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Example 1.

Definition. Form € Ny :={0,1,2,... },n e N:={1,2,3,...},
the mth power divisor function is defined by

om(n) := Z dm.
d|n
a>0
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Modular forms

A generating function:

Zom(n)qn =om(1)q + Um(2)q2 + Um(3)q3 =+ Um(4)q4 +oe

n=1

=q+(1+2MP+ 1 +3Mg*+ (1 +2"+4M)g* + -
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Modular forms

Letm =2k —1, k€ {2,3,4,5,... }.

Definition. The weight 2k Eisenstein series is defined by

4k &

g=g, =€, reH:={reC:Im(r) >0},



Modular forms

Letm =2k —1, k€ {2,3,4,5,... }.

Definition. The weight 2k Eisenstein series is defined by

g=g, =€, reH:={reC:Im(r) >0},
B, := xth Bernoulli number.
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Modular forms

= The modular group

['=SLy(Z) := {(CC] Z) }a,b,c,deZ,ad—bc:l}

= [Dis generated by

r=(01). =01 7)
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Modular forms

= T'actson H by I H—H
(28) -7 =22

Ex. T-7=7+1, S-7=-1/7

= Eo is “symmetric” with respect to
the action of SLy(Z) on H...
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Thatis, forall 7 € H,

Eox(T 4+ 1) = Eok(7),
Eo(—1/7) = 7% Exi(7),



Modular forms

Thatis, forall 7 € H,

Eox(T 4+ 1) = Eok(7),
Eo(—1/7) = 7% Exi(7),

and in general, forany (95) € SLy(2),

aT+b - 2k
Egk (C’T—|—d) =3 (CT+d) E2k(7’).
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Modular forms

Aweight k € 1Z modular form f: Hl — Con I’ C SLy(Z)
satisfies

= fis holomorphic on H,

 F(ZE2) = e, (cr + d)Hf(r),

cT+d




Modular forms

Aweight k € 1Z modular form f: Hl — Con I’ C SLy(Z)
satisfies

= fis holomorphic on H,

- f(‘g:j:g) = e (cT + d)¥f(T), |e,| = 1,V 7€ H,y=(25)e T
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Aweight k € 1Z modular form f: Hl — Con I’ C SLy(Z)
satisfies

= fis holomorphic on H,
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> fis holomorphic or meromorphic in the cusps.




Modular forms

Aweight k € 1Z modular form f: Hl — Con I’ C SLy(Z)
satisfies

= fis holomorphic on H,

- f(‘gis) = SV(CT + d)kf(T)’ ey =1,V 7€ H’VZ(g g)e r

> fis holomorphic or meromorphic in the cusps.
e.g., fhas a Fourier expansion of the shape

f(T) = Z anq%,
n=m

whereq =e*"™, a,=0ar, € C, m=mse Z, h=hre N.
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Definition. A partition of an integer n > 1is a set of positive
integers {A1, ..., A} such that
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Definition. A partition of an integer n > 1is a set of positive
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and we let p(0) := 1.
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Example 2.

Definition. A partition of an integer n > 1is a set of positive
integers {A1, ..., A} such that

- )\1+"‘+>\r:n’
- AIZ"'ZAP

We define the partition function by
p(n) := #{partitions of n},

and we let p(0) := 1.




Modular forms

Example 2.

Definition. A partition of an integer n > 1is a set of positive
integers {A1, ..., A} such that

" )\1+...+)\r:n’
AN >\

We define the partition function by
p(n) := #{partitions of n},

and we let p(0) := 1.

Ex.p(4) =5,sinced =4,3+1,2+2,2+1+1, 1+14+1+1.



Modular forms

Theorem (Euler). Let |g| < 1. The partition generating function

o0
P(g) =Y _p(ng" =1+q+29° +3¢> +5¢* + - --
n=0
satisfies




Modular forms

That is,

g ip(n)q” o
pr n(r)’

where the Dedekind n-function
o 0
n(r):=qu [[(1—¢"),
n=1

with g = e*™™ 7 € H, is a modular form of weight 1/2.

12



Modular forms

Example 2 (cont.)

13



Modular forms

Example 2 (cont.)

A consequence of modularity:

Theorem (Hardy-Ramanujan-Rademacher) We have the
exact formula

iAm n (m/m)

24n—1731 s 6m

m=1

13



Modular symmetry

Question.

14



Modular symmetry

Question.

