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Modular forms

Example 1.

Definition. Form ∈ N0 := {0, 1, 2, . . . }, n ∈ N := {1, 2, 3, . . . },
themth power divisor function is defined by

σm(n) :=
∑
d | n
d>0

dm.
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Modular forms

A generating function:

∞∑
n=1

σm(n)qn

= σm(1)q+ σm(2)q2 + σm(3)q3 + σm(4)q4 + · · ·

= q+ (1 + 2m)q2 + (1 + 3m)q3 + (1 + 2m + 4m)q4 + · · ·
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Modular forms
Letm = 2k− 1, k ∈ {2, 3, 4, 5, . . . }.

Definition. Theweight 2k Eisenstein series is defined by

E2k(τ) := 1− 4k
B2k

∞∑
n=1

σ2k−1(n)qn.

q = qτ := e2πiτ , τ ∈ H := {τ ∈ C : Im(τ) > 0},
Bκ := κth Bernoulli number.
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Modular forms

Themodular group

Γ = SL2(Z) :=
{(

a b
c d

) ∣∣ a, b, c, d ∈ Z, ad− bc = 1

}

Γ is generated by

T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
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Modular forms

Γ acts onH by Γ ·H −→ H
( a b
c d ) · τ := aτ+b

cτ+d

Ex. T · τ = τ + 1, S · τ = −1/τ

E2k is “symmetric” with respect to
the action of SL2(Z) onH...
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Modular forms

That is, for all τ ∈ H,

E2k(τ + 1) = E2k(τ),

E2k(−1/τ) = τ2kE2k(τ),

and in general, for any
(
a b
c d

)
∈ SL2(Z),

E2k

(
aτ + b
cτ + d

)
= (cτ + d)2kE2k(τ).
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Modular forms

Aweight k ∈ 1
2Zmodular form f : H → C on Γ′ ⊆ SL2(Z)

satisfies

f is holomorphic onH,

f
(aτ+b
cτ+d

)
= εγ(cτ + d)kf(τ), |εγ | = 1, ∀ τ ∈ H, γ=

(
a b
c d

)
∈ Γ′

f is holomorphic or meromorphic in the cusps.
e.g., f has a Fourier expansion of the shape

f(τ) =
∞∑

n=m

anq
n
h ,

where q = e2πiτ , an = af,n ∈ C, m = mf ∈ Z, h = hf ∈ N.
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Modular forms
Example 2.

Definition. A partition of an integer n ≥ 1 is a set of positive
integers {λ1, . . . , λr} such that

λ1 + · · ·+ λr = n,
λ1 ≥ · · · ≥ λr.

We define the partition function by

p(n) := #{partitions of n},

and we let p(0) := 1.

Ex. p(4) = 5, since 4 = 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
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Modular forms

Theorem (Euler). Let |q| < 1. The partition generating function

P(q) :=
∞∑
n=0

p(n)qn = 1 + q+ 2q2 + 3q3 + 5q4 + · · ·

satisfies

P(q) =
∞∏
k=1

1

1− qk
=

1

(1− q)(1− q2)(1− q3) · · ·
.
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Modular forms

That is,

q−
1
24

∞∑
n=0

p(n)qn =
1

η(τ)
,

where the Dedekind η-function

η(τ) := q
1
24

∞∏
n=1

(1− qn),

with q = e2πiτ , τ ∈ H, is a modular form of weight 1/2.
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Modular forms

Example 2 (cont.)

A consequence of modularity:

Theorem (Hardy-Ramanujan-Rademacher) We have the
exact formula

p(n) =
2π

(24n− 1)
3
4

∞∑
m=1

Am(n)
m

I 3
2

(
π
√
24n− 1

6m

)
.
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Modular forms

Example 2 (cont.)

A consequence of modularity:

Theorem (Hardy-Ramanujan-Rademacher) We have the
exact formula

p(n) =
2π

(24n− 1)
3
4

∞∑
m=1

Am(n)
m

I 3
2

(
π
√
24n− 1

6m

)
.

13



Modular symmetry

Question.

What could be gained by perturbing modular symmetry?
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“Modular” forms

Example 1 revisited.

Let k = 1. The function

E2(τ) := 1− 24
∞∑
n=1

σ1(n)qn

is not a (weight 2) modular form. Namely, we have that

E2(−1/τ) = τ2E2(τ) − 6iτ
π

.︸ ︷︷ ︸
“error to modularity”
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“Modular” forms

Example 1 revisited.

