Mock modular and quantum modular forms

Modularity in quantum systems, KITP

Amanda Folsom

Amherst College

Modular forms

Example 1.

Modular forms

Example 1.

Definition. For $m \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}, n \in \mathbb{N}:=\{1,2,3, \ldots\}$, the mth power divisor function is defined by

$$
\sigma_{m}(n):=\sum_{\substack{d \mid n \\ d>0}} d^{m}
$$

Modular forms

A generating function:
$\sum_{n=1}^{\infty} \sigma_{m}(n) q^{n}$

Modular forms

A generating function:

$$
\sum_{n=1}^{\infty} \sigma_{m}(n) q^{n}=\sigma_{m}(1) q+\sigma_{m}(2) q^{2}+\sigma_{m}(3) q^{3}+\sigma_{m}(4) q^{4}+\cdots
$$

Modular forms

A generating function:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sigma_{m}(n) q^{n} & =\sigma_{m}(1) q+\sigma_{m}(2) q^{2}+\sigma_{m}(3) q^{3}+\sigma_{m}(4) q^{4}+\cdots \\
& =q+\left(1+2^{m}\right) q^{2}+\left(1+3^{m}\right) q^{3}+\left(1+2^{m}+4^{m}\right) q^{4}+\cdots
\end{aligned}
$$

Modular forms

Let $m=2 k-1, k \in\{2,3,4,5, \ldots\}$.

Modular forms

Let $m=2 k-1, k \in\{2,3,4,5, \ldots\}$.

Definition. The weight $2 k$ Eisenstein series is defined by

$$
E_{2 k}(\tau):=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

Modular forms

Let $m=2 k-1, k \in\{2,3,4,5, \ldots\}$.

Definition. The weight $2 k$ Eisenstein series is defined by

$$
E_{2 k}(\tau):=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

$$
q=q_{\tau}:=e^{2 \pi i \tau}
$$

Modular forms

Let $m=2 k-1, k \in\{2,3,4,5, \ldots\}$.

Definition. The weight $2 k$ Eisenstein series is defined by

$$
E_{2 k}(\tau):=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

$$
q=q_{\tau}:=e^{2 \pi i \tau}, \quad \tau \in \mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{lm}(\tau)>0\}
$$

Modular forms

$$
\text { Let } m=2 k-1, k \in\{2,3,4,5, \ldots\} .
$$

Definition. The weight $2 k$ Eisenstein series is defined by

$$
E_{2 k}(\tau):=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

$$
q=q_{\tau}:=e^{2 \pi i \tau}, \quad \tau \in \mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{lm}(\tau)>0\}
$$

$B_{\kappa}:=\kappa$ th Bernoulli number.

Modular forms

:- The modular group

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

Modular forms

: The modular group

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

Γ is generated by

$$
T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad S:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Modular forms

= Γ acts on \mathbb{H} by

$$
\begin{gathered}
\Gamma \cdot \mathbb{H} \longrightarrow \mathbb{H} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau:=\frac{a \tau+b}{c \tau+d}
\end{gathered}
$$

Modular forms

= Γ acts on \mathbb{H} by

$$
\begin{gathered}
\Gamma \cdot \mathbb{H} \longrightarrow \mathbb{H} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau:=\frac{a \tau+b}{c \tau+d}
\end{gathered}
$$

Ex. $T \cdot \tau=\tau+1, \quad S \cdot \tau=-1 / \tau$

Modular forms

= Γ acts on \mathbb{H} by

$$
\begin{gathered}
\Gamma \cdot \mathbb{H} \longrightarrow \mathbb{H} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau:=\frac{a \tau+b}{c \tau+d}
\end{gathered}
$$

Ex. $T \cdot \tau=\tau+1, \quad S \cdot \tau=-1 / \tau$
" $E_{2 k}$ is "symmetric" with respect to the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{H}...

Modular forms

That is, for all $\tau \in \mathbb{H}$,

$$
\begin{aligned}
& E_{2 k}(\tau+1)=E_{2 k}(\tau), \\
& E_{2 k}(-1 / \tau)=\tau^{2 k} E_{2 k}(\tau)
\end{aligned}
$$

Modular forms

That is, for all $\tau \in \mathbb{H}$,

$$
\begin{aligned}
& E_{2 k}(\tau+1)=E_{2 k}(\tau), \\
& E_{2 k}(-1 / \tau)=\tau^{2 k} E_{2 k}(\tau),
\end{aligned}
$$

and in general, for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
E_{2 k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2 k} E_{2 k}(\tau) .
$$

Modular forms

Modular forms

A weight $k \in \frac{1}{2} \mathbb{Z}$ modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ on $\Gamma^{\prime} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ satisfies

Modular forms

> A weight $k \in \frac{1}{2} \mathbb{Z}$ modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ on $\Gamma^{\prime} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ satisfies
" f is holomorphic on \mathbb{H},

Modular forms

A weight $k \in \frac{1}{2} \mathbb{Z}$ modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ on $\Gamma^{\prime} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ satisfies
= f is holomorphic on \mathbb{H},
$f\left(\frac{a \tau+b}{c \tau+d}\right)=\varepsilon_{\gamma}(c \tau+d)^{k} f(\tau)$,

Modular forms

A weight $k \in \frac{1}{2} \mathbb{Z}$ modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ on $\Gamma^{\prime} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ satisfies
" f is holomorphic on \mathbb{H},
$=f\left(\frac{a \tau+b}{c \tau+d}\right)=\varepsilon_{\gamma}(c \tau+d)^{k} f(\tau),\left|\varepsilon_{\gamma}\right|=1, \forall \tau \in \mathbb{H}, \gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma^{\prime}$

Modular forms

A weight $k \in \frac{1}{2} \mathbb{Z}$ modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ on $\Gamma^{\prime} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$

 satisfies= f is holomorphic on \mathbb{H},
$f\left(\frac{a \tau+b}{c \tau+d}\right)=\varepsilon_{\gamma}(c \tau+d)^{k} f(\tau),\left|\varepsilon_{\gamma}\right|=1, \forall \tau \in \mathbb{H}, \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma^{\prime}$
"- f is holomorphic or meromorphic in the cusps.

Modular forms

A weight $k \in \frac{1}{2} \mathbb{Z}$ modular form $f: \mathbb{H} \rightarrow \mathbb{C}$ on $\Gamma^{\prime} \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ satisfies
: fis holomorphic on \mathbb{H},
$\# f\left(\frac{a \tau+b}{c \tau+d}\right)=\varepsilon_{\gamma}(c \tau+d)^{k} f(\tau),\left|\varepsilon_{\gamma}\right|=1, \forall \tau \in \mathbb{H}, \gamma=\left(\begin{array}{c}a b \\ c \\ c\end{array}\right) \in \Gamma^{\prime}$
"- f is holomorphic or meromorphic in the cusps. e.g., f has a Fourier expansion of the shape

$$
f(\tau)=\sum_{n=m}^{\infty} a_{n} q^{\frac{n}{n}},
$$

$$
\text { where } q=e^{2 \pi i \tau}, \quad a_{n}=a_{f, n} \in \mathbb{C}, m=m_{f} \in \mathbb{Z}, h=h_{f} \in \mathbb{N} \text {. }
$$

Modular forms

Example 2.