What could be gained by perturbing modular symmetry?

14



“Modular” forms

Example 1 revisited.
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“Modular” forms

Example 1 revisited.

Let k = 1. The function
Ex(7):=1-24) o1(n)q"
n=1

is not a (weight 2) modular form.
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“Modular” forms

Example 1 revisited.

Let k = 1. The function
Ex(7):=1-24) o1(n)q"
n=1

is not a (weight 2) modular form. Namely, we have that

Ex(=1/7) = TEy(1) — 6[?7—
——

“error to modularity”

15



“Modular” forms

Example 1revisited.
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“Modular” forms

Example 1 revisited.

Define the function
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“Modular” forms

Example 1 revisited.

Define the function

Then
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“Modular” forms

Example 1 revisited.

Define the function

Bo(r) 1= Ea(r) — %(T)

Then R R
Ex(—1/7) = 72 Ea(7).

That is, Eg is an almost holomorphic weight 2 modular form.
(Kaneko-Zagier)

16



“Modular” forms

Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its
largest part minus the number of its parts.
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Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its
largest part minus the number of its parts. Forn € Nm € Z,
we define

N(m,n) := p(n|rank m),

and let N(m, 0) := 0m 0.
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Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its
largest part minus the number of its parts. Forn € Nm € Z,
we define

N(m,n) := p(n|rank m),

and let N(m, 0) := 0m 0.

1, m=0,£1,%3,

Ex. We have that N(m, 4) =
0 else.
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“Modular” forms

Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its
largest part minus the number of its parts. Forn € Nm € Z,
we define

N(m,n) := p(n|rank m),

and let N(m, 0) := 0m 0.

1, m=0,£1,%3,

Ex. We have that N(m, 4) =
0 else.

o0
Note. For fixed n, we have that Z N(m,n) = p(n).
m=—o0
17



“Modular” forms

Example 2 revisited.
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“Modular” forms

Example 2 revisited.

The two variable partition rank generating function satisfies

oo o0 [e.9]

R(w;q) := Z Z N(m,n)w"q" =

n=0 m=—o0

q”
= (wag; q)n(Ww™'g; q)n’

18



“Modular” forms

Example 2 revisited.

The two variable partition rank generating function satisfies

o0 [e.9] (o9} 2

R(w;q) := Z Z N(m,n)w"q" =

n=0 m=—o0

qn
= (wq;q)n(w™'q;q)n’

where for n € Ny, the g-Pochhammer symbol is defined by

(@;9)h=(1—-a)1—aq)(1-ag*)(1—aq®)---(1—ag"™").

18



“Modular” forms

Observation. We have that

o0

R(1;9) =Y _p(n)g" = P(q)

n=0

is (essentially) a modular form, with g = ™", r € H.
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“Modular” forms

Observation. We have that

o0

R(1;9) =Y _p(n)g" = P(q)

n=0

is (essentially) a modular form, with g = ™", r € H.

Question. Is R(w; g) a modular form for other fixed values of w,
when viewed as a function of 7, with g = *™7?

19



“Modular” forms

Letw = —1. Then

SEDY (_‘Z,"; 7 = 2 Neln) ol

where Ne (resp. 0y (1) := p(n | even (resp. odd) rank).

20



Mock theta functions

Ramanujan’s mock theta function:

; 4
A = 1+ a¥g)=+ (?m) g

21



Mock theta functions

; Z,
A2) = 1+ almn Tyt -
b
el s ‘?—v—‘*p‘—‘"(ﬁqf—)(l+_?/ R
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Mock theta functions

f %M /';/I.—O/‘/’CC[ o t— c%

o 2 . I
(#‘/’@} - ! o +?) 7~+ (’ .’_?/)Ak([_.‘_@!{)&—"- e i
~ f2) + ('~?/)('—?/"/(l—z")~~+&/—_2p+224

= Xzl8
e e ) )
Sl Sy S S

a . e C %'7-': —)I ; 4
e e (A A o M 2 o
/C(/}.) k(’—%)(:—p’)(n z‘j,(/—q&%?}i")

e X = Q) i)

; /'»% ? =—/, Z4=-I/ Z =_./, o

il
LSt Tl Z“E{',_,

i o — o SN

-S. Ramanujan to G.H. Hardy, 1920
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Mock theta functions

Ramanujan’s observations:

= Thereis a(n explicit) modular form b(g) that “cuts out”
the exponential singularities of f(q).
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Ramanujan’s observations:

= Thereis a(n explicit) modular form b(g) that “cuts out”
the exponential singularities of f(q).