Define the function

Ê2(τ) := E2(τ)−
3

πIm(τ)
.

Then
Ê2(−1/τ) = τ2 Ê2(τ).

That is, Ê2 is an almost holomorphicweight 2modular form.
(Kaneko-Zagier)

16



“Modular” forms

Example 1 revisited.

Define the function
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“Modular” forms
Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its
largest part minus the number of its parts.

For n ∈ N,m ∈ Z,
we define

N(m, n) := p(n | rankm),

and let N(m, 0) := δm,0.

Ex. We have that N(m, 4) =

{
1, m = 0,±1,±3,

0 else .

Note. For fixed n, we have that
∞∑

m=−∞
N(m, n) = p(n).
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“Modular” forms

Example 2 revisited.

The two variable partition rank generating function satisfies

R(w; q) :=
∞∑
n=0

∞∑
m=−∞

N(m, n)wmqn =
∞∑
n=0

qn2

(wq; q)n(w−1q; q)n
,

where for n ∈ N0, the q-Pochhammer symbol is defined by

(a; q)n = (1− a)(1− aq)(1− aq2)(1− aq3) · · · (1− aqn−1).
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“Modular” forms

Observation. We have that

R(1; q) =
∞∑
n=0

p(n)qn = P(q)

is (essentially) a modular form, with q = e2πiτ , τ ∈ H.

Question. Is R(w; q) a modular form for other fixed values ofw,
when viewed as a function of τ , with q = e2πiτ ?

19



“Modular” forms

Observation. We have that

R(1; q) =
∞∑
n=0

p(n)qn = P(q)

is (essentially) a modular form, with q = e2πiτ , τ ∈ H.

Question. Is R(w; q) a modular form for other fixed values ofw,
when viewed as a function of τ , with q = e2πiτ ?

19



“Modular” forms

Letw = −1. Then

R(−1; q) =
∞∑
n=0

qn2

(−q; q)2n
=

∞∑
n=0

(Ne(n)− No(n))qn,

where Ne (resp. o)(n) := p(n | even (resp. odd) rank).

20



Mock theta functions

Ramanujan’s mock theta function:
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Mock theta functions
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Mock theta functions

-S. Ramanujan to G.H. Hardy, 1920
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Mock theta functions
Ramanujan’s observations:

There is a(n explicit) modular form b(q) that “cuts out”
the exponential singularities of f(q).

That is, as q approaches any even order 2k root of unity
singularity of f(q), then

f(q)− (−1)kb(q) = O(1)

That is, asymptotically, towards singularities,

mock theta±modular form = bounded
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Mock theta functions

Theorem (Watson). Let q = e−α, β = π2/α, q1 = e−β , where
α ∈ C,Re(α) > 0. Then

q−
1
24 f(q) = 2

√
2π

α
q

4
3
1 ω(q

2
1) + 4

√
3α

2π

∫ ∞

0

sinh(αt)
sinh

(
3αt
2

)e− 3αt2
2 dt.

Remark. This may be interpreted as a transformation under
τ 7→ −1/(2τ).
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Mock theta functions

“Theorem” (S. Zwegers, 2002). Ramanujan’s mock theta
functions are not modular forms,

but they can be completed to
form nonholomorphic modular forms.
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Mock theta functions

Zwegers’ completion:

f̂(τ) := q−
1
24

f(q)

+ f−(q)
↗

x ↖
modular not modular

:::
not

::::::::::::
holomorphic

28
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Mock theta functions
Zwegers’ completion:

f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ · · ·y

f̂(τ) := q−
1
24 f(q) + 2i

√
3

∫ i∞

−τ

g(z) dz√
−i(τ + z)

where g(τ) := −
∞∑

n=−∞
(n+ 1

6)q
3
2
(n+ 1

6
)2 is a weight 3/2modular form.
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HarmonicMaass forms
Definition (Bruinier-Funke). Aweight k (k ∈ 1

2Z) harmonic Maass
form on Γ′ = Γ0(N), where 4|N if k ∈ 1

2 + Z, is a smoothM : H → C
satisfying

i) For all
(
a b
c d

)
∈ Γ and all τ ∈ H, we have

M
(
aτ + b
cτ + d

)
=

{
(cτ + d)kM(τ) if k ∈ Z,( c
d

)
ε−2k
d (cτ + d)kM(τ) if k ∈ 1

2 + Z.

ii) We have that∆k(M) = 0, where (if τ = x+ iy)
∆k := −y2

(
∂2

∂x2 + ∂2

∂y2

)
+ iky

(
∂
∂x + i ∂∂y

)
.

iii) There exists a polynomial PM(τ) ∈ C[q−1] such that

M(τ)− PM(τ) = O
(
e−εy)

as y → ∞ for some ε > 0.
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HarmonicMaass forms

Lemma. Let k ∈ 1
2Z\{1} and Γ ∈ {Γ0(N),Γ1(N)}.

