Scattering Amplitudes in Field Theory,

 Multiple Polylogarithms and the Coaction Principle

Outline

- Introduction
- Electron g-2 and LHC
- Euler sums and iterated integrals
- The co-action principle
- Electron g - 2 redux
- Scattering in planar N=4 SYM
- ϕ^{4} theory for ε expansion of $D=3$ critical exponents
- Summary and outlook

Introduction

- Earlier we heard about loop-level scattering amplitudes in string theory from Eric d'Hoker.
- String theory has a scale $\alpha^{\prime} \sim M_{\text {Planck }}^{-2}$
- Most of the results Eric described were "low energy", kinematic variables $s, t, u \ll M_{\text {Planck }}^{2}$, where the main results are polynomial in s, t, u. But because the worldsheet is a torus (at one loop), the modular parameter τ appears.
- In a field theory of massless particles, the only scales are kinematic.
- There is no "obvious" τ, but in complicated enough loop integrals, denominator singularities are parametrized by elliptic curves (or even Calabi-Yau n-folds).

One-loop 4-mass box integral

$$
\begin{aligned}
& \begin{array}{|l|l}
x_{1} & x^{2} \\
\hline x_{4} & x_{5}
\end{array}=\int d^{4} x_{5} \frac{x_{13}^{2} x_{24}^{2}}{x_{15}^{2} x_{25} x_{3}^{2} x_{45}^{2}} \\
& L=1 \begin{array}{l|l|l}
& x_{4} & x_{5} \\
\hline
\end{array} x_{2}=\text { Bloch-Wigner dilogarithm } \\
& =\operatorname{Im}\left[\operatorname{Li}_{2}(z)\right]+\arg (1-z) \ln |z| \\
& n=8 \\
& z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{aligned}
$$

- Example of single-valued multiple polylogarithm.
- Real analytic function on $\mathbb{C}[z, \bar{z}]-\{0,1, \infty\}$
- Branch cuts in z, \bar{z} cancel each other

Two-loop train-track integral

$=$ elliptic polylogarithm
Brown, Levin, 1110.6917;
Broedel et al., 1712.07089;
Eric's talk
(analytic formula of this type not yet known)

$$
n=10 \quad \text { (depends on } 9 \text { variables, generically) }
$$

Paulos, Spradlin, Volovich, 1203.6362

Caron-Huot, Larsen, 1205.0801

- $\tilde{Q}(u)$ a quartic polynomial from setting 7 propagators to zero, defines elliptic curve (with punctures from additional variables)
- Recent (formal?) series representation Ananthanarayan et al., 2007.08360

One context:

Loop amplitudes in planar N=4 SYM

 depend on $3(n-5)$ variables

But first:

the electron anomalous magnetic moment, a (precious) "baby" scattering amplitude

$$
\vec{\mu}_{e}=g_{e} \frac{e \hbar}{2 m_{e} c} \vec{S}_{e}
$$

BASE, Eur. Phys. J. ST 224, 16, 3055 (2015)

Measurement doesn't look much like particle scattering, but $a_{\mathrm{e}}=\left(g_{\mathrm{e}}-2\right) / 2$ can be computed from spin-flip part of $\gamma \mathrm{e} \rightarrow \mathrm{e}$ process as photon momentum $\rightarrow 0$.

The loop expansion

- Feynman: Draw all diagrams with specified incoming and outgoing particles, weight them by coupling factors at each vertex. For a given process, extra powers of coupling for each closed loop.

In quantum electrodynamics (QED), each additional loop suppressed by (Sommerfeld's) fine structure constant:

$$
\frac{\mathrm{e}^{2}}{4 \pi \hbar c} \equiv \alpha=\frac{1}{137.035999 \ldots}
$$

QED state of numerical art today: 5 loops, 12,672 diagrams

30 gauge invariant sets

The most difficult set, 6354 diagrams, leading to 389 integrals. Evaluated numerically after Feynman
Parameterization.
Aoyama, Hayakawa, Kinoshita, Nio, Watanabe, 2006-2017

Seven decades of $g_{\mathrm{e}}-2$ theory

$$
a_{e}=\frac{\alpha}{\pi} \cdot \frac{1}{2} \quad \text { Schwinger } 1948
$$

fully analytic

$$
+\left(\frac{\alpha}{\pi}\right)^{2}\left[\frac{197}{144}+\frac{\pi^{2}}{12}-\frac{\pi^{2}}{2} \ln 2+\frac{3}{4} \zeta_{3}\right]
$$

$$
\begin{aligned}
\zeta_{p} & =\sum_{k=1}^{\infty} \frac{1}{k^{p}} \\
\operatorname{Li}_{4}\left(\frac{1}{2}\right) & =\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{4}}
\end{aligned}
$$

Karplus, Kroll 1950 Petermann 1957 Sommerfield 1957

$$
+\left(\frac{\alpha}{\pi}\right)^{3}\left[\frac{28259}{5184}+\frac{17101}{810} \pi^{2}-\frac{298}{9} \pi^{2} \ln 2+\frac{139}{18} \zeta_{3}\right.
$$

$$
-\frac{239}{2160} \pi^{4}+\frac{100}{3}\left\{\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{1}{24}\left(\ln ^{4} 2-\pi^{2} \ln ^{2} 2\right)\right\}
$$

$$
\left.+\frac{83}{72} \pi^{2} \zeta_{3}-\frac{215}{24} \zeta_{5}\right]+\ldots \quad \text { Kinoshita, Cvitanovic } 1972
$$

$$
=0.5 \frac{\alpha}{\pi}
$$ Laporta, Remiddi 1996

	$-0.3284789655791 \ldots\left(\frac{\alpha}{\pi}\right)^{2}$	Aoyama, Hayakawa, Kinoshita, Nio, 2005-2007 Laporta arXiv:1704.06996
numerical	$+1.1812414565872 \ldots\left(\frac{\alpha}{\pi}\right)^{3}$	
	$-1.9122457649264 \ldots\left(\frac{\alpha}{\pi}\right)^{4}$	Aoyama, Hayakawa, Kinoshita, (+ mass-dep.) Lio, Watanabe, 2006-2017

Matches incredible advances in experimental precision

Measuring Earth-Moon distance to width of

$$
g / 2=1.00115965218073(28) \quad[0.28 \mathrm{ppt}]
$$ human hair: 10^{-13}

What numbers appear (or don't) in $\mathrm{g}_{\mathrm{e}}-2$?

