 0

At loop level, QCD and N=4 SYM differ

However, it is profitable to rearrange the QCD computation to exploit supersymmetry

Strong coupling and soap bubbles

Alday, Maldacena, 0705.0303

- Use AdS/CFT to compute scattering amplitude
- High energy scattering in string theory semi-classical: two-dimensional string world-sheet stretches a long distance, classical solution minimizes area

Gross, Mende (1987,1988)

Classical action imaginary → exponentially suppressed tunnelling configuration

$$A_n \sim \exp[-\sqrt{\lambda}S_{\rm Cl}^{\rm E}]$$

Is $\zeta(3)$ Transcendental?

- Still not known!
- $\zeta(3)$ is proven to be irrational Apéry, 1973
- Also proven: For any ε > 0, at least 2^{(1-ε) ln s}/ln ln s of the odd Riemann ζ values between 3 and s are irrational. Fischler, Sprang, Zudilin, 1803.08905
- It is a "folklore conjecture" (i.e. all physicists believe it) that π, ζ(3), ζ(5), ... are algebraically independent over Q
- Follows from Grothendieck's period conjecture for mixed Tate motives, but this seems impossible to prove
- To make formal mathematical progress, usually define motivic multiple zeta values, $\zeta \to \zeta^{\mathfrak{M}}$
- We won't worry about the distinction here.

$$\begin{split} \mathcal{E}^{(7)}(1,1,1) &= \frac{2519177639}{1260} \zeta_{14} - 63968 \Big[5f_{9,5} - 2\zeta_2 f_{9,3} \Big] - 77952 \Big[7f_{7,7} - \zeta_2 f_{7,5} - 3\zeta_4 f_{7,3} \Big] \\ &- 34976 \Big[7f_{5,9} - 6\zeta_4 f_{5,5} \Big] - 95552 \Big[5f_{5,9} - 3\zeta_6 f_{5,3} \Big] + 44640 \Big[\zeta_2 f_{5,7} - \zeta_6 f_{5,3} \Big] \\ &- \frac{413920}{11} \Big[33f_{3,11} - 20\zeta_8 f_{3,3} \Big] + 28000 \Big[\zeta_2 f_{3,9} - \zeta_8 f_{3,3} \Big] \\ &+ 62720 \Big[3\zeta_4 f_{3,7} - 2\zeta_8 f_{3,3} \Big] + \frac{218696}{3} \Big[3\zeta_6 f_{3,5} - 2\zeta_8 f_{3,3} \Big] \\ &- 4992 \Big[5f_{3,3,3,5} - 2\zeta_2 f_{3,3,3,3} + \frac{5611}{132} \zeta_8 f_{3,3} \Big] \,. \end{split}$$

Amplitude values at (1,1,1) through 5 loops

$$\begin{aligned} \mathcal{E}^{(1)}(1,1,1) &= 0, \\ \mathcal{E}^{(2)}(1,1,1) &= -10\,\zeta_4, \\ \mathcal{E}^{(3)}(1,1,1) &= \frac{413}{3}\,\zeta_6, \\ \mathcal{E}^{(4)}(1,1,1) &= -\frac{5477}{3}\,\zeta_8 + 24\left[\zeta_{5,3} + 5\,\zeta_3\,\zeta_5 - \zeta_2\,(\zeta_3)^2\right], \\ \mathcal{E}^{(5)}(1,1,1) &= \frac{379957}{15}\,\zeta_{10} - 12\left[4\,\zeta_2\,\zeta_{5,3} + 25\,(\zeta_5)^2\right] \\ &- 96\left[2\,\zeta_{7,3} + 28\,\zeta_3\,\zeta_7 + 11\,(\zeta_5)^2 - 4\,\zeta_2\,\zeta_3\,\zeta_5 - 6\,\zeta_4\,(\zeta_3)^2\right] \end{aligned}$$

$$E^{(1)}(1,1,1) = -2\zeta_{2},$$

$$E^{(2)}(1,1,1) = 26\zeta_{4},$$

$$E^{(3)}(1,1,1) = -\frac{940}{3}\zeta_{6},$$

$$E^{(4)}(1,1,1) = \frac{36271}{9}\zeta_{8} - 24\left[\zeta_{5,3} + 5\zeta_{3}\zeta_{5} - \zeta_{2}(\zeta_{3})^{2}\right],$$

$$E^{(5)}(1,1,1) = -\frac{1666501}{30}\zeta_{10} + 12\left[4\zeta_{2}\zeta_{5,3} + 25(\zeta_{5})^{2}\right]$$

$$+ 132\left[2\zeta_{7,3} + 28\zeta_{3}\zeta_{7} + 11(\zeta_{5})^{2} - 4\zeta_{2}\zeta_{3}\zeta_{5} - 6\zeta_{4}(\zeta_{3})^{2}\right]$$

L. Dixon Field theory amplitudes

Six loops

$$\begin{aligned} \mathcal{E}^{(6)}(1,1,1) &= -\frac{2273108143}{6219}\zeta_{12} \\ &+ \frac{260}{3} \Big[140\zeta_5\zeta_7 - 56\zeta_2\zeta_3\zeta_7 - 10\zeta_2(\zeta_5)^2 - 60\zeta_4\zeta_3\zeta_5 + 49\zeta_6(\zeta_3)^2 \Big] \\ &+ 384 \Big[\zeta_2\zeta_{7,3} + 14\zeta_2\zeta_3\zeta_7 + 3\zeta_2(\zeta_5)^2 - 7\zeta_6(\zeta_3)^2 \Big] \\ &+ 120 \Big[4\zeta_4\zeta_{5,3} + 20\zeta_4\zeta_3\zeta_5 - 7\zeta_6(\zeta_3)^2 \Big] \\ &+ \frac{5392}{3} \Big[\zeta_{9,3} + 27\zeta_3\zeta_9 + 20\zeta_5\zeta_7 - 2\zeta_2\zeta_3\zeta_7 - \zeta_2(\zeta_5)^2 - 6\zeta_4\zeta_3\zeta_5 - 5\zeta_6(\zeta_3)^2 \Big] \end{aligned}$$

$$E^{(6)}(1,1,1) = \frac{5066300219}{6219} \zeta_{12} \\ - \frac{344}{3} \Big[140\zeta_5\zeta_7 - 56\zeta_2\zeta_3\zeta_7 - 10\zeta_2(\zeta_5)^2 - 60\zeta_4\zeta_3\zeta_5 + 49\zeta_6(\zeta_3)^2 \Big] \\ - 528 \Big[\zeta_2\zeta_{7,3} + 14\zeta_2\zeta_3\zeta_7 + 3\zeta_2(\zeta_5)^2 - 7\zeta_6(\zeta_3)^2 \Big] \\ + 60 \Big[4\zeta_4\zeta_{5,3} + 20\zeta_4\zeta_3\zeta_5 - 7\zeta_6(\zeta_3)^2 \Big] \\ - \frac{9952}{3} \Big[\zeta_{9,3} + 27\zeta_3\zeta_9 + 20\zeta_5\zeta_7 - 2\zeta_2\zeta_3\zeta_7 - \zeta_2(\zeta_5)^2 - 6\zeta_4\zeta_3\zeta_5 - 5\zeta_6(\zeta_3)^2 \Big] \Big]$$

L. Dixon Field theory amplitudes