IfM is a HMF, thenM has Fourier expansion

M(τ) =
∑

n≫−∞
c+M (n)q

n +
∑
n<0

c−M (n)Γ(1− k,−4πny)qn.

The incomplete gamma function is defined by

Γ(s, z) :=
∫ ∞

z
e−tts

dt
t
.
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HarmonicMaass forms

That is,

M(τ) =
∑

n≫−∞
c+M (n)q

n

︸ ︷︷ ︸
“holomorphic part”

+
∑
n<0

c−M (n)Γ(1− k,−4πny)qn︸ ︷︷ ︸
“nonholomorphic part”

Definition (Zagier).

Amockmodular form (of weight k) is the
holomorphic part of a harmonic Maass form (of weight k)∗
(*for which the NHP is nontrivial).
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HarmonicMaass forms

Theorem (Zwegers). Ramanujan’s mock theta functions are∗

weight 1/2 mockmodular forms.

That is, if F is one of
Ramanujan’s mtf’s, then for some αF ∈ Q and cF ∈ C,

F(τ) = qαFG+
F (τ) + cF,

where G+
F is the holomorphic part of a weight 1/2 HMF.

(∗up to multiplication by a power of q and addition of a constant)
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“Modular” forms
Example 2 (revisited.)

A consequence of mockmodularity:

Theorem (Bringmann-Ono), Conjectured by Andrews-Dragonette.
We have the exact formula

Ne(n)− No(n)

=
π

(24n− 1)
1
4

∞∑
m=1

(−1)b
m+1
2 c A2m

(
n− m(1+(−1)m)

4

)
m

I 1
2

(
π
√
24n− 1

12m

)
.
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HarmonicMaass forms

Example 2 (revisited). Let ζN := e2πi/N.

Theorem (Bringmann-Ono).

Fixw = ζab 6= 1. Then R(ζab ; q)
(with q = e2πiτ , τ ∈ H) is a weight 1/2mockmodular form.
More precisely,

q−ℓb/24R(ζab ; q
ℓb) + i(3−1ℓb)

1
2 sin(πab )

∫ i∞

−τ

Θ(ab ; ℓbz)√
−i(z+ τ)

dz

is a harmonic Maass form of weight 1/2 and level 144.

Here,Θ is a weight 3/2modular form, and ℓb ∈ N.
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HarmonicMaass forms

Example 2 revisited. We have the weight 1/2 HMF

q−ℓb/24R(ζab ; q
ℓb) + i(3−1ℓb)

1
2 sin(πab )

∫ i∞

−τ

Θ(ab ; ℓbz)√
−i(z+ τ)

dz.

The shadow of the mockmodular form q−ℓb/24R(ζab ; q
ℓb) is (up to a

constant multiple) the theta functionΘ(ab ; ℓbz).
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Mock theta functions

Question.

Ramanujan’s “definition” of a mock theta function?
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Mock theta functions

“Definition” (Ramanujan). Amock theta function F satisfies

1. infinitely many roots of unity are exponential
singularities,

2. for every root of unity ζ there is a modular form ϑζ(q)
such that the difference F(q)− qαϑζ(q) is bounded as
q → ζ radially,

3. there does not exist a single modular form ϑ(q) such
that F(q)− qαϑ(q) is bounded as q approaches any
root of unity radially.
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Mock theta functions

-S. Ramanujan to G.H. Hardy, 1920
39



Mock theta functions

f(q) = 1 +
q

(1+q)2
+

q4

(1+q)2(1+q2)2
+

q9

(1+q)2(1+q2)2(1+q3)2
+ · · ·

has singularities when
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Mock theta functions

f(q) = 1 +
q

(1+q)2
+

q4

(1+q)2(1+q2)2
+

q9

(1+q)2(1+q2)2(1+q3)2
+ · · ·

has singularities when qn = −1 (n ∈ N).
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Mock theta functions

42



Mock theta functions
Ramanujan’s observations:

There is a(n explicit) modular form b(q) that “cuts out”
the exponential singularities of f(q).