- $a_{e}^{(1)}=\frac{1}{2}$
- $a_{e}^{(2)}=\frac{197}{144}+\frac{\pi^{2}}{12}-\frac{\pi^{2}}{2} \ln 2+\frac{3}{4} \zeta(3)$
- $a_{e}^{(3)}=\frac{28259}{5184}+\frac{17101}{810} \pi^{2}-\frac{298}{9} \pi^{2} \ln 2+\frac{139}{18} \zeta(3)-\frac{239}{2160} \pi^{4}+$ $+\frac{100}{3}\left\{\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{1}{24}\left(\ln ^{4} 2-\pi^{2} \ln ^{2} 2\right)\right\}+\frac{83}{72} \pi^{2} \zeta(3)-\frac{215}{24} \zeta(5)$
- Assign "transcendental weight" w to numbers in the formulas:

$$
\begin{aligned}
& w[\pi]=w[\ln (x)]=1 \\
& w[\zeta(n)]=w\left[\operatorname{Li}_{n}(x)\right]=n
\end{aligned}
$$

- Apparently $w \leq 2 L-1$ ($L=$ loop order), but some terms are missing
- E.g. no $\ln 2, \ln ^{2} 2$ or $\ln ^{3} 2$ in $a_{e}^{(2)}$
- Do missing terms at lower loops imply missing terms at higher loops? YES, once we understood how to write them
- Do such patterns appear in other contexts? YES

Large Hadron Collider

Quantum chromodynamics at the LHC

Energies enormous, many kinematic variables

$$
\alpha_{s}=\frac{g_{s}^{2}}{4 \pi \hbar c}
$$

One loop amplitudes

- Numbers are very simple.
- At one loop all integrals are reducible to scalar box integrals + simpler
\rightarrow combinations of dilogarithms

$$
\mathrm{Li}_{2}(x)=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)
$$

+ logarithms and rational terms
't Hooft, Veltman (1974)
- Two-loop integrals are intricate, transcendental, multi-variate functions. Special values ~ those found in $g_{e}-2$

Number-theory patterns in real scattering?

- Some patterns visible in QCD
- However, we can see them easiest in a "toy theory", planar N=4 SYM, whose remarkable symmetries let us compute 6-point amplitudes up to 7 loops!

$+\sim 10^{9}$ more Feynman diagrams

Transcendental numbers

- $\pi=\frac{C}{D}=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right)$

Madhava-Leibniz series

1300's

- Special value of a special function:

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Leonhard Euler

See I. Todorov, 1804.09553

- ~1726: Euler wins prize essay on ship-building, although he had never been on a ship before.
- Offer to join St. Petersburg Academy, commissioned into Russian navy (not for long).
- In 1729, Euler began to play with values of infinite series.
- In particular, the "Basel problem":

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=? ? ?
$$

Euler sums

- Euler considered also the more general quantities, now called Riemann zeta values,

$$
\zeta(n)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}
$$

- Numerical convergence poor, important given computational tools of the day

- Euler realized that for faster convergence, one should embed $\zeta(n)$ into the alternating sums,

$$
\phi(n)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{n}}=\left(1-2^{1-n}\right) \zeta(n)
$$

Euler and the dilogarithm

- Euler also recognized $\zeta(2)$ and $\phi(2)$ as special values of a function, an iterated integral now called the dilogarithm [Leibniz \rightarrow J. Bernoulli \rightarrow Euler]:

$$
\begin{aligned}
\mathrm{Li}_{2}(x) & =\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}=-\int_{0}^{x} \frac{d t}{t} \ln (1-t)=\int_{0}^{x} \frac{d t}{t} \int_{0}^{t} \frac{d t^{\prime}}{1-t^{\prime}} \\
\mathrm{Li}_{2}(1) & =\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\zeta(2), \\
\mathrm{Li}_{2}(-1) & =\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}=-\phi(2)
\end{aligned}
$$

Functional equation for better convergence

- Differentiating dilogarithm,

$$
\frac{d}{d x} \mathrm{Li}_{2}(x)=-\frac{\ln (1-x)}{x}
$$ gives Euler's functional equation:

$$
\operatorname{Li}_{2}(x)+\operatorname{Li}_{2}(1-x)+\ln x \ln (1-x)=\operatorname{Li}_{2}(1)
$$

- Setting $x=\frac{1}{2}$ to be well inside radius of convergence 1 , Euler could get "high precision numerics", and ascertained that

$$
\zeta(2)=\frac{\pi^{2}}{6}, \text { and later } \zeta(2 n)=-\frac{B_{2 n}}{2(2 n)!}(2 \pi i)^{n}
$$

- But $\zeta(3)=$???
- "For n odd all my efforts have been useless until now" [Euler, 1749]

Euler's useless efforts not so useless

- While failing to find polynomial relations among $\zeta(n)$, Euler introduced nested sums, or multiple zeta values (MZV's):

$$
\zeta\left(n_{1}, \ldots, n_{d}\right)=\sum_{k_{1}>\cdots k_{d}>0} \frac{1}{k_{1}^{n_{1}} \ldots k_{d}^{n_{d}}}
$$

- Weight $=n_{1}+\cdots+n_{d}$, depth $=d$
- And similar alternating [Euler-Zagier] sums with minus signs in the numerator

MZVs obey many identities

- For example, $\zeta\left(n_{1}, n_{2}\right)=\sum_{k_{1}>k_{2}>0} \frac{1}{k_{1}^{n_{1} k_{2}{ }^{n_{2}}}}$ obeys the "stuffle" identity,

$$
\zeta\left(n_{1}\right) \zeta\left(n_{2}\right)=\zeta\left(n_{1}, n_{2}\right)+\zeta\left(n_{2}, n_{1}\right)+\zeta\left(n_{1}+n_{2}\right)
$$

- The first irreducible MZV, that cannot be written in terms of $\zeta(n) \equiv \zeta_{n}$, is at weight 8 , $\zeta(5,3) \equiv \zeta_{5,3} . \rightarrow$ High loops needed to explore MZV's.
- "MZV datamine", Blümlein, Broadhurst, Vermaseren, 0907.2557 solves all known relations to weight 24, also alternating (Euler) sums to at least weight 12

MZVs and Harmonic Polylogarithms (HPLs)

Remiddi, Vermaseren, hep-ph/9905237

- Classical polylogs $\operatorname{Li}_{n}(x)=\int_{0}^{x} \frac{d t}{t} \operatorname{Li}_{n-1}(t)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}}$ evaluate to Riemann zeta values $\mathrm{Li}_{n}(1)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}=\zeta_{n}$
- Define HPLs $H_{\vec{w}}(x), w_{i} \in\{0,1\}$ by iterated integration:

$$
H_{0, \vec{w}}(x)=\int_{0}^{x} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(x)=\int_{0}^{x} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Then

$$
H_{n_{1}, \ldots, n_{d}}(1) \equiv H_{\underbrace{0, \ldots, 0,1}_{n_{1}}, \ldots, \underbrace{0, \ldots, 0,1}_{n_{d}}}^{(1)}=\zeta_{n_{1}, \ldots, n_{d}}
$$