Definition. A partition of an integer $n \geq 1$ is a set of positive integers $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ such that

Modular forms

Example 2.

Definition. A partition of an integer $n \geq 1$ is a set of positive integers $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ such that
$\lambda_{1}+\cdots+\lambda_{r}=n$,
$\Rightarrow \lambda_{1} \geq \cdots \geq \lambda_{r}$.

Modular forms

Example 2.

Definition. A partition of an integer $n \geq 1$ is a set of positive integers $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ such that
$\Rightarrow \lambda_{1}+\cdots+\lambda_{r}=n$,
$\Rightarrow \lambda_{1} \geq \cdots \geq \lambda_{r}$.
We define the partition function by

$$
p(n):=\#\{\text { partitions of } n\}
$$

and we let $p(0):=1$.

Modular forms

Example 2.

Definition. A partition of an integer $n \geq 1$ is a set of positive integers $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ such that
$\Rightarrow \lambda_{1}+\cdots+\lambda_{r}=n$,
$\Rightarrow \lambda_{1} \geq \cdots \geq \lambda_{r}$.
We define the partition function by

$$
p(n):=\#\{\text { partitions of } n\}
$$

and we let $p(0):=1$.

Modular forms

Example 2.

Definition. A partition of an integer $n \geq 1$ is a set of positive integers $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ such that
$\Rightarrow \lambda_{1}+\cdots+\lambda_{r}=n$,
$\Rightarrow \quad \lambda_{1} \geq \cdots \geq \lambda_{r}$.
We define the partition function by

$$
p(n):=\#\{\text { partitions of } n\}
$$

and we let $p(0):=1$.

Ex. $p(4)=5$, since $4=4,3+1,2+2,2+1+1,1+1+1+1$.

Modular forms

Theorem (Euler). Let $|q|<1$. The partition generating function

$$
P(q):=\sum_{n=0}^{\infty} p(n) q^{n}=1+q+2 q^{2}+3 q^{3}+5 q^{4}+\cdots
$$

satisfies

$$
P(q)=\prod_{k=1}^{\infty} \frac{1}{1-q^{k}}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}
$$

Modular forms

That is,

$$
q^{-\frac{1}{24}} \sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{\eta(\tau)}
$$

where the Dedekind η-function

$$
\eta(\tau):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

with $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$, is a modular form of weight $1 / 2$.

Modular forms

Example 2 (cont.)

Modular forms

Example 2 (cont.)

A consequence of modularity:

Theorem (Hardy-Ramanujan-Rademacher) We have the exact formula

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{m=1}^{\infty} \frac{A_{m}(n)}{m} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 m}\right) .
$$

Modular symmetry

Question.

Modular symmetry

Question.

What could be gained by perturbing modular symmetry?

"Modular" forms

Example 1 revisited.

"Modular" forms

Example 1 revisited.

Let $k=1$. The function

$$
E_{2}(\tau):=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

is not a (weight 2) modular form.

"Modular" forms

Example 1 revisited.

Let $k=1$. The function

$$
E_{2}(\tau):=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

is not a (weight 2) modular form. Namely, we have that

$$
E_{2}(-1 / \tau)=\tau^{2} E_{2}(\tau) \underbrace{-\frac{6 \dot{i} \tau}{\pi}}_{\text {"error to modularity" }}
$$

"Modular" forms

Example 1 revisited.

"Modular" forms

Example 1 revisited.

Define the function

$$
\widehat{E}_{2}(\tau):=E_{2}(\tau)-\frac{3}{\pi \operatorname{lm}(\tau)}
$$

"Modular" forms

Example 1 revisited.

Define the function

$$
\widehat{E}_{2}(\tau):=E_{2}(\tau)-\frac{3}{\pi \operatorname{lm}(\tau)} .
$$

Then

$$
\widehat{E}_{2}(-1 / \tau)=\tau^{2} \widehat{E}_{2}(\tau)
$$

"Modular" forms

Example 1 revisited.

Define the function

$$
\widehat{E}_{2}(\tau):=E_{2}(\tau)-\frac{3}{\pi \operatorname{lm}(\tau)}
$$

Then

$$
\widehat{E}_{2}(-1 / \tau)=\tau^{2} \widehat{E}_{2}(\tau)
$$

That is, \widehat{E}_{2} is an almost holomorphic weight 2 modular form. (Kaneko-Zagier)

Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its largest part minus the number of its parts.

"Modular" forms

Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its largest part minus the number of its parts. For $n \in \mathbb{N}, m \in \mathbb{Z}$, we define

$$
N(m, n):=p(n \mid \operatorname{rank} m),
$$

and let $N(m, 0):=\delta_{m, 0}$.

"Modular" forms

Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its largest part minus the number of its parts. For $n \in \mathbb{N}, m \in \mathbb{Z}$, we define

$$
N(m, n):=p(n \mid \operatorname{rank} m),
$$

and let $N(m, 0):=\delta_{m, 0}$.

Ex. We have that $N(m, 4)= \begin{cases}1, & m=0, \pm 1, \pm 3, \\ 0 & \text { else } .\end{cases}$

"Modular" forms

Example 2 revisited.

Definition (Dyson). The rank of a partition is defined to be its largest part minus the number of its parts. For $n \in \mathbb{N}, m \in \mathbb{Z}$, we define

$$
N(m, n):=p(n \mid \operatorname{rank} m),
$$

and let $N(m, 0):=\delta_{m, 0}$.

Ex. We have that $N(m, 4)= \begin{cases}1, & m=0, \pm 1, \pm 3, \\ 0 & \text { else } .\end{cases}$
Note. For fixed n, we have that $\sum_{m=-\infty}^{\infty} N(m, n)=p(n)$.

"Modular" forms

Example 2 revisited.

"Modular" forms

Example 2 revisited.

The two variable partition rank generating function satisfies

$$
R(w ; q):=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} N(m, n) w^{m} q^{n}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(w q ; q)_{n}\left(w^{-1} q ; q\right)_{n}}
$$

"Modular" forms

Example 2 revisited.

The two variable partition rank generating function satisfies

$$
R(w ; q):=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} N(m, n) w^{m} q^{n}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(w q ; q)_{n}\left(w^{-1} q ; q\right)_{n}},
$$

where for $n \in \mathbb{N}_{0}$, the q-Pochhammer symbol is defined by

$$
(a ; q)_{n}=(1-a)(1-a q)\left(1-a q^{2}\right)\left(1-a q^{3}\right) \cdots\left(1-a q^{n-1}\right) .
$$

"Modular" forms

Observation. We have that

$$
R(1 ; q)=\sum_{n=0}^{\infty} p(n) q^{n}=P(q)
$$

is (essentially) a modular form, with $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$.

"Modular" forms

Observation. We have that

$$
R(1 ; q)=\sum_{n=0}^{\infty} p(n) q^{n}=P(q)
$$

is (essentially) a modular form, with $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$.

Question. Is $R(w ; q)$ a modular form for other fixed values of w, when viewed as a function of τ, with $q=e^{2 \pi i \tau}$?