That is, as q approaches any even order 2k root of unity
singularity of f(q), then

f(q)− (−1)kb(q) = O(1)

That is, asymptotically, towards singularities,

mock theta±modular form = bounded
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Ramanujan revisited

b(q) := q
1
24

η3(τ)
η2(2τ)

(joint work with K. Ono, R.C. Rhoades)

As q → −1, we computed (with help of R. Lemke Oliver)

f(−0.994) ∼ −1·1031, f(−0.996) ∼ −1·1046, f(−0.998) ∼ −6·1090 . . .
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Ramanujan revisited

Ramanujan’s observation gives:

q −0.990 −0.992 −0.994 −0.996 −0.998

f(q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .
.

This suggests that

lim
q→−1

(f(q) + b(q)) = 4.
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Ramanujan revisited

q 0.992i 0.994i 0.996i
f(q) 2 · 106 − 4.6 · 106i 2 · 108 − 4 · 108i 1.0 · 1012 − 2 · 1012i

f(q)− b(q) ∼ 0.05 + 3.85i ∼ 0.04 + 3.89i ∼ 0.03 + 3.92i

This suggests that

lim
q→i

(f(q)− b(q)) = 4i.
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(f(q)− b(q)) = 4i.
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Ramanujan revisited

i) What are the O(1) constants in

lim
q→ζ

(f(q)− (−1)kb(q)) = O(1)?

ii) How do they arise?
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even 2k order root of unity, then

lim
q→ζ

(f(q)− (−1)kb(q)) = −4

k−1∑
n=0

(1+ ζ)2(1+ ζ2)2 · · · (1+ ζn)2ζn+1.
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even 2k order root of unity, then

lim
q→ζ
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Ramanujan revisited
Remark. We prove this as a special case of a more general theorem
involving:

R(w; q) :=
∞∑
n=0

qn2

(wq; q)n(w−1q; q)n
(Dyson’s rank)

C(w; q) :=
(q; q)∞

(wq; q)∞(w−1q; q)∞
(Andrews-Garvan crank)

U(w; q) :=
∞∑
n=0

(wq; q)n(w−1q; q)nqn+1 (Unimodal rank)
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Combinatorial “modular” forms

Let

N(m, n) := #{partitions λ of n | rank(λ) = m},

M(m, n) := #{partitions λ of n | crank(λ) = m},

u(m, n) := #{size n strongly unimodal sequences with rankm}.
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Combinatorial “modular” forms

A sequence {aj}sj=1 of integers is called strongly unimodal of size n if

a1 + a2 + · · ·+ as = n,

0 < a1 < a2 < · · · < ar > ar+1 > · · · as > 0 for some r.

The rank equals s− 2r+ 1 (difference between # terms after and
before the “peak”).
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Combinatorial “modular” forms

R(w; q) :=
∞∑
n=0

∞∑
m=−∞

N(m, n)wmqn =
∞∑
n=0

qn2

(wq; q)n(w−1q; q)n
,

mockmodular [Bringmann-Ono]

C(w; q) :=
∞∑
n=0

∞∑
m=−∞

M(m, n)wmqn =
(q; q)∞

(wq; q)∞(w−1q; q)∞
,

modular

U(w; q) :=
∞∑
n=0

∞∑
m=−∞

u(m, n)(−w)mqn =
∞∑
n=0

(wq; q)n(w−1q; q)nqn+1.
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζb = e

2πi
b and 1 ≤ a < b, then for every suitable root of unity ζ

there is an explicit integer c for which

lim
q→ζ

(
R(ζab ; q)− ζcb2C(ζ

a
b ; q)

)
= −(1− ζab )(1− ζ−a

b )U(ζab ; ζ).
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Ramanujan revisited

Remark
The first theorem is the special case a = 1, b = 2, using that

R(−1; q) = f(q) and C(−1; q) = b(q).

Remark
Specializations of R(w; q) give rise to other mock theta functions.
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Ramanujan revisited

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4U(−1; ζ).

↗ ↑ ↖
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Quantummodular forms

“...we want to discuss...another type of modular object
which...we call quantummodular forms.