- Weight $n=$ length of binary string; 2^{n} HPLs at weight n
- Derivatives of just two types:

$$
d H_{0, \vec{w}}(x)=H_{\vec{w}}(x) d \ln x \quad d H_{1, \vec{w}}(x)=-H_{\vec{w}}(x) d \ln (1-x)
$$

HPLs and massless $2 \rightarrow 2$ scattering

$s+t+u=0 \rightarrow$ one dimensionless variable, $x=-\frac{t}{s}$

- Only interesting limits are

$$
\begin{array}{rlr}
s \rightarrow 0, & t \rightarrow 0, & u \rightarrow 0 \\
\rightarrow x \rightarrow \infty, & x \rightarrow 0, & x \rightarrow 1
\end{array}
$$

- Match singular points of HPLs $H_{\bar{w}}(x)$.
- HPLs $H_{\bar{w}}(x)$ with weight ≤ 4 describe all massless QCD amplitudes through 2 loops
Anastasiou, Glover, Oleari, Tejeda-Yeomans; Bern, LD, de Freitas (~2000)
- weight ≤ 6 for planar $\mathrm{N}=4 \mathrm{SYM}$ and later QCD amplitudes through 3 loops
Bern, LD, Smirnov, hep-th/0505205; Henn, Mistlberger, 1608.00850;
Henn, Mistlberger, Smirnov, Wasser, 2002.09492

Generic iterated integrals

Chen; Goncharov; Brown

- Generalized polylogarithms of weight n are n-fold iterated integrals, defined (for $a_{n} \neq 0$) by

$$
G\left(a_{1}, a_{2}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
$$

- Important property of space \mathcal{G} of such functions: Hopf co-algebra Δ maps functions to products of
"functions": $\quad \Delta G \subseteq \mathcal{G} \bigotimes \mathcal{G}^{\prime}$
Goncharov, math/0208144; Brown, 1102.1312
- Δ basically arises from chopping iterated integration contours into pieces.
- Weight is preserved, so $\Delta=\sum_{p, q=1}^{\infty} \Delta_{p, q}$ where
$\Delta_{n-q, q} f^{(n)}=\sum_{k} f^{k,(n-q)} \otimes g^{k,(q)}$

Iterated integrals (cont.)

- Co-action $\Delta_{n-q, q} f^{(n)}=\sum_{k} f^{k,(n-q)} \otimes g^{k,(q)}$
- Special case $q=1$ is just the derivative:

$$
\Delta_{n-1,1} f=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} \otimes \ln s_{k}\left(x_{a}\right)
$$

is equivalent to $\frac{\partial f}{\partial x_{a}}=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} \frac{\partial \ln s_{k}}{\partial x_{a}}$

- $\mathcal{S}=$ finite set of rational expressions, "symbol letters" s_{k}, depending on coordinates x_{a}
- $f^{s_{k}}$ are pure functions, weight $n-1$
- Iterate the $\{n-1,1\}$ coproduct n times:
\rightarrow Symbol $=\{1,1, \ldots, 1\}$ component of Δ
Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Symbol example

- $\frac{d}{d x} \operatorname{Li}_{n}(x)=\frac{\operatorname{Li}_{n-1}(x)}{x}, \quad \frac{d}{d x} \operatorname{Li}_{2}(x)=-\frac{\ln (1-x)}{x}$
$\rightarrow \Delta_{1, \ldots, 1}\left[\operatorname{Li}_{n}(x)\right]=-(1-x) \otimes x \otimes \cdots \otimes x$
- Also,

$$
\Delta_{1, \ldots, 1}[f \cdot g]=\Delta_{1, \ldots, 1}[f] 山 \Delta_{1, \ldots, 1}[g]
$$

$\rightarrow \Delta_{1,1}\left[\operatorname{Li}_{2}(x)+\operatorname{Li}_{2}(1-x)+\ln x \ln (1-x)\right]$ $=-(1-x) \otimes x-x \otimes(1-x)+x$ 山 $(1-x)$ $=0$
(Symbol of Euler functional equation)

Symbols and co-actions

- Symbol trivializes all complicated polylogarithmic identities
- \rightarrow incredibly useful for simplifying massively complicated expressions for two-loop QCD amplitudes Duhr, 1203.0454
- However, differentiating n times loses all information about constants, MZVs, etc.
- Components $\Delta_{n-3,3}, \Delta_{n-5,5}, \ldots$ more useful for diagnosing structure of numbers like MZVs Brown, 1102.1310
- ヨ map between MZV's and non-abelian " f alphabet" $f_{3}, f_{5}, f_{7}, \ldots$ which makes the action of Δ manifest. $\zeta(2 i+1) \rightarrow f_{2 i+1}, \quad \zeta(5,3) \rightarrow-5 f_{5} f_{3} \equiv-5 f_{5,3}$
- Similar alphabet for alternating sums, adding $f_{1} \sim \ln 2$

Back to $g_{\mathrm{e}}-2$

- What do two- and three-loop terms look like in f alphabet?
- O. Schnetz, 1711.05118, HyperlogProcedures MAPLE program
- $\frac{197}{144}+\frac{\zeta_{2}}{2}+3 \zeta_{2} f_{1}-f_{3}$
- $\frac{28259}{5184}+\frac{17101}{135} \zeta_{2}+\frac{596}{3} \zeta_{2} f_{1}-\frac{278}{27} f_{3}+\frac{511}{24} \zeta_{4}$
$-\frac{350}{9} f_{1,3}-\frac{83}{9} \zeta_{2} f_{3}+\frac{86}{9} f_{5}$
- $\Delta_{n-q, q}$ for $q=2 i+1$ means: "clip $f_{2 i+1}$ from the left"
- Operation always lands on something seen at lower loops
- Conversely: no naked f_{1} at two loops
\rightarrow no $f_{1}, f_{1,1}, f_{1,1,1}, f_{3,1}, \ldots$ expected at higher loops

Co-action principle

Schnetz, 1302.6445; Brown, 1512.06409; Panzer, Schnetz, 1603.04289;...