"Modular" forms

Let $w=-1$. Then

$$
R(-1 ; q)=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}=\sum_{n=0}^{\infty}\left(N_{e}(n)-N_{o}(n)\right) q^{n}
$$

where $N_{e(\text { resp. o) }}(n):=p(n \mid$ even (resp. odd) rank).

Mock theta functions

Ramanujan's mock theta function:

$$
f(q)=1+\frac{q}{(1+q)^{2}}+\frac{q^{4}}{(1+v)^{2}\left(1+q^{2}\right)^{2}}+
$$

Mock theta functions

$$
\begin{aligned}
& f(q)=1+\frac{q}{(1+q)^{2}}+\frac{q^{4}}{(1+v)^{2}\left(1+q^{2}\right)^{2}}+\cdots \\
& \phi(v)=1+\frac{2}{1+v^{2}}+\frac{v^{4}}{\left(1+v^{2}\right)\left(1+2^{4}\right)}+\cdots \\
& \psi(v)=\frac{q}{1-v}+\frac{q^{4}}{a-v)\left(1-v^{\circ}\right)}+\frac{q^{9}}{\left.(-v)\left(1-v^{2}\right)(1-2)\right)} \\
& x(2)=1+\frac{2}{1-2+2^{2}}+\frac{2^{4}}{\left(-2+2^{2}\right)\left(1-2^{2}+221\right.} \\
& \psi(v)=1+2(1+2)+2^{0}(1+2)\left(1+2^{2}\right) \\
& +2^{6}(1+2)(1+2)\left(1+2^{2}\right) \\
& f(0)=1+\frac{q^{2}}{1+q}+\frac{q^{6}}{(1+q)\left(1+q^{2}\right)}+\frac{v^{12}}{d+v)\left(1+z^{2}\right)}
\end{aligned}
$$

Mock theta functions

$$
\begin{aligned}
& \text { I have proved that- if } \\
& f(q)=1+\frac{q}{(1+2)^{2}}+\frac{2 i^{2}}{(1+2)^{2}\left(1+v^{2}\right)^{2}}+\cdots \\
& \text { the } f(\vartheta)+(1-2)\left(1-\vartheta^{3}\right)\left(1-2^{2}\right) \cdots\left(1-2 \underline{2}+22^{4}\right) \\
& \text { atilt }=O(1)
\end{aligned}
$$

$$
\begin{aligned}
& f(2)(1-2)\left(1-2^{2}\right)(1-2) \cdots\left(1-2 \varepsilon+22^{5}\right) \\
& \text { atalta }=\frac{O}{(1)} q^{2}=-1, q^{4}=-1,2^{6}=-1, \ldots \\
& \text { Also oblucans }-\mathrm{Cy} f(2)=0(1) \\
& \text { at all the points } q=1, i^{3}=1,2^{5}=1 \text {, }
\end{aligned}
$$

Mock theta functions

Ramanujan's observations:

". There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.

Ramanujan's observations:

"- There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.
.- That is, as q approaches any even order $2 k$ root of unity singularity of $f(q)$, then

Ramanujan's observations:

". There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.
.- That is, as q approaches any even order $2 k$ root of unity singularity of $f(q)$, then

$$
f(q)-(-1)^{k} b(q)=O(1)
$$

Mock theta functions

Ramanujan's observations:

"- There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.
.- That is, as q approaches any even order $2 k$ root of unity singularity of $f(q)$, then

$$
f(q)-(-1)^{k} b(q)=O(1)
$$

.- That is, asymptotically, towards singularities,

$$
\text { mock theta } \pm \text { modular form }=\text { bounded }
$$

Mock theta functions

Theorem (Watson). Let $q=e^{-\alpha}, \beta=\pi^{2} / \alpha, q_{1}=e^{-\beta}$, where $\alpha \in \mathbb{C}, \operatorname{Re}(\alpha)>0$. Then

$$
q^{-\frac{1}{24}} f(q)=2 \sqrt{\frac{2 \pi}{\alpha}} q_{1}^{\frac{4}{3}} \omega\left(q_{1}^{2}\right)+4 \sqrt{\frac{3 \alpha}{2 \pi}} \int_{0}^{\infty} \frac{\sinh (\alpha t)}{\sinh \left(\frac{3 \alpha t}{2}\right)} e^{-\frac{3 \alpha t^{2}}{2}} d t
$$

Mock theta functions

Theorem (Watson). Let $q=e^{-\alpha}, \beta=\pi^{2} / \alpha, q_{1}=e^{-\beta}$, where $\alpha \in \mathbb{C}, \operatorname{Re}(\alpha)>0$. Then

$$
q^{-\frac{1}{24}} f(q)=2 \sqrt{\frac{2 \pi}{\alpha}} q_{1}^{\frac{4}{3}} \omega\left(q_{1}^{2}\right)+4 \sqrt{\frac{3 \alpha}{2 \pi}} \int_{0}^{\infty} \frac{\sinh (\alpha t)}{\sinh \left(\frac{3 \alpha t}{2}\right)} e^{-\frac{3 \alpha t^{2}}{2}} d t .
$$

Remark. This may be interpreted as a transformation under $\tau \mapsto-1 /(2 \tau)$.

Mock theta functions

Theorem (Watson). Let $q=e^{-\alpha}, \beta=\pi^{2} / \alpha, q_{1}=e^{-\beta}$, where $\alpha \in \mathbb{C}, \operatorname{Re}(\alpha)>0$. Then

$$
q^{-\frac{1}{24}} f(q)=2 \sqrt{\frac{2 \pi}{\alpha}} q_{1}^{\frac{4}{3}} \omega\left(q_{1}^{2}\right)+\underbrace{4 \sqrt{\frac{3 \alpha}{2 \pi}} \int_{0}^{\infty} \frac{\sinh (\alpha t)}{\sinh \left(\frac{3 \alpha t}{2}\right)} e^{-\frac{3 \alpha t^{2}}{2}} d t}_{\text {"error to modularity" }} .
$$

Remark. This may be interpreted as a transformation under $\tau \mapsto-1 /(2 \tau)$.

Mock theta functions

"Theorem" (S. Zwegers, 2002). Ramanujan's mock theta functions are not modular forms,

Mock theta functions

"Theorem" (S. Zwegers, 2002). Ramanujan's mock theta functions are not modular forms, but they can be completed to form nonholomorphic modular forms.