= Thatis, as g approaches any even order 2k root of unity
singularity of f(g), then
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Mock theta functions

Ramanujan’s observations:

= Thereis a(n explicit) modular form b(g) that “cuts out”
the exponential singularities of f(q).

= Thatis, as g approaches any even order 2k root of unity
singularity of f(g), then

fa) — (~1)*b(a) = O(1)

= Thatis, asymptotically, towards singularities,

mock theta &+ modular form = bounded

24



Mock theta functions

Theorem (Watson). Letq = ™%, 8 = 7%/a, g1 = e #, where
a € C,Re(a) > 0. Then

2
q- 24f —2\/ qlw q?7) -1-4\/30[/ smh e % dt.
smh

25



Mock theta functions

Theorem (Watson). Letq = ™%, 8 = 7%/a, g1 = e #, where
a € C,Re(ar) > 0. Then

/27 / h af?
q- 24f ) =2 qlw q1 )+4 3a/ i 32t dt.
smh

Remark. This may be interpreted as a transformation under
T+ —1/(27).

25



Mock theta functions

Theorem (Watson). Letq = e™®, 8 = 7%/a, q; = e~ #, where
a € C,Re(ar) > 0. Then

3o sinh(at) 3at?
24f =P )+4 / T2 dt
q \/ qlw i) V sinh ( 3°‘t

“error to modularlty

Remark. This may be interpreted as a transformation under
T+ —1/(27).
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Mock theta functions

“Theorem” (S. Zwegers, 2002). Ramanujan’s mock theta
functions are not modular forms,
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Mock theta functions

“Theorem” (S. Zwegers, 2002). Ramanujan’s mock theta
functions are not modular forms, but they can be completed to
form nonholomorphic modular forms.
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Mock theta functions

Zwegers’ completion:
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Zwegers’ completion:
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Mock theta functions

Zwegers’ completion:

g2 f(q)

1

not modular
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Mock theta functions

Zwegers’ completion:

g 3f(q) + f(q)

1

not modular
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Mock theta functions

Zwegers’ completion:

g 7flg) + f(q)
1 N
not modular not holomorphic
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Mock theta functions

Zwegers’ completion:

fr) = quflg) + f(g)
1 N
not modular not holomorphic
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Mock theta functions

Zwegers’ completion:

fir) = qEfg) + f(9)
e T N
modular not modular not holomorphic
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Mock theta functions

Zwegers’ completion:

— q q'
e (A (e (e

f(r) == g 21f(q) +2/\/_/ \/Td—iz)

29



Mock theta functions

Zwegers’ completion:

._ q q*
fla):=1+ A+q2 " Urqr(+ag2 "

?()_q 24f +2/\/_/ _gz)dz_
\/—I T+2)
where g(7) := — Z (n+ %)q%('”r%)2 is a weight 3/2 modular form.

n=—o0

29



Harmonic Maass forms

Definition (Bruinier-Funke). A weight k (k € %Z) harmonic Maass
formonT’ =T ((N), where 4|Nifk € 3 + Z,isa smooth M: H — C
satisfying
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Definition (Bruinier-Funke). A weight k (k € %Z) harmonic Maass
formonT’ =T ((N), where 4|Nifk € 3 + Z,isa smooth M: H — C
satisfying
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Harmonic Maass forms

Definition (Bruinier-Funke). A weight k (k € %Z) harmonic Maass
formonT’ =T ((N), where 4|Nifk € 3 + Z,isa smooth M: H — C
satisfying

i) Forall (95) e T'andall 7 € H, we have

y (aq— + b) (cT + d)kM(T) ifkeZ,
cr+d) (f,) EJQk(CT +d)M(T) ifke % + Z.

il) We have that Ay (M) = 0, where (if 7 = x + iy)
2 2 . o
Ay = —y>? <% + aa_yz) + iky <% + I%).
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Harmonic Maass forms

Definition (Bruinier-Funke). A weight k (k € %Z) harmonic Maass
formonT’ =T ((N), where 4|Nifk € 3 + Z,isa smooth M: H — C
satisfying

i) Forall (95) e T'andall 7 € H, we have

y (aq— + b) (cT + d)kM(T) ifkeZ,
cr+d) (f,) E;Qk(CT +d)M(T) ifke % + Z.

il) We have that Ay (M) = 0, where (if 7 = x + iy)
2 2 . o
Ay = —y>? <% + g—yz) + iky (% + I%).
il) There exists a polynomial Py (7) € C[g—!] such that

M(7) — Pu(r) = 0 (™)

asy — oo forsomee > 0.