- Suppose $\mathcal{H} \subset \mathcal{G}$ is some subspace of a space of generalized polylogs or MZVs which is picked out by "physics" in some way.
- Then the left factor in the co-action should be stable, i.e.

$$
\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{K}
$$

- Note: left $\leftrightarrow \rightarrow$ right here, versus f alphabet ordering
- This principle makes many predictions which can be tested in a variety of multi-loop settings.

Cosmic Galois Group

- There is a group action C dual to Δ
- The restriction $\Delta \mathcal{H} \subset \mathcal{H} \otimes \mathcal{K}$ corresponds to invariance under the group, $C \times \mathcal{H} \rightarrow \mathcal{H}$
- Group C is infinite dimensional analog of Galois group associated with roots of a polynomial equation
- Because this property appears "everywhere", termed "cosmic Galois group"
Cartier (1996,2000); Andre (2008); Brown, 1512.06409, 1512.06410
- Precisely how the group acts (what numbers appear) depends on the physical problem

$g_{\mathrm{e}}-2$ at four loops

- Computed

 "almost" analytically Laporta arXiv:1704.06996- Contains non-polylog terms. Also, polylog terms require two different f alphabets, one associated with
$G\left(a_{1}, \ldots, a_{n} ; 1\right)$ where
a_{i} are $4^{\text {th }}$ roots of unity, f_{i}^{4} another with $6^{\text {th }}$ roots, $f_{i}^{6}+g_{1}^{6}$ - Co-action principle satisfied: Clipping an f_{i} from left lands on a stable subspace, called the Galois conjugates.

$$
\begin{aligned}
a_{e} \cong & \frac{1}{2}\left(\frac{\alpha}{\pi}\right) \\
+ & \left(\frac{197}{144}+\frac{1}{12} \pi^{2}+\frac{27}{32} f_{3}^{6}-\frac{1}{4} g_{1}^{6} \pi^{2}\right)\left(\frac{\alpha}{\pi}\right)^{2} \\
+ & \left(\frac{28259}{5184}+\frac{17101}{810} \pi^{2}+\frac{139}{16} f_{3}^{6}-\frac{149}{9} g_{1}^{6} \pi^{2}-\frac{525}{32} g_{1}^{6} f_{3}^{6}+\frac{1969}{8640} \pi^{4}-\frac{1161}{128} f_{5}^{6}\right. \\
& \left.+\frac{83}{64} f_{3}^{6} \pi^{2}\right)\left(\frac{\alpha}{\pi}\right)^{3} \\
+(& \frac{1243127611}{130636800}+\frac{30180451}{155520} \pi^{2}-\frac{255842141}{2419200} f_{3}^{6}-\frac{8873}{36} g_{1}^{6} \pi^{2}+\frac{126909}{2560} \frac{f_{4}^{6}}{\mathrm{i} \sqrt{3}} \\
& -\frac{84679}{1280} g_{1}^{6} f_{3}^{6}+\frac{169703}{3840} \frac{f_{2}^{6} \pi^{2}}{\mathrm{i} \sqrt{3}}+\frac{779}{108} g_{1}^{6} g_{1}^{6} \pi^{2}+\frac{112537679}{3110400} \pi^{4}-\frac{2284263}{25600} f_{5}^{6} \\
& +\frac{8449}{96} g_{1}^{6} g_{1}^{6} f_{3}^{6}-\frac{12720907}{345600} f_{3}^{6} \pi^{2}-\frac{231919}{97200} g_{1}^{6} \pi^{4}+\frac{150371}{256} \frac{f_{6}^{6}}{\mathrm{i} \sqrt{3}}+\frac{313131}{1280} g_{1}^{6} f_{5}^{6} \\
& -\frac{121383}{1280} f_{2}^{6} f_{4}^{6}-\frac{14662107}{51200} f_{3}^{6} f_{3}^{6}+\frac{8645}{128} \frac{f_{2}^{6} g_{1}^{6} f_{3}^{6}}{\mathrm{i} \sqrt{3}}-\frac{231}{4} g_{1}^{6} g_{1}^{6} g_{1}^{6} f_{3}^{6}-\frac{16025}{48} \frac{f_{4}^{6} \pi^{2}}{\mathrm{i} \sqrt{3}} \\
& +\frac{4403}{384} g_{1}^{6} f_{3}^{6} \pi^{2}-\frac{136781}{1920} f_{2}^{6} f_{2}^{6} \pi^{2}+\frac{7069}{75} f_{2}^{4} f_{2}^{4} \pi^{2}-\frac{1061123}{14400} f_{3}^{6} g_{1}^{6} \pi^{2} \\
& +\frac{1115}{72} \frac{f_{2}^{6} g_{1}^{6} g_{1}^{6} \pi^{2}}{\mathrm{i} \sqrt{3}}+\frac{781181}{20736} \frac{f_{2}^{6} \pi^{4}}{\mathrm{i} \sqrt{3}}-\frac{4049}{1080} g_{1}^{6} g_{1}^{6} \pi^{4}+\frac{90514741}{54432000} \pi^{6} \\
& -\frac{95624828289}{2050048} f_{7}^{6}-\frac{29295}{512} g_{1}^{6} f_{2}^{6} f_{4}^{6}+\frac{107919}{512} g_{1}^{6} f_{3}^{6} f_{3}^{6}+\frac{337365}{256} f_{3}^{6} g_{1}^{6} f_{3}^{6} \\
& -\frac{55618247}{409600} f_{5}^{6} \pi^{2}-\frac{1055}{256} g_{1}^{6} f_{2}^{6} f_{2}^{6} \pi^{2}+\frac{26}{3} f_{1}^{4} f_{2}^{4} f_{2}^{4} \pi^{2}+\frac{553}{4} g_{1}^{6} f_{3}^{6} g_{1}^{6} \pi^{2} \\
& -\frac{35189}{1024} f_{3}^{6} g_{1}^{6} g_{1}^{6} \pi^{2}+\frac{79147091}{2211840} f_{3}^{6} \pi^{4}-\frac{3678803}{4354560} g_{1}^{6} \pi^{6} \\
& \left.+\sqrt{3}\left(E_{4 a}+E_{5 a}+E_{6 a}+E_{7 a}\right)+E_{6 b}+E_{7 b}+U\right)\left(\frac{\alpha}{\pi}\right)^{4} .
\end{aligned}
$$

"Galois conjugates" through weight 5

wt.	dim.	words					
0	1	1					
1	0	-					
2	1	π^{2}					
3	2	f_{3}^{6}	$g_{1}^{6} \pi^{2}$				
4	6	f_{4}^{6}	$g_{1}^{6} f_{3}^{6}$	$f_{2}^{6} \pi^{2}$	$f_{2}^{4} \pi^{2}$	$g_{1}^{6} g_{1}^{6} \pi^{2}$	π^{4}
5	4	f_{5}^{6}	$g_{1}^{6} 9_{1}^{6} f_{3}^{6}$	$f_{3}^{6} \pi^{2}$	$g_{1}^{6} \pi^{4}$		

- Weights 1 to 4 "expected to be stable"
- Weight 5 will undoubtedly have additions once next loop order is computed...