Mock theta functions

Zwegers' completion:
$f(q)$

Mock theta functions

Zwegers' completion:

$$
q^{-\frac{1}{24}} f(q)
$$

Mock theta functions

Zwegers' completion:

$$
\begin{aligned}
& q^{-\frac{1}{24}} f(q) \\
& \uparrow \\
& \text { not modular }
\end{aligned}
$$

Mock theta functions

Zwegers' completion:

$$
q^{-\frac{1}{24}} f(q)+f^{-}(q)
$$

not modular

Mock theta functions

Zwegers' completion:

$$
q^{-\frac{1}{24}} f(q)+f^{-}(q)
$$

not modular
not holomorphic

Mock theta functions

Zwegers' completion:

$$
\begin{array}{ccc}
\widehat{f}(\tau) & :=q^{-\frac{1}{24}} f(q) & + \\
\uparrow & f^{-}(q) \\
& \nwarrow & \nwarrow \\
\text { not modular } & \text { not holomorphic }
\end{array}
$$

Mock theta functions

Zwegers' completion:
$\widehat{f}(\tau) \quad:=\quad q^{-\frac{1}{24}} f(q)+f^{-}(q)$
\nearrow
modular
not modular
not holomorphic

Mock theta functions

Zwegers' completion:

$$
\begin{aligned}
f(q):= & 1+\frac{q}{(1+q)^{2}}+\frac{q^{4}}{(1+q)^{2}\left(1+q^{2}\right)^{2}}+\cdots \\
&
\end{aligned}
$$

$$
\widehat{f}(\tau):=q^{-\frac{1}{24}} f(q)+2 i \sqrt{3} \int_{-\bar{\tau}}^{i \infty} \frac{g(z) d z}{\sqrt{-i(\tau+z)}}
$$

Mock theta functions

Zwegers' completion:

$$
\begin{aligned}
f(q):= & 1+\frac{q}{(1+q)^{2}}+\frac{q^{4}}{(1+q)^{2}\left(1+q^{2}\right)^{2}}+\cdots \\
&
\end{aligned}
$$

$$
\widehat{f}(\tau):=q^{-\frac{1}{24}} f(q)+2 i \sqrt{3} \int_{-\bar{\tau}}^{i \infty} \frac{g(z) d z}{\sqrt{-i(\tau+z)}}
$$

where $g(\tau):=-\sum_{n=-\infty}^{\infty}\left(n+\frac{1}{6}\right) q^{\frac{3}{2}\left(n+\frac{1}{6}\right)^{2}}$ is a weight $3 / 2$ modular form.

Definition (Bruinier-Funke). A weight k ($k \in \frac{1}{2} \mathbb{Z}$) harmonic Maass form on $\Gamma^{\prime}=\Gamma_{0}(N)$, where $4 \mid N$ if $k \in \frac{1}{2}+\mathbb{Z}$, is a smooth $M: \mathbb{H} \rightarrow \mathbb{C}$ satisfying

Harmonic Maass forms

Definition (Bruinier-Funke). A weight $k\left(k \in \frac{1}{2} \mathbb{Z}\right)$ harmonic Maass form on $\Gamma^{\prime}=\Gamma_{0}(N)$, where $4 \mid N$ if $k \in \frac{1}{2}+\mathbb{Z}$, is a smooth $M: \mathbb{H} \rightarrow \mathbb{C}$ satisfying
i) For all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and all $\tau \in \mathbb{H}$, we have

$$
M\left(\frac{a \tau+b}{c \tau+d}\right)= \begin{cases}(c \tau+d)^{k} M(\tau) & \text { if } k \in \mathbb{Z} \\ \left(\frac{c}{d}\right) \varepsilon_{d}^{-2 k}(c \tau+d)^{k} M(\tau) & \text { if } k \in \frac{1}{2}+\mathbb{Z}\end{cases}
$$

Harmonic Maass forms

Definition (Bruinier-Funke). A weight k ($k \in \frac{1}{2} \mathbb{Z}$) harmonic Maass form on $\Gamma^{\prime}=\Gamma_{0}(N)$, where $4 \mid N$ if $k \in \frac{1}{2}+\mathbb{Z}$, is a smooth $M: \mathbb{H} \rightarrow \mathbb{C}$ satisfying
i) For all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and all $\tau \in \mathbb{H}$, we have

$$
M\left(\frac{a \tau+b}{c \tau+d}\right)= \begin{cases}(c \tau+d)^{k} M(\tau) & \text { if } k \in \mathbb{Z}, \\ \left(\frac{c}{d}\right) \varepsilon_{d}^{-2 k}(c \tau+d)^{k} M(\tau) & \text { if } k \in \frac{1}{2}+\mathbb{Z}\end{cases}
$$

ii) We have that $\Delta_{k}(M)=0$, where (if $\tau=x+i y$)

$$
\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
$$

Harmonic Maass forms

Definition (Bruinier-Funke). A weight k ($k \in \frac{1}{2} \mathbb{Z}$) harmonic Maass form on $\Gamma^{\prime}=\Gamma_{0}(N)$, where $4 \mid N$ if $k \in \frac{1}{2}+\mathbb{Z}$, is a smooth $M: \mathbb{H} \rightarrow \mathbb{C}$ satisfying
i) For all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and all $\tau \in \mathbb{H}$, we have

$$
M\left(\frac{a \tau+b}{c \tau+d}\right)= \begin{cases}(c \tau+d)^{k} M(\tau) & \text { if } k \in \mathbb{Z} \\ \left(\frac{c}{d}\right) \varepsilon_{d}^{-2 k}(c \tau+d)^{k} M(\tau) & \text { if } k \in \frac{1}{2}+\mathbb{Z}\end{cases}
$$

ii) We have that $\Delta_{k}(M)=0$, where (if $\tau=x+i y$)

$$
\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
$$

iii) There exists a polynomial $P_{M}(\tau) \in \mathbb{C}\left[q^{-1}\right]$ such that

$$
M(\tau)-P_{M}(\tau)=O\left(e^{-\varepsilon y}\right)
$$

as $y \rightarrow \infty$ for some $\varepsilon>0$.

Harmonic Maass forms

Lemma. Let $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ and $\Gamma \in\left\{\Gamma_{0}(N), \Gamma_{1}(N)\right\}$.
If M is a HMF, then M has Fourier expansion

$$
M(\tau)=\sum_{n \gg-\infty} c_{M}^{+}(n) q^{n}+\sum_{n<0} c_{M}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}
$$

Harmonic Maass forms

Lemma. Let $k \in \frac{1}{2} \mathbb{Z} \backslash\{1\}$ and $\Gamma \in\left\{\Gamma_{0}(N), \Gamma_{1}(N)\right\}$.
If M is a HMF, then M has Fourier expansion

$$
M(\tau)=\sum_{n \gg-\infty} c_{M}^{+}(n) q^{n}+\sum_{n<0} c_{M}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}
$$

The incomplete gamma function is defined by

$$
\Gamma(s, z):=\int_{z}^{\infty} e^{-t} t^{s} \frac{d t}{t}
$$

Harmonic Maass forms

That is,

$$
M(\tau)=\underbrace{\sum_{n \gg-\infty} c_{M}^{+}(n) q^{n}}_{\text {"holomorphic part" }}+\underbrace{\sum_{n<0} c_{M}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}}_{\text {"nonholomorphic part" }}
$$

Harmonic Maass forms

That is,

$$
M(\tau)=\underbrace{\sum_{n \gg-\infty} c_{M}^{+}(n) q^{n}}_{\text {"holomorphic part" }}+\underbrace{\sum_{n<0} c_{M}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}}_{\text {"nonholomorphic part" }}
$$

Definition (Zagier).