30



Harmonic Maass forms

Lemma. Letk € $Z\{1} and T € {I'x(N),T'1(N)}.
If M is a HMF, then M has Fourier expansion

M) = > ai(mg"+> ¢ (nT(1 — k,—4wny)q".
n>—oo n<0
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Harmonic Maass forms

Lemma. Letk € $Z\{1} and T € {I'x(N),T'1(N)}.
If M is a HMF, then M has Fourier expansion

M) = > ai(mg"+> ¢ (nT(1 — k,—4wny)q".
n>—oo n<0

The incomplete gamma function is defined by

['(s,2) ::/ e‘ttsd—t.

t

31



Harmonic Maass forms

That is,
M(T) = Z n)q —I-ZCM I'(1 — k, —4mny)q"
n>>—oo n<0
“holomorphic part” “nonholomorphic part”
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Harmonic Maass forms

That is,
M(T) = Z n)q —I-ZCM I'(1 — k, —4mny)q"
n>>—oo n<0
“holomorphic part” “nonholomorphic part”

Definition (Zagier).
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Harmonic Maass forms

That is,

M(T) = Z n)q —I-ZCM (1 — k,—4mny)q"

n>—oo n<0

-

“holomorphic part” “nonholomorphic part”

Definition (Zagier). A mock modular form (of weight k) is the
holomorphic part of a harmonic Maass form (of weight k)*
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Harmonic Maass forms

That is,
M(T) = Z n)q —I-ZCM I'(1 — k, —4mny)q"
n>—oo n<0
“holomorphic part” “nonholomorphic part”

Definition (Zagier). A mock modular form (of weight k) is the
holomorphic part of a harmonic Maass form (of weight k)*
(*for which the NHP is nontrivial).

32



Harmonic Maass forms

Theorem (Zwegers). Ramanujan’s mock theta functions are*
weight 1/2 mock modular forms.
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Harmonic Maass forms

Theorem (Zwegers). Ramanujan’s mock theta functions are*
weight 1/2 mock modular forms. That is, if Fis one of
Ramanujan’s mtf’s, then for some ar € Qand ¢r € C,

F(t) = q*GE (1) + cr,

where G;r is the holomorphic part of a weight 1/2 HMF.
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Harmonic Maass forms

Theorem (Zwegers). Ramanujan’s mock theta functions are*
weight 1/2 mock modular forms. That is, if Fis one of
Ramanujan’s mtf’s, then for some ar € Qand ¢r € C,

F(t) = q*GE (1) + cr,

where G;r is the holomorphic part of a weight 1/2 HMF.

(*up to multiplication by a power of g and addition of a constant)

33



“Modular” forms

Example 2 (revisited.)
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“Modular” forms

Example 2 (revisited.)

A consequence of mock modularity:

We have the exact formula

Ne(n) — No(n)

Theorem (Bringmann-0Ono), Conjectured by Andrews-Dragonette.

o A2m _M YT
) B e ), (™
(24n—1 )i m 2 12m

).

34



Harmonic Maass forms

Example 2 (revisited). Let (y := e2™/N,

Theorem (Bringmann-0Ono).
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Harmonic Maass forms

Example 2 (revisited). Let (y := e2™/N,

Theorem (Bringmann-Ono). Fixw = ¢f # 1. Then R((y; q)
(with g = €™, 7 € H) is a weight 1/2 mock modular form.
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Harmonic Maass forms

Example 2 (revisited). Let (y := e2™/N,

Theorem (Bringmann-Ono). Fixw = ¢f # 1. ThenR(¢];q)

(with g = €™, 7 € H) is a weight 1/2 mock modular form.
More precisely,

G R(GG: a0 +its ) sin(g) [ D g,
—F \/W

is a harmonic Maass form of weight 1/2 and level 144.
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Harmonic Maass forms

Example 2 (revisited). Let (y := e2™/N,

Theorem (Bringmann-Ono). Fixw = ¢f # 1. ThenR(¢];q)