Co-action for QCD scattering amplitudes?

- Same Galois conjugates for $\mathrm{g}_{\mathrm{e}}-2$ appear in quark (chromo) magnetic moments through 3 loops, also q^{2} dependence of form factors Bonciani, Mastrolia, Remiddi, hep-ph/0307295; Lee, Smirnov, Smirnov, Steinhauser, 1801.08151, 1804.07310;
- Also evidence for interesting number theory in QCD β function, e.g. no π^{\prime} s until 5 loops, when π^{4} appears; predictions of π dependence at 6,7 loops Baikov, Chetyrkin, Kühn, 1606.08659; Baikov, Chetyrkin, 1804.10088, 1808.00237
- Unfortunately, know very few full QCD amplitudes beyond two loops, where co-action principle becomes more predictive.
- Can say a lot more for QCD's maximally supersymmetric cousin, $\mathrm{N}=4$ supersymmetric Yang Mills theory ($\mathrm{N}=4 \mathrm{SYM}$), especially in (planar) limit of a large number of colors where it has many secret symmetries.

N=4 SYM particle content

Brink, Schwarz, Scherk; Gliozzi, Scherk, Olive (1977)
massless spin 1 gluon $\infty \infty$
4 massless spin $1 / 2$ gluinos
6 massless spin 0 scalars ------

$$
\begin{aligned}
& \text { Gauge group: } \\
& \qquad \begin{array}{c}
G=S U\left(N_{c}\right) \\
N_{c} \rightarrow \infty
\end{array}
\end{aligned}
$$

$$
\begin{array}{|lllllll|}
\hline \mathcal{N}=4 & 1 & 4 & 4 & 6 & 4 & 1 \\
& g^{-} & \lambda_{\bar{\imath}}^{-} & \bar{\phi}_{i \bar{\jmath}}, \phi_{i j} & \lambda_{i}^{+} & g^{+} \\
\text {helicity } & -1 & -\frac{1}{2} & 0 & \frac{1}{2} & 1
\end{array}
$$

all in adjoint representation of G

Solving for Planar N=4 SYM Amplitudes

Images: A. Sever, N. Arkani-Hamed

L. Dixon

Field theory amplitudes

Bootstrapping amplitudes through 7 loops

```
S. Caron-Huot, LD, Dulat, von Hippel, McLeod,
Papathanasiou, 1903.10890 and 1906.07116;
LD, Dulat, 20mm.nnnnn
```

- Six-gluon amplitude is first one not fixed by symmetries, depends on u, v, w (dual conformal cross ratios).
- Amplitude lives in remarkably small space of polylogarithmic hexagon functions, the weight $2 L$ part at L loops.
- Space small enough that one can bootstrap the amplitude by writing a linear combination of functions and imposing constraints \rightarrow unique solution.
- At $u=v=w=1$, the amplitudes, and all of their iterated $\{n-q, 1, \ldots, 1\}$ coproducts (derivatives) evaluate to MZVs.

f basis for $\mathcal{H}^{\text {hex }}(1,1,1)$

\#MZV	\#	basis elements / Galois conjugates
12	6	$\zeta_{12}, 7 f_{3,9}-6 \zeta_{4} f_{3,5}, \quad 5 f_{3,9}-3 \zeta_{6} f_{3,3}, \quad \zeta_{2} f_{3,7}-\zeta_{6} f_{3,3}, \quad 7 f_{5,7}-\zeta_{2} f_{5,5}-3 \zeta_{4} f_{5,3}, \quad 5 f_{7,5}-2 \zeta_{2} f_{7,3}$
9	5	$33 f_{11}-20 \zeta_{8} f_{3}, \quad \zeta_{2} f_{9}-\zeta_{8} f_{3}, \quad 3 \zeta_{4} f_{7}-2 \zeta_{8} f_{3}, \quad 3 \zeta_{6} f_{5}-2 \zeta_{8} f_{3}, 5 f_{3,3,5}-2 \zeta_{2} f_{3,3,3}+\frac{5611}{132} \zeta_{8} f_{3}$
7	3	$\zeta_{10}, 7 f_{3,7}-\zeta_{2} f_{3,5}-3 \zeta_{4} f_{3,3}, \quad 5 f_{5,5}-2 \zeta_{2} f_{5,3}$
5	3	$7 f_{9}-6 \zeta_{4} f_{5}, \quad 5 f_{9}-3 \zeta_{6} f_{3}, \quad \zeta_{2} f_{7}-\zeta_{6} f_{3}$
4	2	$\zeta_{8}, \quad \zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}=5 f_{3,5}-2 \zeta_{2} f_{3,3}$
3	1	$7 \zeta_{7}-\zeta_{2} \zeta_{5}-3 \zeta_{4} \zeta_{3}=7 f_{7}-\zeta_{2} f_{5}-3 \zeta_{4} f_{3}$
2	1	ζ_{6} ∂_{3} a
2	1	${ }_{5} \zeta_{5}-2 \zeta_{2} \zeta_{3}=5 f_{5}-2 \zeta_{2} f_{3} \longleftarrow \boldsymbol{\partial}_{5}$
1	1	ζ_{4}
1	0	-
1	1	ζ_{2}
0	0	-
1	1	1

The values of the MHV amplitudes $\mathcal{E}^{(L)}(1,1,1)$ for $L=1$ to 7 in the f-basis are:

$$
\begin{aligned}
\mathcal{E}^{(1)}(1,1,1)= & 0, \\
\mathcal{E}^{(2)}(1,1,1)= & -10 \zeta_{4}, \\
\mathcal{E}^{(3)}(1,1,1)= & \frac{413}{3} \zeta_{6}, \\
\mathcal{E}^{(4)}(1,1,1)= & -\frac{5477}{3} \zeta_{8}+24\left[5 f_{3,5}-2 \zeta_{2} f_{3,3}\right], \\
\mathcal{E}^{(5)}(1,1,1)= & \frac{379957}{15} \zeta_{10}-384\left[7 f_{3,7}-\zeta_{2} f_{3,5}-3 \zeta_{4} f_{3,3}\right]-312\left[5 f_{5,5}-2 \zeta_{2} f_{5,3}\right], \\
\mathcal{E}^{(6)}(1,1,1)= & -\frac{2273108143}{6219} \zeta_{12}+2264\left[7 f_{3,9}-6 \zeta_{4} f_{3,5}\right]+6536\left[5 f_{3,9}-3 \zeta_{6} f_{3,3}\right] \\
& -3072\left[\zeta_{2} f_{3,7}-\zeta_{6} f_{3,3}\right]+5328\left[7 f_{5,7}-\zeta_{2} f_{5,5}-3 \zeta_{4} f_{5,3}\right] \\
& +4224\left[5 f_{7,5}-2 \zeta_{2} f_{7,3}\right],
\end{aligned}
$$