That is,

$$
M(\tau)=\underbrace{\sum_{n \gg-\infty} c_{M}^{+}(n) q^{n}}_{\text {"holomorphic part" }}+\underbrace{\sum_{n<0} c_{M}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}}_{\text {"nonholomorphic part" }}
$$

Definition (Zagier). A mock modular form (of weight k) is the holomorphic part of a harmonic Maass form (of weight k)*

That is,

$$
M(\tau)=\underbrace{\sum_{n \gg-\infty} c_{M}^{+}(n) q^{n}}_{\text {"holomorphic part" }}+\underbrace{\sum_{n<0} c_{M}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}}_{\text {"nonholomorphic part" }}
$$

Definition (Zagier). A mock modular form (of weight k) is the holomorphic part of a harmonic Maass form (of weight k)*
(*for which the NHP is nontrivial).

Harmonic Maass forms

Theorem (Zwegers). Ramanujan's mock theta functions are* weight $1 / 2$ mock modular forms.

Harmonic Maass forms

Theorem (Zwegers). Ramanujan's mock theta functions are* weight $1 / 2$ mock modular forms. That is, if F is one of Ramanujan's mtf's, then for some $\alpha_{F} \in \mathbb{Q}$ and $c_{F} \in \mathbb{C}$,

$$
F(\tau)=q^{\alpha_{F}} G_{F}^{+}(\tau)+c_{F},
$$

where G_{F}^{+}is the holomorphic part of a weight $1 / 2 \mathrm{HMF}$.

Harmonic Maass forms

Theorem (Zwegers). Ramanujan's mock theta functions are* weight $1 / 2$ mock modular forms. That is, if F is one of Ramanujan's mtf's, then for some $\alpha_{F} \in \mathbb{Q}$ and $c_{F} \in \mathbb{C}$,

$$
F(\tau)=q^{\alpha_{F}} G_{F}^{+}(\tau)+c_{F},
$$

where G_{F}^{+}is the holomorphic part of a weight $1 / 2 \mathrm{HMF}$.
(*up to multiplication by a power of q and addition of a constant)

"Modular" forms

Example 2 (revisited.)

Example 2 (revisited.)

A consequence of mock modularity:

Theorem (Bringmann-Ono), Conjectured by Andrews-Dragonette.
We have the exact formula
$N_{e}(n)-N_{o}(n)$

$$
=\frac{\pi}{(24 n-1)^{\frac{1}{4}}} \sum_{m=1}^{\infty}(-1)^{\left\lfloor\frac{m+1}{2}\right\rfloor} \frac{A_{2 m}\left(n-\frac{m\left(1+(-1)^{m}\right)}{4}\right)}{m} /_{\frac{1}{2}}\left(\frac{\pi \sqrt{24 n-1}}{12 m}\right) .
$$

Harmonic Maass forms

Example 2 (revisited). Let $\zeta_{N}:=e^{2 \pi i / N}$.

Theorem (Bringmann-Ono).

Harmonic Maass forms

Example 2 (revisited). Let $\zeta_{N}:=e^{2 \pi i / N}$.

Theorem (Bringmann-Ono). Fix $w=\zeta_{b}^{a} \neq 1$. Then $R\left(\zeta_{b}^{a} ; q\right)$ (with $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$) is a weight $1 / 2$ mock modular form.

Example 2 (revisited). Let $\zeta_{N}:=e^{2 \pi i / N}$.

Theorem (Bringmann-Ono). Fix $w=\zeta_{b}^{a} \neq 1$. Then $R\left(\zeta_{b}^{a} ; q\right)$ (with $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$) is a weight $1 / 2$ mock modular form. More precisely,

$$
q^{-\ell_{b} / 24} R\left(\zeta_{b}^{a} ; q^{\ell_{b}}\right)+i\left(3^{-1} \ell_{b}\right)^{\frac{1}{2}} \sin \left(\frac{\pi a}{b}\right) \int_{-\bar{\tau}}^{i \infty} \frac{\Theta\left(\frac{a}{b} ; \ell_{b} z\right)}{\sqrt{-i(z+\tau)}} d z
$$

is a harmonic Maass form of weight $1 / 2$ and level 144.

Harmonic Maass forms

Example 2 (revisited). Let $\zeta_{N}:=e^{2 \pi i / N}$.

Theorem (Bringmann-Ono). Fix $w=\zeta_{b}^{a} \neq 1$. Then $R\left(\zeta_{b}^{a} ; q\right)$ (with $q=e^{2 \pi i \tau}, \tau \in \mathbb{H}$) is a weight $1 / 2$ mock modular form. More precisely,

$$
q^{-\ell_{b} / 24} R\left(\zeta_{b}^{a} ; q^{\ell_{b}}\right)+i\left(3^{-1} \ell_{b}\right)^{\frac{1}{2}} \sin \left(\frac{\pi a}{b}\right) \int_{-\bar{\tau}}^{i \infty} \frac{\Theta\left(\frac{a}{b} ; \ell_{b} z\right)}{\sqrt{-i(z+\tau)}} d z
$$

is a harmonic Maass form of weight $1 / 2$ and level 144.

Here, Θ is a weight $3 / 2$ modular form, and $\ell_{b} \in \mathbb{N}$.

Harmonic Maass forms

Example 2 revisited. We have the weight $1 / 2$ HMF

$$
q^{-\ell_{b} / 24} R\left(\zeta_{b}^{a} ; q^{\ell_{b}}\right)+i\left(3^{-1} \ell_{b}\right)^{\frac{1}{2}} \sin \left(\frac{\pi a}{b}\right) \int_{-\bar{\tau}}^{i \infty} \frac{\Theta\left(\frac{a}{b} ; \ell_{b} z\right)}{\sqrt{-i(z+\tau)}} d z
$$

Example 2 revisited. We have the weight $1 / 2$ HMF

$$
q^{-\ell_{b} / 24} R\left(\zeta_{b}^{a} ; q^{\ell_{b}}\right)+i\left(3^{-1} \ell_{b}\right)^{\frac{1}{2}} \sin \left(\frac{\pi a}{b}\right) \int_{-\bar{\tau}}^{i \infty} \frac{\Theta\left(\frac{a}{b} ; \ell_{b} z\right)}{\sqrt{-i(z+\tau)}} d z
$$

The shadow of the mock modular form $q^{-\ell_{b} / 24} R\left(\zeta_{b}^{a} ; q^{\ell_{b}}\right)$ is (up to a constant multiple) the theta function $\Theta\left(\frac{a}{b} ; \ell_{b} z\right)$.

Mock theta functions

Question.

Mock theta functions

Question.

Ramanujan's "definition" of a mock theta function?

Mock theta functions

"Definition" (Ramanujan). A mock theta function F satisfies
"Definition" (Ramanujan). A mock theta function F satisfies

1. infinitely many roots of unity are exponential singularities,
"Definition" (Ramanujan). A mock theta function F satisfies
2. infinitely many roots of unity are exponential singularities,
3. for every root of unity ζ there is a modular form $\vartheta_{\zeta}(q)$ such that the difference $F(q)-q^{\alpha} \vartheta_{\zeta}(q)$ is bounded as $q \rightarrow \zeta$ radially,

Mock theta functions

"Definition" (Ramanujan). A mock theta function F satisfies

1. infinitely many roots of unity are exponential singularities,
2. for every root of unity ζ there is a modular form $\vartheta_{\zeta}(q)$ such that the difference $F(q)-q^{\alpha} \vartheta_{\zeta}(q)$ is bounded as $q \rightarrow \zeta$ radially,
3. there does not exist a single modular form $\vartheta(q)$ such that $F(q)-q^{\alpha} \vartheta(q)$ is bounded as q approaches any root of unity radially.