(with g = €™, 7 € H) is a weight 1/2 mock modular form.
More precisely,

i O(f; p2)

is a harmonic Maass form of weight 1/2 and level 144.

g HR(CE; 0) + i(371ep)  sin(7)

b dz

Here, © is a weight 3/2 modular form, and ¢, € N.
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Harmonic Maass forms

Example 2 revisited. We have the weight 1/2 HMF

ico @(b,gbZ)

—7 /i z+7'

i,
g /*R(¢E; q") +i(37"4p)? sin(Z2)

36



Harmonic Maass forms

Example 2 revisited. We have the weight 1/2 HMF

_ . foo S) 7€bz)
aIBR(CE: o) + i3~ ep) b sin(ag) [ —obifed)
7 /—i(z+7T)

The shadow of the mock modular form g~‘/24R(¢¢; g%) is (up to a
constant multiple) the theta function ©(}; /).

36



Mock theta functions

Question.
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Mock theta functions

Question.

Ramanujan’s “definition” of a mock theta function?
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Mock theta functions

“Definition” (Ramanujan). A mock theta function F satisfies
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Mock theta functions

“Definition” (Ramanujan). A mock theta function F satisfies

1. infinitely many roots of unity are exponential
singularities,
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Mock theta functions

“Definition” (Ramanujan). A mock theta function F satisfies
1. infinitely many roots of unity are exponential
singularities,
2. for every root of unity ( there is a modular form 9.(q)
such that the difference F(q) — g®¥¢(q) is bounded as
q — ( radially,
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Mock theta functions

“Definition” (Ramanujan). A mock theta function F satisfies

1. infinitely many roots of unity are exponential
singularities,

2. for every root of unity ( there is a modular form 9.(q)
such that the difference F(q) — g*9¢(q) is bounded as
q — ( radially,

3. there does not exist a single modular form ¥(q) such

that F(q) — g*9(q) is bounded as g approaches any
root of unity radially.

38



Mock theta functions

f %M /';/I.—O/‘/’CC[ o t— c%

o 2 . I
(#‘/’@} - ! o +?) 7~+ (’ .’_?/)Ak([_.‘_@!{)&—"- e i
~ f2) + ('~?/)('—?/"/(l—z")~~+&/—_2p+224

= Xzl8
e e ) )
Sl Sy S S

a . e C %'7-': —)I ; 4
e e (A A o M 2 o
/C(/}.) k(’—%)(:—p’)(n z‘j,(/—q&%?}i")

e X = Q) i)

; /'»% ? =—/, Z4=-I/ Z =_./, o

il
LSt Tl Z“E{',_,

i o — o SN

-S. Ramanujan to G.H. Hardy, 1920
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Mock theta functions

Ramany)an's mock theta function

4 9

q q q
(92 (+a2(+2? ~ (+qP(+q2(1+g) =~

fa) =1+

has singularities when
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Mock theta functions

Ramanu)an's mock theta function

4 9

q q q

flg) =1+ itq2 + (1+92(1+q%)? + (1+9)2(1+¢%)2(1+q°)2 +

has singularitieswheng” = —1 (n € N).

a4



Mock theta functions

e7rl/3

15
-15 -1'/\ {i5
e27rir/s
-15i

...roots of unity

42



Mock theta functions

Ramanujan’s observations:

= Thereis a(n explicit) modular form b(g) that “cuts out”
the exponential singularities of f(q).
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43



Mock theta functions

Ramanujan’s observations:

= Thereis a(n explicit) modular form b(g) that “cuts out”
the exponential singularities of f(q).

= Thatis, as g approaches any even order 2k root of unity
singularity of f(g), then
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Mock theta functions

Ramanujan’s observations:

= Thereis a(n explicit) modular form b(g) that “cuts out”
the exponential singularities of f(q).

= Thatis, as g approaches any even order 2k root of unity
singularity of f(g), then

fa) — (~1)*b(a) = O(1)

= Thatis, asymptotically, towards singularities,

mock theta &+ modular form = bounded
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Ramanujan revisited

b(g) = g2 )

(joint work with K. Ono, R.C. Rhoades)
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As g — —1, we computed (with help of R. Lemke Oliver)

44



Ramanujan revisited

b(q) := q7i 552

(joint work with K. Ono, R.C. Rhoades)
As g — —1, we computed (with help of R. Lemke Oliver)

f(—0.994) ~ —1-103,

44



Ramanujan revisited

b(q) := q7i 552

(joint work with K. Ono, R.C. Rhoades)
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Ramanujan revisited

b(q) := q7i 552

(joint work with K. Ono, R.C. Rhoades)
As g — —1, we computed (with help of R. Lemke Oliver)

f(—0.994) ~ —1-103!, f(—0.996) ~ —1-10%®, f(—0.998) ~ —6-10% . ..