The values of the NMHV amplitudes $E^{(L)}(1,1,1)$ for $L=1$ to 6 in the f-basis are

$$
\begin{aligned}
E^{(1)}(1,1,1)= & -2 \zeta_{2}, \\
E^{(2)}(1,1,1)= & 26 \zeta_{4}, \\
E^{(3)}(1,1,1)= & -\frac{940}{3} \zeta_{6}, \\
E^{(4)}(1,1,1)= & \frac{36271}{9} \zeta_{8}-24\left[5 f_{3,5}-2 \zeta_{2} f_{3,3}\right], \\
E^{(5)}(1,1,1)= & -\frac{1666501}{30} \zeta_{10}+528\left[7 f_{3,7}-\zeta_{2} f_{3,5}-3 \zeta_{4} f_{3,3}\right]+384\left[5 f_{5,5}-2 \zeta_{2} f_{5,3}\right], \\
E^{(6)}(1,1,1)= & \frac{5066300219}{6219} \zeta_{12}-4664\left[7 f_{3,9}-6 \zeta_{4} f_{3,5}\right]-11384\left[5 f_{3,9}-3 \zeta_{6} f_{3,3}\right] \\
& +5664\left[\zeta_{2} f_{3,7}-\zeta_{6} f_{3,3}\right]-8928\left[7 f_{5,7}-\zeta_{2} f_{5,5}-3 \zeta_{4} f_{5,3}\right] \\
& -6528\left[5 f_{7,5}-2 \zeta_{2} f_{7,3}\right] .
\end{aligned}
$$

Caveat

- To squeeze amplitudes into a space $\mathcal{H}^{\text {hex }}$ that obeys a co-action principle, we need to adjust their normalization slightly: $\quad \varepsilon \rightarrow \frac{\varepsilon}{\rho}, \quad E \rightarrow \frac{E}{\rho}$

$$
\begin{aligned}
\rho\left(g^{2}\right)= & 1+8\left(\zeta_{3}\right)^{2} g^{6}-160 \zeta_{3} \zeta_{5} g^{8}+\left[1680 \zeta_{3} \zeta_{7}+912\left(\zeta_{5}\right)^{2}-32 \zeta_{4}\left(\zeta_{3}\right)^{2}\right] g^{10} \\
- & {\left[18816 \zeta_{3} \zeta_{9}+20832 \zeta_{5} \zeta_{7}-448 \zeta_{4} \zeta_{3} \zeta_{5}-400 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] g^{12} } \\
+ & {\left[221760 \zeta_{3} \zeta_{11}+247296 \zeta_{5} \zeta_{9}+126240\left(\zeta_{7}\right)^{2}-3360 \zeta_{4} \zeta_{3} \zeta_{7}-1824 \zeta_{4}\left(\zeta_{5}\right)^{2}\right.} \\
& \left.-5440 \zeta_{6} \zeta_{3} \zeta_{5}-4480 \zeta_{8}\left(\zeta_{3}\right)^{2}\right] g^{14}+\mathcal{O}\left(g^{16}\right) .
\end{aligned}
$$

- We have ascertained what ρ is to all orders (related to determinant of BES kernel) Basso, LD, Papathanasiou, 2001.05460

6-gluon amplitude \rightarrow many "cyclotomic" polylogs at unity

Saturation

- Take iterated $\{n-1,1\}$ coproducts of these amplitudes \rightarrow generate more and more lower weight functions until space is "saturated" and number declines again

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$L=1$	1	3	4												
$L=2$	1	3	6	10	6										
$L=3$	1	3	6	13	24	15	6								
$L=4$	1	3	6	13	27	53	50	24	6						
$L=5$	1	3	6	13	27	54	102	118	70	24	6				
$L=6$	1	3	6	13	27	54	105	199	269	181	78	24	6		
$L=7+$	1	3	6	13	27	54	105	200	338	331	210	85	27	6	1

- Verifies that we have exactly the right function space (weight ≤ 7) Bottom up: $1 \quad 3 \quad 6 \quad 13275410520037267912142136 \ldots$

ϕ^{4} theory

Theory of Higgs boson, neglecting all other Standard Model couplings.

Pure $0(N)$ symmetric ϕ^{4} theory in $D=4-2 \varepsilon$ experimentally relevant for ε expansion approach to

critical exponents in $D=3$
Wilson, Fisher (1972); Guillou, Zinn-Justin; Kleinert, Vasil'ev,...
High order computations required since $\varepsilon=1 / 2$

- ε expansion recently completed to 6 loops
\rightarrow 3-4 digits accuracy for critical exponents after Borel resummation Kompaniets, Panzer, 1705.06483
- Many primitive divergences known to much higher orders.

Co-action principle in ϕ^{4} theory

- Earlier: Hopf algebra associated with nested structure of renormalization; knots and Feynman diagrams Broadhurst, Kreimer, hep-th/9504352, hep-th/9810087
- Co-action principle first formulated for ϕ^{4} theory
- Much data now for primitive graphs, those with no subdivergences
Schnetz, 1302.6445; Panzer, Schnetz, 1603.04289

Panzer, Schnetz, 1603.04289

- "Period" = UV divergence of ϕ^{4} graph containing no subdivergences

- Here, co-action principle works "graph by graph",
i.e. result of clipping f_{i} on left is the period for a subgraph of original graph

Proof: Brown, 1512.06409

In the following table we demonstrate that the known ϕ^{4} periods up to eight loops obey the coaction conjecture. For this we express the infinitesimal coaction in terms of ϕ^{4} periods.