Mock theta functions

$$
\begin{aligned}
& \text { I have proved teal- if } \\
& f(q)=1+\frac{q}{(1+2)^{2}}+\frac{2 i^{2}}{(1+2)^{2}\left(1+v^{2}\right)^{2}}+\cdots \\
& \text { the } f(\vartheta)+(1-2)\left(1-\vartheta^{3}\right)\left(1-2^{2}\right) \cdots\left(1-2 \underline{2}+22^{4}\right) \\
& \text { atilt }=O(1)
\end{aligned}
$$

$$
\begin{aligned}
& f(2)(1-2)\left(1-2^{2}\right)(1-2) \cdots\left(1-2 \varepsilon+22^{5}\right) \\
& \text { at all } \text { this }=\frac{O(1)}{} \dot{q}^{2}=-1 ; \varepsilon^{4}=-1,2^{6}=-1, \ldots \\
& \text { Also oblucins }-\mathrm{ey} f(2)=0(1) \\
& \text { at all the points } q=1, i^{3}=1,2^{5}=1 \text {, }
\end{aligned}
$$

Mock theta functions

Ramanujan's mock theta function

$$
f(q)=1+\frac{q}{(1+q)^{2}}+\frac{q^{4}}{(1+q)^{2}\left(1+q^{2}\right)^{2}}+\frac{q^{9}}{(1+q)^{2}\left(1+q^{2}\right)^{2}\left(1+q^{3}\right)^{2}}+\cdots
$$

has singularities when

Mock theta functions

Ramanujan's mock theta function

$$
f(q)=1+\frac{q}{(1+q)^{2}}+\frac{q^{4}}{(1+q)^{2}\left(1+\boldsymbol{q}^{2}\right)^{2}}+\frac{q^{9}}{(1+\boldsymbol{q})^{2}\left(1+\boldsymbol{q}^{2}\right)^{2}\left(1+\boldsymbol{q}^{3}\right)^{2}}+.
$$

has singularities when $q^{n}=-1 \quad(n \in \mathbb{N})$.

Mock theta functions

...roots of unity.

Mock theta functions

Ramanujan's observations:

". There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.

Ramanujan's observations:

". There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.
:- That is, as q approaches any even order $2 k$ root of unity singularity of $f(q)$, then

Ramanujan's observations:

". There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.
.- That is, as q approaches any even order $2 k$ root of unity singularity of $f(q)$, then

$$
f(q)-(-1)^{k} b(q)=O(1)
$$

Mock theta functions

Ramanujan's observations:

"- There is a(n explicit) modular form $b(q)$ that "cuts out" the exponential singularities of $f(q)$.
.- That is, as q approaches any even order $2 k$ root of unity singularity of $f(q)$, then

$$
f(q)-(-1)^{k} b(q)=O(1)
$$

.- That is, asymptotically, towards singularities,

$$
\text { mock theta } \pm \text { modular form }=\text { bounded }
$$

Ramanujan revisited

$$
b(q):=q^{\frac{1}{24} \frac{\eta^{3}(\tau)}{\eta^{2}(2 \tau)}}
$$

(joint work with K. Ono, R.C. Rhoades)

Ramanujan revisited

$b(q):=q^{\frac{1}{24}} \frac{\eta^{3}(\tau)}{\eta^{2}(2 \tau)}$
(joint work with K. Ono, R.C. Rhoades)
As $q \rightarrow-1$, we computed (with help of R. Lemke Oliver)

Ramanujan revisited

$b(q):=q^{\frac{1}{24}} \frac{\eta^{3}(\tau)}{\eta^{2}(2 \tau)}$
(joint work with K. Ono, R.C. Rhoades)
As $q \rightarrow-1$, we computed (with help of R. Lemke Oliver)
$f(-0.994) \sim-1 \cdot 10^{31}$,

Ramanujan revisited

$b(q):=q^{\frac{1}{24}} \frac{\eta^{3}(\tau)}{\eta^{2}(2 \tau)}$
(joint work with K. Ono, R.C. Rhoades)
As $q \rightarrow-1$, we computed (with help of R. Lemke Oliver)

$$
f(-0.994) \sim-1 \cdot 10^{31}, f(-0.996) \sim-1 \cdot 10^{46}
$$

Ramanujan revisited

$b(q):=q^{\frac{1}{24}} \frac{\eta^{3}(\tau)}{\eta^{2}(2 \tau)}$
(joint work with K. Ono, R.C. Rhoades)
As $q \rightarrow-1$, we computed (with help of R. Lemke Oliver)
$f(-0.994) \sim-1 \cdot 10^{31}, f(-0.996) \sim-1 \cdot 10^{46}, f(-0.998) \sim-6 \cdot 10^{90} \ldots$

Ramanujan revisited

Ramanujan's observation gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
$f(q)+b(q)$	$3.961 \ldots$	$3.969 \ldots$	$3.976 \ldots$	$3.984 \ldots$	$3.992 \ldots$

Ramanujan revisited

Ramanujan's observation gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
$f(q)+b(q)$	$3.961 \ldots$	$3.969 \ldots$	$3.976 \ldots$	$3.984 \ldots$	$3.992 \ldots$

This suggests that

$$
\lim _{q \rightarrow-1}(f(q)+b(q))=4
$$

Ramanujan revisited

q	$0.992 i$	$0.994 i$	$0.996 i$
$f(q)$	$2 \cdot 10^{6}-4.6 \cdot 10^{6} i$	$2 \cdot 10^{8}-4 \cdot 10^{8} i$	$1.0 \cdot 10^{12}-2 \cdot 10^{12} i$
$f(q)-b(q)$	$\sim 0.05+3.85 i$	$\sim 0.04+3.89 i$	$\sim 0.03+3.92 i$

Ramanujan revisited

q	$0.992 i$	$0.994 i$	$0.996 i$
$f(q)$	$2 \cdot 10^{6}-4.6 \cdot 10^{6} i$	$2 \cdot 10^{8}-4 \cdot 10^{8} i$	$1.0 \cdot 10^{12}-2 \cdot 10^{12} i$
$f(q)-b(q)$	$\sim 0.05+3.85 i$	$\sim 0.04+3.89 i$	$\sim 0.03+3.92 i$

This suggests that
$\lim _{q \rightarrow i}(f(q)-b(q))=4 i$.

Ramanujan revisited

i) What are the $O(1)$ constants in

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=O(1) ?
$$

Ramanujan revisited

i) What are the $O(1)$ constants in

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=O(1) ?
$$

ii) How do they arise?

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even $2 k$ order root of unity, then
$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 \sum_{n=0}^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}$.

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even $2 k$ order root of unity, then
$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 \sum_{n=0}^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}$.

