The O'fRarrell Lab

|

i‘/% é’l
R
/s

A

—_—

Developmental
control

of the cell
cycle




The O'fRarrell Lab

|

i‘/% é’l
R
/s

A

—_—

Developmental
control

of the cell
cycle







Time




Siological time

Time

=

—mphasis on clocks & oscillators

Circadian clock
Segmentation oscillator
Cell cycle “oscillator”




Time

Circadian clock
Segmentation oscillator
Cell cycle “oscillator”

Siological time > Emphasis on clocks & oscillators

Sut time 1S another dimension In
development and In life
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Fach of 6000 cells seems to know
what to do and when. How/!

Mitosis | 3 £ s Mitosis |14

Cells In different positions spend different
amounts of time In cycle |4 - patterned division




Positional information

Hairy Runt

In cycle |4, local expression of patterning genes
establish a coordinate system - guides events.
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Model - patterning genes control where
and when a mitotic activator Is expressead

Cyclin was a favored candidate for regulator
Cyclin B:Cdk1 = mitotic kinase

Cyclin B
levels

e Cyclin B accumulates to a threshold
® |t triggers mitosis

e mitotic degradation resets the clock
e cyclins drive the cell cycle
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Cyclin levels do not
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Cdc25 activates preformed cyclin:Cdk
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Cdc25 homolog
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New transcription of
Cdc25%"8 regulates the
time of mitosis |4

Directing Morphogenesis

e Control where, when and how much you do things

e Cell behaviors underlie morphogenesis

® string controls where and when you divide

e other genes control where and when other things happen
® cxpression of inscutable controls orientation of mitosis
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New transcription of
Cdc25%"e regulates the
time of mitosis |4

Defers the question - what times transcription?
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Mitotic Cyclins

Mutant Phenotype Double mutants
3 cyclins Cyclin A Lethal (G2 cycle 16) .
SOTOR CrClisaly W@y lind3 Viable:sterile mi|t?)ttri]cf1 |dvg1|‘tehcts
promote mitosis Cyclin B3  Viable: female sterile

Sequential arrests by non-degradable cyclins
€) (b) (c)

Cyclin A stable Cyclin B stable Cyclin B3 stable

In summary: e 3 mitotic cyclins
¢ functions substantially overlap
® cach with some specialization
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What if
there was

Knockdown A & B3  only | copy?

diploid 2 cyclin B genes -/+ cycB Df
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A _&;’_ prediction: delay mitosis
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I
FIinding

RNAI + gene dose: |lowered cyclin synthesis to the
point of mitotic failure without extending interphase
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T not Cyclin, what times M¢

SO Farly cycles - No gap phases
M S phase must complete before M

STOP

Experiment - Delete S phase
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What happens to interphase length?
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Qpealgbsursde | avsiYl pres B

Prior to MBT cycles get longer

Interphase Lengths

Lengthening depends
substantially on Grapes

S-phase Mitosis

STOP

S phase » Grapes Mitosis (nuclear density dependent?)

Sibon, Stevenson & Theurkauf, 1997/
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Model: Compartment specific reversal
of the checkpoint
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S phase Duration

, For Speed
2“5 a5 L Frequent origins: ave. every 8 kb

All origins fire at the same time

S|4~ 55 min |>100x

S phase In disc - ~ 8hr (430 min)

For relaxed pace

Origins spaced ~ 40 kb
Not all origins fire at the same time
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Iwine protein Is destroyed
before 1ts RNA

relative amount
remaining
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Iwine destruction requires new
oene expression (zygotic).

Model: A new gene Is expressed In the late

syncytial cycles that promotes Iwine destruction.

When is this gene expressed?

s it controlled by time or
nuclear density?

Absolute time

gastrulate cell cycle pause




VWhen does destruction
capabllity appear?




VWhen does destruction
capabllity appear?

P
o P
- -
- a
-
o
pry —
-
o PN -
a a
-
4 A -~ -~
[
- 2 o
4 [
- P
S a
- A o
Y -
- o
a Y ¥ ¥V ¥V < -
-
-
- 4
-
P
-

Inject with a.-amanitin




VWhen does destruction

capabllity a

A~
7~ -~
-; -
oa o
-
-
Y
Py -
Y -~ -
_— -
. - A a ~
4
[ Y
_s - 2
4 B
-~ M
“‘ P -~
-~
aw™ .
=
-
- 2
-
-~
-

Inject with a.-amanitin

D

a8
o
[
y
1~ -~
a8
'Y a8
P

Q cycle 14

bear!

Twine
destruction




VWhen does destruction
capabllity appear?

A~
7~ -~
-; -
oa o
-
-
Y
Py -
Y -~ -
_— -
. - A a ~
4
[ Y
_s - 2
4 B
-~ M
T NPT X = -
-~
-aW™
=
-
- 2
-

Twine
destruction

_/_|_

a8
P
[
-,
1~ -~
2
y X

Inject with o.-amanrtin Q cycle 14




VWhen does destruction
capabllity appear?
Twine

A destruction

Inject with o.-amanrtin . cycle 14

Conclude:

Destruction promoting activity
s transcribed in cycle |3
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VWhen does destruction
capability appear in haploid!

Twine
A destruction

_/_|_

S oo cqr s

Inject with a.-amanitin . cycle I5

Conclude:
Time of transcription of destruction
activity depends on ploidy.
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| he embryo runs on tight
schedule

Timed events need a clock and a trigger

, 2. Triggering “MBT” 1. Triggering M
Changes in CAc25  wem
as a trigger b =

cellularization .t\
beg

o

et e e S e i
> >> —> >—> —> 5> —> —>

Dropose: Egg begins with huge mitotic
drive that declines during early

cycles triggering transcription and
Cdc25 destruction at cycle 14.
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