period	$\sum_{m} f_{m}^{N} \delta_{m}\left(P_{\bullet}\right)$
P_{1}	0
P_{3}	$6 f_{3} P_{1}$
P_{4}	$20 f_{5} P_{1}$
P_{5}	${ }^{441} f_{7} P_{1}$
$P_{6,1}$	$168 f_{9} P_{1}$
$P_{6,2}$	$\frac{2}{3} f_{3} P_{3}^{2}+\frac{1063}{9} f_{9} P_{1}$
$P_{6,3}$	$\frac{63}{5} f_{3} P_{4}-30 f_{5} P_{3}$
$P_{6,4}$	$-\frac{648}{5} f_{3} P_{4}+720 f_{5} P_{3}$
$P_{7,1}$	$\frac{33759}{64} f_{11} P_{1}$
$P_{7,2}$	$\frac{7}{12} f_{3} P_{3} P_{4}-\frac{5}{18} f_{5} P_{3}^{2}-\frac{195379}{192} f_{11} P_{1}$
$P_{7,3}$	$\frac{1}{3} f_{3} P_{3} P_{4}-\frac{31}{9} f_{5} P_{3}^{2}-\frac{960211}{240} f_{11} P_{1}$
$P_{7,4}, P_{7,7}$	$\frac{160}{21} f_{3} P_{5}-20 f_{5} P_{4}+70 f_{7} P_{3}$
$P_{7,5}, P_{7,10}$	$-\frac{24}{7} f_{3} P_{5}+45 f_{5} P_{4}-\frac{63}{2} f_{7} P_{3}$
$P_{7,6}$	$\frac{7}{12} f_{3} P_{3} P_{4}+\frac{145}{18} f_{5} P_{3}^{2}+\frac{502247}{64} f_{11} P_{1}$
$P_{7,8}$	$f_{3}\left(7 P_{6,3}-\frac{161}{30} P_{3} P_{4}\right)+\frac{527}{9} f_{5} P_{3}^{2}+\frac{2756439}{20} f_{11} P_{1}$
$P_{7,9}$	$f_{3}\left(\frac{7}{2} P_{6,3}-\frac{133}{80} P_{3} P_{4}\right)-\frac{217}{24} f_{5} P_{3}^{2}+\frac{4136619}{160} f_{11} P_{1}$
$P_{7,11}$	$f_{2}^{6}\left(-\frac{2755}{864} P_{6,1}+\frac{35}{27} P_{3}^{3}\right)+\frac{14}{9} f_{4}^{6} P_{5}+\frac{1017}{22} f_{6}^{6} P_{4}-\frac{36918}{43} f_{8}^{6} P_{3}$
$P_{8,1}$	$1716 f_{13} P_{1}$
$P_{8,2}$	$f_{3}\left(\frac{145}{147} P_{3} P_{5}-\frac{27}{80} P_{4}^{2}\right)+\frac{29}{40} f_{5} P_{3} P_{4}+\frac{47}{16} f_{7} P_{3}^{2}+\frac{94871691}{22400} f_{13} P_{1}$
$P_{8,3}$	$f_{3}\left(2 P_{4}^{2}-\frac{320}{189} P_{3} P_{5}\right)-13466 f_{13} P_{1}$
$P_{8,4}$	$f_{3}\left(\frac{27}{80} P_{4}^{2}+\frac{1}{147} P_{3} P_{5}\right)+\frac{11}{40} f_{5} P_{3} P_{4}-\frac{97}{16} f_{7} P_{3}^{2}-\frac{76207221}{22400} f_{13} P_{1}$
$P_{8,5}$	$\frac{789}{112} f_{3} P_{6,1}-\frac{2930}{147} f_{5} P_{5}+\frac{3549}{40} f_{7} P_{4}-180 f_{9} P_{3}$
$P_{8,6}, P_{8,9}$	$\frac{488}{441} f_{3} P_{3} P_{5}-\frac{299}{2} f_{7} P_{3}^{2}-\frac{1717423}{336} f_{13} P_{1}$
$P_{8,7}, P_{8,8}$	$-\frac{81}{10} f_{5} P_{3} P_{4}+\frac{75}{4} f_{7} P_{3}^{2}-\frac{9819147}{2800} f_{13} P_{1}$

Summary

- Many important physical quantities expressed in terms of the (conjecturally) transcendental MZVs, and related generalizations.
- Properties of numbers unveiled by embedding them into (polylogarithmic) functions with an associated Hopf co-algebra
- Whenever there is a lot of theoretical data
$-g_{e}-2$, planar N=4 SYM amplitudes, ϕ^{4} theory the relevant numbers appear to obey a co-action principle.

Outlook

- In many cases, polylogarithms and MZVs do not suffice for multi-loop Feynman integrals - need elliptic polylogarithms or "worse".
- How exactly co-action works there is still in infancy
- To how many arenas of QFT can these ideas be applied?
- One slightly negative result comes from 7-point planar $\mathrm{N}=4$ SYM amplitudes: ζ values recently fixed [LD, Liu, 2007.12966]; few "missing ζ values"
- Does any general principle lurk behind what is there (including the rational numbers??) as well as what is not there?

Extra Slides

3 loop g-2 goes bananas

General-mass banana integral has K3 singularities, but equal-mass case (for $p^{2} \neq m^{2}$) is elliptic. No punctures. Iterated integrals of modular forms for Γ_{1} (6)
Broedel, Duhr, Dulat, Marzucca, Penante, Tancredi, 1907.03787
See also Bloch, Kerr, Vanhove, 1406.2664 [unequal mass 3-loop banana] and Bloch, Vanhove, 1309.5865 [elliptic dilog for 2-loop sunset]

"Calabi-Yau" Polylogarithms

> Bourjaily, McLeod, Vergu, Volk, von Hippel, Wilhelm, 1910.01534

- Singularity is a Calabi-Yau hypersurface in $\mathbb{W} \mathbb{P}^{1,1,1,1,4}$
- Has $L=3, n=9$
- However, in contrast to train-track integrals, it can't be identified directly with any particular planar $\mathrm{N}=4 \mathrm{SYM}$ amplitude, so the CY polylogarithmic part could cancel out of the amplitude.

How are QCD and $N=4 S Y M$ related?

At tree level they are essentially identical

Consider a tree amplitude for n gluons. Fermions and scalars cannot appear because they are produced in pairs

Hence the amplitude is the same in QCD and $\mathrm{N}=4$ SYM.
So the QCD tree amplitude "secretly" obeys
all identities of $N=4$ supersymmetry:

At loop level, QCD and N=4 SYM differ

However, it is profitable to rearrange the QCD computation to exploit supersymmetry

Strong coupling and soap bubbles

Alday, Maldacena, 0705.0303

- Use AdS/CFT to compute scattering amplitude
- High energy scattering in string theory semi-classical: two-dimensional string world-sheet stretches a long distance, classical solution minimizes area

Classical action imaginary \rightarrow exponentially suppressed tunnelling configuration

$$
A_{n} \sim \exp \left[-\sqrt{\lambda} S_{\mathrm{Cl}}^{\mathrm{E}}\right]
$$

Is $\zeta(3)$ Transcendental?