Ramanujan revisited

Remark. We prove this as a special case of a more general theorem involving:

Ramanujan revisited

Remark. We prove this as a special case of a more general theorem involving:

$$
\begin{aligned}
& R(w ; q):=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(w q ; q)_{n}\left(w^{-1} q ; q\right)_{n}} \quad \text { (Dyson's rank) } \\
& C(w ; q):=\frac{(q ; q)_{\infty}}{(w q ; q)_{\infty}\left(w^{-1} q ; q\right)_{\infty}} \quad \text { (Andrews-Garvan crank) } \\
& U(w ; q):=\sum_{n=0}^{\infty}(w q ; q)_{n}\left(w^{-1} q ; q\right)_{n} q^{n+1} \quad \text { (Unimodal rank) }
\end{aligned}
$$

Combinatorial "modular" forms

Let

$$
N(m, n):=\#\{\text { partitions } \lambda \text { of } n \mid \operatorname{rank}(\lambda)=m\}
$$

$M(m, n):=\#\{$ partitions λ of $n \mid \operatorname{crank}(\lambda)=m\}$,
$u(m, n):=\#\{$ size n strongly unimodal sequences with rank $m\}$.

Combinatorial "modular" forms

A sequence $\left\{a_{j}\right\}_{j=1}^{s}$ of integers is called strongly unimodal of size n if

$$
a_{1}+a_{2}+\cdots+a_{s}=n
$$

Combinatorial "modular" forms

A sequence $\left\{a_{j}\right\}_{j=1}^{s}$ of integers is called strongly unimodal of size n if
= $a_{1}+a_{2}+\cdots+a_{s}=n$,
= $0<a_{1}<a_{2}<\cdots<a_{r}>a_{r+1}>\cdots a_{s}>0$ for some r.

Combinatorial "modular" forms

A sequence $\left\{a_{j}\right\}_{j=1}^{s}$ of integers is called strongly unimodal of size n if
$a_{1}+a_{2}+\cdots+a_{s}=n$,
$=0<a_{1}<a_{2}<\cdots<a_{r}>a_{r+1}>\cdots a_{s}>0$ for some r.

The rank equals $s-2 r+1$ (difference between \# terms after and before the "peak").

Combinatorial "modular" forms

$$
R(w ; q):=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} N(m, n) w^{m} q^{n}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(w q ; q)_{n}\left(w^{-1} q ; q\right)_{n}},
$$

mock modular [Bringmann-Ono]

$$
C(w ; q):=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} M(m, n) w^{m} q^{n}=\frac{(q ; q)_{\infty}}{(w q ; q)_{\infty}\left(w^{-1} q ; q\right)_{\infty}}
$$

modular

$$
U(w ; q):=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} u(m, n)(-w)^{m} q^{n}=\sum_{n=0}^{\infty}(w q ; q)_{n}\left(w^{-1} q ; q\right)_{n} q^{n+1}
$$

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If $\zeta_{b}=e^{\frac{2 \pi i}{b}}$ and $1 \leq a<b$, then for every suitable root of unity ζ there is an explicit integer c for which

$$
\lim _{q \rightarrow \zeta}\left(R\left(\zeta_{b}^{a} ; q\right)-\zeta_{b^{2}}^{c} C\left(\zeta_{b}^{a} ; q\right)\right)=-\left(1-\zeta_{b}^{a}\right)\left(1-\zeta_{b}^{-a}\right) U\left(\zeta_{b}^{a} ; \zeta\right)
$$

Ramanujan revisited

Remark
The first theorem is the special case $a=1, b=2$, using that

$$
R(-1 ; q)=f(q) \text { and } C(-1 ; q)=b(q)
$$

Ramanujan revisited

Remark
The first theorem is the special case $a=1, b=2$, using that

$$
R(-1 ; q)=f(q) \text { and } C(-1 ; q)=b(q)
$$

Remark

Specializations of $R(w ; q)$ give rise to other mock theta functions.

Ramanujan revisited

$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)$.

Ramanujan revisited

$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)$.

mock modular

Ramanujan revisited

$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)$.

\uparrow mock modular modular

Ramanujan revisited

$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)$.

\uparrow

Quantum modular forms

Quantum modular forms

-D. Zagier, 2010

Quantum modular forms

Quantum modular forms

"...we want to discuss...another type of modular object which...we call quantum modular forms.
-D. Zagier, 2010

Quantum modular forms

Quantum modular forms

"...we want to discuss...another type of modular object which...we call quantum modular forms.

These are objects which live at the boundary of the space...,
-D. Zagier, 2010

Quantum modular forms

Quantum modular forms

"...we want to discuss...another type of modular object which...we call quantum modular forms.

These are objects which live at the boundary of the space...,
-D. Zagier, 2010

Quantum modular forms

Quantum modular forms

"...we want to discuss...another type of modular object which... we call quantum modular forms.

These are objects which live at the boundary of the space...,
...and have a transformation behavior of a quite different type..."
-D. Zagier, 2010

Quantum modular forms

: Quantum modular forms are defined in \mathbb{Q},

Quantum modular forms

: Quantum modular forms are defined in \mathbb{Q}, and take values in \mathbb{C}.

Quantum modular forms

: Quantum modular forms are defined in \mathbb{Q}, and take values in \mathbb{C}.

Ney exhibit modular symmetry in \mathbb{Q}...

Quantum modular forms

:- Quantum modular forms are defined in \mathbb{Q}, and take values in \mathbb{C}.
:" They exhibit modular symmetry in \mathbb{Q}...
...up to the addition of smooth error functions in \mathbb{R}.

Quantum modular forms

Let

$F: \mathbb{H} \rightarrow \mathbb{C}, \quad \gamma:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z}), \tau \in \mathbb{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$

Quantum modular forms

Let
$F: \mathbb{H} \rightarrow \mathbb{C}, \quad \gamma:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z}), \tau \in \mathbb{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$

Modular transformation:

$$
F(\tau)-\epsilon^{-1}(\gamma)(c \tau+d)^{-k} F\left(\frac{a \tau+b}{c \tau+d}\right)=0
$$

Quantum modular forms

Let $F: \mathbb{Q} \rightarrow \mathbb{C}, \quad \gamma:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z}), \quad x \in \mathbb{Q}$.

Modular transformation:

$$
F(x)-\epsilon^{-1}(\gamma)(c x+d)^{-k} F\left(\frac{a x+b}{c x+d}\right)=?
$$

Quantum modular forms

Definition (Zagier '10)

A quantum modular form of weight $k\left(k \in \frac{1}{2} \mathbb{Z}\right)$ is function $F: \mathbb{Q} \rightarrow \mathbb{C}$, such that for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, the functions

$$
h_{\gamma}(x)=h_{F, \gamma}(x):=F(x)-\epsilon^{-1}(\gamma)(c x+d)^{-k} F\left(\frac{a x+b}{c x+d}\right)
$$

extend to suitably continuous or analytic functions in \mathbb{R}.

Quantum modular forms

Zagier's examples arise from areas such as:
. theta series associated to indefinite quadratic forms
"- quantum invariants of 3-manifolds

- Jones polynomials for knots

Quantum modular forms

The real part of a quantum modular form

Real Axis

$$
g(x)
$$

Image Credit: D. Zagier, 2010

Quantum modular forms

The real part of a quantum modular form

The real and imaginary parts of its error to symmetry.

Real Axis

Real Axis

$$
g(x)
$$

Image Credit: D. Zagier, 2010

Quantum modular forms

The real part of a quantum modular form

The real and imaginary parts of its error to symmetry.