44



Ramanujan revisited

Ramanujan’s observation gives:

q —0.990 | —0.992 | —0.994 | —0.996 | —0.998
flg) +b(q) || 3.961... [3.969... | 3.976... | 3.984... | 3.992... |
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Ramanujan revisited

Ramanujan’s observation gives:

q —0.990 | —0.992 | —0.994 | —0.996 | —0.998
flg) +b(q) || 3.961... [3.969... | 3.976... | 3.984... | 3.992... |

This suggests that

lim (f(q) + b(q)) = 4.
g——1
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Ramanujan revisited

q 0.992i 0.9947 0.9967
fq) 2-10° —4.6-105 | 2- 105 —4-105 | 1.0- 1012 — 2- 10%%
f(q) — b(q) | ~ 0.05+3.851 | ~0.04 +3.801 | ~ 0.03 + 3.92i
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Ramanujan revisited

q 0.992i 0.9947 0.9967
fq) 2-10° —4.6-105 | 2- 105 —4-105 | 1.0- 1012 — 2- 10%%
f(q) — b(q) | ~ 0.05+3.851 | ~0.04 +3.801 | ~ 0.03 + 3.92i

This suggests that

lim(f(q) — b()) = 4i

q—i
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Ramanujan revisited

i) What are the O(1) constants in

lim(f(q) — (=1)“b(q)) = 0(1)7

q—¢
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Ramanujan revisited

i) What are the O(1) constants in
lim(f(g) — (—1)"b(q)) = O(1)?

q—¢

ii) How do they arise?
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If  is an even 2k order root of unity, then

k—1

lim(fg) - (-1)*b(q)) = =4 Y _(1+O* 1+ - (1+¢M*¢".

q—¢ —0
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If  is an even 2k order root of unity, then

k—1

lim(fq)— (=1)*b(q)) = —4Y (1 + Q*(1+¢*)*--- (1 + ¢3¢

q—¢ —0
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Ramanujan revisited

Remark. We prove this as a special case of a more general theorem
involving:
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Ramanujan revisited

Remark. We prove this as a special case of a more general theorem
involving:

. = S qn
R(w;q) := Z (wg; q)n(w=1q;q)n

2

(Dyson’s rank)

n=0
C(wig) == (9:9)
w;q) := TG (Andrews-Garvan crank)
Uwiq) ==Y (wq;@)a(w'q;9)ag""™"  (Unimodal rank)
n=0

50



Combinatorial “modular” forms

Let

N(m, n) := #{partitions X of n | rank(\) = m},
M(m, n) := #{partitions X of n | crank(\) = m},

u(m,n) := #{size n strongly unimodal sequences with rank m}.
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Combinatorial “modular” forms

Asequence {g; 7y of integers is called strongly unimodal of size n if

= ap+ax+---+0as=n,
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Combinatorial “modular” forms

Asequence {g; 7y of integers is called strongly unimodal of size n if

a0y +0ay+ - +as=n,
= 0<01 <0y <:--<0a >0 >---0s > 0forsomer.
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Combinatorial “modular” forms

Asequence {g; le of integers is called strongly unimodal of size n if

a0y +0ay+ - +as=n,
s 0<a,<0y<---<0a >0y >---0as > 0forsomer.

The rank equals s — 2r + 1 (difference between # terms after and
before the “peak”).

52



Combinatorial “modular” forms

mock modular [Bringmann-Ono]

RS
Z Z (m, mw"q" = (Wq; Q)oo(W™1G; )00

n=0 m=—o0

modular

o0 o0

Z > u(m "q" = " (wg; @)n(w'q; q)ag" .

n=0 m=—o00 n=0
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Ramanujan revisited

Theorem (F-Ono-Rhoades)

Ifép = et and1 < a < b, then for every suitable root of unity ¢
there is an explicit integer ¢ for which

m (R(¢559) — 2 C(C39)) = —(1 = ¢5) (1 — ¢, U(CH5€)-

li
q—¢
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Ramanujan revisited

Remark
The first theorem is the special case a = 1, b = 2, using that

R(—1;q) = fq) and C(-1;q) = b(q).
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Ramanujan revisited

Remark
The first theorem is the special case a = 1, b = 2, using that

R(—1;q) = fq) and C(-1;q) = b(q).