These are objects which live at the boundary of the space...,

...and have a transformation behavior of a quite different
type...”

-D. Zagier, 2010
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Quantummodular forms

Quantummodular forms are defined inQ,

and take values inC.

They exhibit modular symmetry inQ...
...up to the addition of smooth error functions inR.
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Quantummodular forms

Let
F : H → C, γ :=

(
a b
c d

)
∈ Γ ⊆ SL2(Z), τ ∈ H := {τ ∈ C | Im(τ) > 0}

Modular transformation:

F(τ)− ϵ−1(γ)(cτ + d)−kF
(
aτ + b
cτ + d

)
= 0
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Quantummodular forms

Let
F : H → C, γ :=
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Quantummodular forms

Let F : Q → C, γ :=
(
a b
c d

)
∈ Γ ⊆ SL2(Z), x ∈ Q.

Modular transformation:

F(x)− ϵ−1(γ)(cx+ d)−kF
(
ax+ b
cx+ d

)
= ?
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Quantummodular forms

Definition (Zagier ’10)
A quantummodular form of weight k (k ∈ 1

2Z) is function
F : Q → C, such that for all γ =

(
a b
c d

)
∈ Γ, the functions

hγ(x) = hF,γ(x) := F(x)− ϵ−1(γ)(cx+ d)−kF
(
ax+ b
cx+ d

)
extend to suitably continuous or analytic functions inR.
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Quantummodular forms

Zagier’s examples arise from areas such as:

theta series associated to indefinite quadratic forms
quantum invariants of 3-manifolds
Jones polynomials for knots
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Quantummodular forms
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Quantummodular forms
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even 2k order root of unity, then

lim
q→ζ

(f(q)−(−1)kb(q))=−4U(−1; ζ)=−4
k−1∑
n=0

(1 + ζ)2(1 + ζ2)2 · · · (1 + ζn)2ζn+1

This can be realized as the value of a function onQ...
...which is a quantummodular form.
(Bryson-Ono-Pittman-Rhoades, F-Ki-Truong Vu)
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Ramanujan revisited

Let τ ∈ H := {τ ∈ C | Im(τ) > 0}, and q = e2πiτ .
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Ramanujan revisited

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= −4U(−1; ζ).

↗ ↑ ↖
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Proof ingredients
Ramanujan’s identity

∞∑
n=0

(αβ)nqn2

(αq; q)n(βq; q)n
+

∞∑
n=1

qn(α−1; q)n(β−1; q)n =

iq
1
8 (1− α)(βα−1)

1
2

(
qα−1; q

)
∞

(
β−1; q

)
∞ µ(u, v; τ).

(q = e2πiτ , α = e2πiu, β = e2πiv)

Transformation theory (Zwegers) of the mock Jacobi
form

µ(u, v; τ) :=
eπiu

ϑ(v; τ)

∑
n∈Z

(−1)nq
n(n+1)

2 e2πinv

1− e2πiuqn .

Explicit asymptotic calculations
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Further results

Bringmann-Rolen/Jang-Lobrich: more general “radial limit”
theorems for the Gordon-McIntosh universal mock ϑs:

g2(w; q) :=
∞∑
n=0

(−q; q)nq
n(n+1)

2

(w; q)n+1(w−1q; q)n+1
, g3(w; q) :=

∞∑
n=1

qn(n−1)

(w; q)n(w−1q; q)n
.

Theorem (Bringmann-Rolen)
There is a linear combination of theta functions ϑa,b,A,B,ζ(q) such that
the radial limit difference limq→ζ(g2(ζabq

A; qB)− ϑa,b,A,B,ζ(q)) is
bounded, and is the special value of a quantummodular form.
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Further results

“...[no one has] proved that any of Ramanujan’s mock theta functions
are really mock theta functions according to his definition.”

-B.C. Berndt, Ramanujan, his lost notebook, its importance.
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Further results

By incorporating the theory of harmonic Maass forms,

Theorem (Griffin-Ono-Rolen)
Ramanujan’s mock theta functions satisfy his definition.
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Further results

Theorem (Choi-Lim-Rhoades)
Let F be amockmodular form and ζ a root of unity. There is a weakly
holomorphic modular form qαϑζ(q) such that the radial limit
limq→ζ(F(q)− qαϑζ(q)) is the special value of a quantummodular
form.
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Further results

Mathematical physics
Moonshine, Representation theory
Combinatorics
Topology

Thank you
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