Real Axis

Real Axis

$$
g(x)
$$

$$
" g(x)-g(-1 / x) "
$$

Image Credit: D. Zagier, 2010

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even $2 k$ order root of unity, then
$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)=-4 \sum_{n=0}^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}$

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even $2 k$ order root of unity, then
$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)=-4 \sum^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}$
:- This can be realized as the value of a function on \mathbb{Q}...

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even $2 k$ order root of unity, then
$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)=-4 \sum^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}$

- This can be realized as the value of a function on \mathbb{Q}...
...which is a quantum modular form.

Ramanujan revisited

Theorem (F-Ono-Rhoades)
If ζ is an even $2 k$ order root of unity, then
$\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)=-4 \sum_{n=0}^{k-1}(1+\zeta)^{2}\left(1+\zeta^{2}\right)^{2} \cdots\left(1+\zeta^{n}\right)^{2} \zeta^{n+1}$
." This can be realized as the value of a function on \mathbb{Q}...
...which is a quantum modular form.
(Bryson-Ono-Pittman-Rhoades, F-Ki-Truong Vu)

Ramanujan revisited

Let $\tau \in \mathbb{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$, and $q=e^{2 \pi i \tau}$.

Ramanujan revisited

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)
$$

Ramanujan revisited

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)
$$

mock modular

Ramanujan revisited

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta)
$$

\uparrow
mock modular modular

Ramanujan revisited

$$
\lim _{q \rightarrow \zeta}\left(f(q)-(-1)^{k} b(q)\right)=-4 U(-1 ; \zeta) .
$$

Proof ingredients

: Ramanujan's identity

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(\alpha \beta)^{n} q^{n^{2}}}{(\alpha q ; q)_{n}(\beta q ; q)_{n}}+\sum_{n=1}^{\infty} q^{n}\left(\alpha^{-1} ; q\right)_{n}\left(\beta^{-1} ; q\right)_{n}= \\
& \quad \quad q^{\frac{1}{8}}(1-\alpha)\left(\beta \alpha^{-1}\right)^{\frac{1}{2}}\left(q \alpha^{-1} ; q\right)_{\infty}\left(\beta^{-1} ; q\right)_{\infty} \mu(u, v ; \tau) \\
& \left(q=e^{2 \pi i \tau}, \alpha=e^{2 \pi i u}, \beta=e^{2 \pi i v}\right)
\end{aligned}
$$

Proof ingredients

" Ramanujan's identity

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(\alpha \beta)^{n} q^{n^{2}}}{(\alpha q ; q)_{n}(\beta q ; q)_{n}}+\sum_{n=1}^{\infty} q^{n}\left(\alpha^{-1} ; q\right)_{n}\left(\beta^{-1} ; q\right)_{n}= \\
& \quad i q^{\frac{1}{8}}(1-\alpha)\left(\beta \alpha^{-1}\right)^{\frac{1}{2}}\left(q \alpha^{-1} ; q\right)_{\infty}\left(\beta^{-1} ; q\right)_{\infty} \mu(u, v ; \tau) . \\
& \left(q=e^{2 \pi i \tau}, \alpha=e^{2 \pi i u}, \beta=e^{2 \pi i v}\right)
\end{aligned}
$$

:" Transformation theory (Zwegers) of the mock Jacobi form

$$
\mu(u, v ; \tau):=\frac{e^{\pi i u}}{\vartheta(v ; \tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{n(n+1)} 2}{1-e^{2 \pi i u} q^{n}} .
$$

Proof ingredients

" Ramanujan's identity

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(\alpha \beta)^{n} q^{n^{2}}}{(\alpha q ; q)_{n}(\beta q ; q)_{n}}+\sum_{n=1}^{\infty} q^{n}\left(\alpha^{-1} ; q\right)_{n}\left(\beta^{-1} ; q\right)_{n}= \\
& \quad i q^{\frac{1}{8}}(1-\alpha)\left(\beta \alpha^{-1}\right)^{\frac{1}{2}}\left(q \alpha^{-1} ; q\right)_{\infty}\left(\beta^{-1} ; q\right)_{\infty} \mu(u, v ; \tau) . \\
& \left(q=e^{2 \pi i \tau}, \alpha=e^{2 \pi i u}, \beta=e^{2 \pi i v}\right)
\end{aligned}
$$

:" Transformation theory (Zwegers) of the mock Jacobi form

$$
\mu(u, v ; \tau):=\frac{e^{\pi i u}}{\vartheta(v ; \tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{n(n+1)} 2}{1-e^{2 \pi i u} q^{n}} .
$$

". Explicit asymptotic calculations

Further results

Bringmann-Rolen/Jang-Lobrich: more general "radial limit" theorems for the Gordon-McIntosh universal mock ϑ s:

$$
g_{2}(w ; q):=\sum_{n=0}^{\infty} \frac{(-q ; q)_{n} q^{\frac{n(n+1)}{2}}}{(w ; q)_{n+1}\left(w^{-1} q ; q\right)_{n+1}}, g_{3}(w ; q):=\sum_{n=1}^{\infty} \frac{q^{n(n-1)}}{(w ; q)_{n}\left(w^{-1} q ; q\right)_{n}}
$$

Further results

Bringmann-Rolen/Jang-Lobrich: more general "radial limit" theorems for the Gordon-McIntosh universal mock ϑ s:
$g_{2}(w ; q):=\sum_{n=0}^{\infty} \frac{(-q ; q)_{n} q^{\frac{n(n+1)}{2}}}{(w ; q)_{n+1}\left(w^{-1} q ; q\right)_{n+1}}, g_{3}(w ; q):=\sum_{n=1}^{\infty} \frac{q^{n(n-1)}}{(w ; q)_{n}\left(w^{-1} q ; q\right)_{n}}$.

Theorem (Bringmann-Rolen)

There is a linear combination of theta functions $\vartheta_{a, b, A, B, \zeta}(q)$ such that the radial limit difference $\lim _{q \rightarrow \zeta}\left(g_{2}\left(\zeta_{b}^{a} q^{A} ; q^{B}\right)-\vartheta_{a, b, A, B, \zeta}(q)\right)$ is bounded, and is the special value of a quantum modular form.

Further results

"...[no one has] proved that any of Ramanujan's mock theta functions are really mock theta functions according to his definition."
-B.C. Berndt, Ramanujan, his lost notebook, its importance.

Further results

By incorporating the theory of harmonic Maass forms,

Further results

By incorporating the theory of harmonic Maass forms,
Theorem (Griffin-Ono-Rolen)
Ramanujan's mock theta functions satisfy his definition.

Further results

Theorem (Choi-Lim-Rhoades)
Let F be a mock modular form and ζ a root of unity. There is a weakly holomorphic modular form $q^{\alpha} \vartheta_{\zeta}(q)$ such that the radial limit $\lim _{q \rightarrow \zeta}\left(F(q)-q^{\alpha} \vartheta_{\zeta}(q)\right)$ is the special value of a quantum modular form.

Further results

- Mathematical physics
= Moonshine, Representation theory
= Combinatorics
" Topology

Further results

- Mathematical physics
= Moonshine, Representation theory
= Combinatorics
" Topology

Thank you

