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Each of 6000 cells seems to know 
what to do and when.  How?

Mitosis 14 Mitosis 13 

Cells in different positions spend different 
amounts of time in cycle 14  - patterned division
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Positional information 

In cycle 14, local expression of patterning genes 
establish a coordinate system - guides events.  
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Cyclin B
 levels

Cyclin B:Cdk1 = mitotic kinase

• Cyclin B accumulates to a threshold
• it triggers mitosis
• mitotic degradation resets the clock
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time of mitosis 14
Directing Morphogenesis

• Control where, when and how much you do things

• string controls where and when you divide
• other  genes control where and when other things happen 

• Cell behaviors underlie morphogenesis 

• expression of inscutable controls orientation of mitosis
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New transcription of 
Cdc25string regulates the 

time of mitosis 14

 Defers the question - what times transcription?
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Sequential destruction in M

Sequential arrests by non-degradable cyclins

Cyclin A stable Cyclin B stable Cyclin B3 stable

In summary: • 3 mitotic cyclins 
• functions substantially overlap
• each with some specialization
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What if 
there was 
only 1 copy?  

RNAi + gene dose:  lowered cyclin synthesis to the 
point of mitotic failure without extending interphase

Finding
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diploid 2 cyclin B genes -/+ cycB Df
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If not Cyclin, what times M?
S

M
Early cycles - No gap phases
S phase must complete before M

S-phase Mitosis

STOP ?
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What happens to interphase length?

Experiment - Delete S phase
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Model: Compartment specific reversal 
of the checkpoint
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S phase Duration

>100x

For Speed

For relaxed pace
Origins spaced ~ 40 kb 
Not all origins fire at the same time

S2-S7 ~ 3.4 min

S phase in disc - ~ 8hr (480 min)

S14~ 55 min

Frequent origins: ave. every 8 kb 
All origins fire at the same time
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Prolongation of S linked to 
heterochromatin formation
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Twine protein is destroyed 
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Focus: Twine protein destruction
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Does Cdc25 destruction 
require transcription?
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Inject cycle 13
H2-GFP embryo
with α-amanitin

Does Cdc25 destruction 
require transcription?

Watch on scope
for cycle 14.

Count time in
cycle 14

Retrieve embryo.
Smash in SDS.  

Blot.
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Twine destruction inhibited by
α-amanitin

Twine
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PBS 1 mg/ml α-amanitin
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Twine destruction requires new 
gene expression (zygotic).

Model:  A new gene is expressed in the late 
syncytial cycles that promotes Twine destruction.  

When is this gene expressed?

Is it controlled by time or 
nuclear density?
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Conclude: 
Destruction promoting activity 
is transcribed in cycle 13
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When does destruction 
capability appear in haploid?

cycle 15

Twine
destruction

cycle 14cycle 14
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Inject with α-amanitin
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cycle 14

cycle 15

Conclude: 
Time of transcription of destruction 
activity depends on ploidy.
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The embryo runs on tight 
schedule

Timed events need a clock and a trigger

Changes in Cdc25
as a trigger

2. Triggering “MBT” 1. Triggering M

Clock = ?

Propose: Egg begins with huge mitotic 
drive that declines during early 
cycles triggering transcription and 
Cdc25 destruction at cycle 14.
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