Remark
Specializations of R(w; q) give rise to other mock theta functions.
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Ramanujan revisited

lim (f(q) — (~1)*b(q)) = —4U(~1;0).

q—¢
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Ramanujan revisited

lim (f(q) — (~1)*b(q)) = —4U(~1;0).

q—¢

/!

mock modular
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Ramanujan revisited

lim (f(q) — (~1)*b(q)) = —4U(~1;0).

q—¢

/ T

mock modular modular
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Ramanujan revisited

lim (f(q) — (~1)*b(q)) = —4U(~1;0).

q—¢

/! T N

mock modular modular ?
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Quantum modular forms

Quantum modular Forms

-D. Zagier, 2010
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Quantum modular forms

Quantum modular Forms

“..we want to discuss...another type of modular object
which...we call quantum modular forms.

-D. Zagier, 2010
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Quantum modular Forms

“..we want to discuss...another type of modular object
which...we call quantum modular forms.

These are objects which live at the boundary of the space...,

-D. Zagier, 2010
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Quantum modular forms

Quantum modular Forms

“..we want to discuss...another type of modular object
which...we call quantum modular forms.

These are objects which live at the boundary of the space...,

...and have a transformation behavior of a quite different
type...”
-D. Zagier, 2010
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Quantum modular forms

= Quantum modular forms are defined in Q,
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Quantum modular forms

= Quantum modular forms are defined in Q,
and take valuesin C.
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Quantum modular forms

= Quantum modular forms are defined in Q,
and take valuesin C.

= They exhibit modular symmetry in Q...
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Quantum modular forms

= Quantum modular forms are defined in Q,
and take valuesin C.

= They exhibit modular symmetry in Q...
...up to the addition of smooth error functionsin R.
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Quantum modular forms

Let
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Quantum modular forms

Let

Modular transformation:

Fir) - er +4) 4 (21E0) o
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Quantum modular forms

letF: Q> C, v:=(95) eT CSL2(Z), xeQ.

Modular transformation:

F(x) — e M (y)(ex + d)~*F (%) —9
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Quantum modular forms

Definition (Zagier '10)
A quantum modular form of weight k (k € 1Z) is function
F:Q — C,suchthatforally = (95) € I, the functions

hy(X) = hen(X) := F(X) — e () (cx + d) T4F <Z)):j: 3)

extend to suitably continuous or analytic functions in R.
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Quantum modular forms

Zagier’s examples arise from areas such as:

= theta series associated to indefinite quadratic forms
= quantum invariants of 3-manifolds
= Jones polynomials for knots
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Quantum modular forms

The real part of a

quantum modular Form

4.
T s
o RN

Imaginary Axis

I E

)

Real Axis

9(x)

Image Credit: D. Zagier, 2010
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Quantum modular forms

The real part of a The real and imaginary parts
quantum modular Form of its error fo symmetry

Imaginary Axis
Imaginary Axis
\

)

Real Axis Real Axis

9(x)

Image Credit: D. Zagier, 2010
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Quantum modular forms

The real part of a The real and imaginary parts
quantum modular Form of its error fo symmetry

2 (%)
< B3
< <
g g /.
%_’ -1s -1 =5 5 1 %) 15 - T
© B o —
g ! E -5 /

¥ o :

e : B
Real Axis Real Axis

9(x) “9(x) - 9(-1/x)"

Image Credit: D. Zagier, 2010
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If  is an even 2k order root of unity, then

k—1
},Ln}(f(q)—(—l)kb(q)) =—4U(-1;¢)=—4> (1+Q*A+ )2 (14"

%
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If  is an even 2k order root of unity, then

k—1

lim(f(g)—(=1)*b(q)) = —4U(~1;Q)=—4Y (1 +)* (1 +¢*)*--- (1 + ¢3¢

q—¢ /n_O

= This can be realized as the value of a function on Q...
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If  is an even 2k order root of unity, then

k—1
}]Ln}(f(q)—(—l)kb(q)) =—4U(-1;¢)=—4> (1+Q*A+ )2 (14"

%

= This can be realized as the value of a function on Q...
...which is a quantum modular form.
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Ramanujan revisited