- Still not known!
- $\zeta(3)$ is proven to be irrational Apéry, 1973
- Also proven: For any $\varepsilon>0$, at least $2^{(1-\varepsilon) \frac{\ln s}{\ln \ln s}}$ of the odd Riemann ζ values between 3 and s are irrational. Fischler, Sprang, Zudilin, 1803.08905
- It is a "folklore conjecture" (i.e. all physicists believe it) that $\pi, \zeta(3), \zeta(5), \ldots$ are algebraically independent over \mathbb{Q}
- Follows from Grothendieck's period conjecture for mixed Tate motives, but this seems impossible to prove
- To make formal mathematical progress, usually define motivic multiple zeta values, $\zeta \rightarrow \zeta^{m}$
- We won't worry about the distinction here.

$$
\begin{aligned}
\mathcal{E}^{(7)}(1,1,1)= & \frac{2519177639}{1260} \zeta_{14}-63968\left[5 f_{9,5}-2 \zeta_{2} f_{9,3}\right]-77952\left[7 f_{7,7}-\zeta_{2} f_{7,5}-3 \zeta_{4} f_{7,3}\right] \\
& -34976\left[7 f_{5,9}-6 \zeta_{4} f_{5,5}\right]-95552\left[5 f_{5,9}-3 \zeta_{6} f_{5,3}\right]+44640\left[\zeta_{2} f_{5,7}-\zeta_{6} f_{5,3}\right] \\
& -\frac{413920}{11}\left[33 f_{3,11}-20 \zeta_{8} f_{3,3}\right]+28000\left[\zeta_{2} f_{3,9}-\zeta_{8} f_{3,3}\right] \\
& +62720\left[3 \zeta_{4} f_{3,7}-2 \zeta_{8} f_{3,3}\right]+\frac{218696}{3}\left[3 \zeta_{6} f_{3,5}-2 \zeta_{8} f_{3,3}\right] \\
& -4992\left[5 f_{3,3,3,5}-2 \zeta_{2} f_{3,3,3,3}+\frac{5611}{132} \zeta_{8} f_{3,3}\right] .
\end{aligned}
$$

Amplitude values at (1,1,1) through 5 loops

$$
\begin{aligned}
\mathcal{E}^{(1)}(1,1,1)= & 0 \\
\mathcal{E}^{(2)}(1,1,1)= & -10 \zeta_{4} \\
\mathcal{E}^{(3)}(1,1,1)= & \frac{413}{3} \zeta_{6} \\
\mathcal{E}^{(4)}(1,1,1)= & -\frac{5477}{3} \zeta_{8}+24\left[\zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}\right] \\
\mathcal{E}^{(5)}(1,1,1)= & \frac{379957}{15} \zeta_{10}-12\left[4 \zeta_{2} \zeta_{5,3}+25\left(\zeta_{5}\right)^{2}\right] \\
& -96\left[2 \zeta_{7,3}+28 \zeta_{3} \zeta_{7}+11\left(\zeta_{5}\right)^{2}-4 \zeta_{2} \zeta_{3} \zeta_{5}-6 \zeta_{4}\left(\zeta_{3}\right)^{2}\right] \\
E^{(1)}(1,1,1)= & -2 \zeta_{2} \\
E^{(2)}(1,1,1)= & 26 \zeta_{4}, \\
E^{(3)}(1,1,1)= & -\frac{940}{3} \zeta_{6}, \\
E^{(4)}(1,1,1)= & \frac{36271}{9} \zeta_{8}-24\left[\zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}\right] \\
E^{(5)}(1,1,1)= & -\frac{1666501}{30} \zeta_{10}+12\left[4 \zeta_{2} \zeta_{5,3}+25\left(\zeta_{5}\right)^{2}\right] \\
& +132\left[2 \zeta_{7,3}+28 \zeta_{3} \zeta_{7}+11\left(\zeta_{5}\right)^{2}-4 \zeta_{2} \zeta_{3} \zeta_{5}-6 \zeta_{4}\left(\zeta_{3}\right)^{2}\right]
\end{aligned}
$$

six IOOPS

$$
\begin{aligned}
\mathcal{E}^{(6)}(1,1,1)= & -\frac{2273108143}{6219} \zeta_{12} \\
& +\frac{260}{3}\left[140 \zeta_{5} \zeta_{7}-56 \zeta_{2} \zeta_{3} \zeta_{7}-10 \zeta_{2}\left(\zeta_{5}\right)^{2}-60 \zeta_{4} \zeta_{3} \zeta_{5}+49 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +384\left[\zeta_{2} \zeta_{7,3}+14 \zeta_{2} \zeta_{3} \zeta_{7}+3 \zeta_{2}\left(\zeta_{5}\right)^{2}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +120\left[4 \zeta_{4} \zeta_{5,3}+20 \zeta_{4} \zeta_{3} \zeta_{5}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +\frac{5392}{3}\left[\zeta_{9,3}+27 \zeta_{3} \zeta_{9}+20 \zeta_{5} \zeta_{7}-2 \zeta_{2} \zeta_{3} \zeta_{7}-\zeta_{2}\left(\zeta_{5}\right)^{2}-6 \zeta_{4} \zeta_{3} \zeta_{5}-5 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
E^{(6)}(1,1,1)= & \frac{5066300219}{6219} \zeta_{12} \\
& -\frac{344}{3}\left[140 \zeta_{5} \zeta_{7}-56 \zeta_{2} \zeta_{3} \zeta_{7}-10 \zeta_{2}\left(\zeta_{5}\right)^{2}-60 \zeta_{4} \zeta_{3} \zeta_{5}+49 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& -528\left[\zeta_{2} \zeta_{7,3}+14 \zeta_{2} \zeta_{3} \zeta_{7}+3 \zeta_{2}\left(\zeta_{5}\right)^{2}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +60\left[4 \zeta_{4} \zeta_{5,3}+20 \zeta_{4} \zeta_{3} \zeta_{5}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& -\frac{9952}{3}\left[\zeta_{9,3}+27 \zeta_{3} \zeta_{9}+20 \zeta_{5} \zeta_{7}-2 \zeta_{2} \zeta_{3} \zeta_{7}-\zeta_{2}\left(\zeta_{5}\right)^{2}-6 \zeta_{4} \zeta_{3} \zeta_{5}-5 \zeta_{6}\left(\zeta_{3}\right)^{2}\right]
\end{aligned}
$$

MHV

NMHV