Theorem (F-Ono-Rhoades)
If C is an even 2k order root of unity, then

k—1

lim(f(g)—(=1)*b(q)) = —4U(~1;Q)=—4Y (1 +)* (1 +¢*)*--- (1 + ¢3¢

q—¢ /n_O

= This can be realized as the value of a function on Q...
...which is a quantum modular form.
(Bryson-Ono-Pittman-Rhoades, F-Ki-Truong Vu)
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Ramanujan revisited

Let7 € H:= {r € C|Im(7) > 0},and g = &>,

oritls e
e~

‘,‘;qui’af/uﬁi't;f{/

- rational number r/s
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Ramanujan revisited

lim (f(q) - (~1)*b(q)) = ~4U(~1;).

q—¢
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Ramanujan revisited

lim (f(q) - (~1)*b(q)) = ~4U(~1;).

q—¢

/!

mock modular
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Ramanujan revisited

lim (f(q) - (~1)*b(q)) = ~4U(~1;).

q—¢

/! T

mock modular modular
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Ramanujan revisited

lim (f(q) - (~1)*b(q)) = ~4U(~1;).

q—¢

/! T N

mock modular modular quantum modular
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Proof ingredients

= Ramanujan’s identity

o0 2 o0 . _1. _1' _
nz:; a0, Bq;q)n+;q(a :q)n(871Q)n

igs (1 —a)(Bah)z (qat5q) _ (B749)  plu, v;7).

(q — eZ‘iri‘l" a= e27'riu’ ﬁ — eQTriv)
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Proof ingredients

= Ramanujan’s identity

Z aq o ﬂq;q)n+Zq”(a‘1;q)n(6‘1;q)n—

n=1

igs (1 —a)(Bah)z (qat5q) _ (B749)  plu, v;7).

n=0

(q — e27ri‘r’ a= eQﬂ'iu’ 6 — eZﬂ’iv)

= Transformation theory (Zwegers) of the mock Jacobi
form

Tiu (_l)nq”('%l)e%rinv

u, v, = :
M( , ,7-) 19(V; 7_) o 1— e27rIan
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Proof ingredients

= Ramanujan’s identity
,,Z (ag; q Bq Qn =
iqs (1 — a)(BaY)2 (qat;q) _ (B7q) _ ulu, v 7).

q"( Q)n =

(q — e27ri‘r’ a= eQﬂ'iu’ 6 — eZﬂ’iv)

= Transformation theory (Zwegers) of the mock Jacobi
form

Tiu (_l)nq”('%l)e%rinv

u,Vv; = -
,LL( ) ,T) 19(\/’ 7_) — 1 _ e27rIan

= Explicit asymptotic calculations
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Bringmann-Rolen/Jang-Lobrich: more general “radial limit”
theorems for the Gordon-MclIntosh universal mock ¥Js:

n(n+1) n(n 1)

oo ) q o oo
, w;
HZ:% Do (w1g: @)y 8049 ; (w=1g;q)n’
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Bringmann-Rolen/Jang-Lobrich: more general “radial limit”
theorems for the Gordon-MclIntosh universal mock ¥Js:

n(n+1) n(n 1)

oo )q o oo
Z w1g . B9 HZI (wq;q)n

n:O n+1

Theorem (Bringmann-Rolen)

There is a linear combination of theta functions ¥4 p g ¢ (q) such that
the radial limit difference limg_, ¢ (92(C2q"; %) — Yapapc(q)) is
bounded, and is the special value of a quantum modular form.
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“..[no one has] proved that any of Ramanujan’s mock theta functions
are really mock theta functions according to his definition.”

-B.C. Berndt, Ramanujan, his lost notebook, its importance.
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By incorporating the theory of harmonic Maass forms,
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By incorporating the theory of harmonic Maass forms,

Theorem (Griffin-Ono-Rolen)
Ramanujan’s mock theta functions satisfy his definition.
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Theorem (Choi-Lim-Rhoades)
Let F be a mock modular form and ( a root of unity. There is a weakly
holomorphic modular form q®¥¢(q) such that the radial limit

limgy.c(F(q) — q*9¢(q)) is the special value of a quantum modular
form.

n



= Mathematical physics

= Moonshine, Representation theory
= Combinatorics

= Topology
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= Mathematical physics

= Moonshine, Representation theory
= Combinatorics

= Topology

Thank you
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