Spin correlations in YBa₂Cu₃O_{6+x} bulk vs. interface

B. Keimer

Max-Planck-Institute for Solid State Research

outline

new quantum states in bulk?

yes, good evidence for electronic nematic phase

new quantum states at interface?

first step: understand, manipulate carrier concentration Hwang *et al.*, Millis *et al.*, Mannhart *et al.*, ...

second step: understand, manipulate orbital occupation

Collaborators: Bulk YBCO

neutron scattering

V. Hinkov, D. Haug MPI Stuttgart

B. Fauqué, Y. Sidis, P. Bourges CEA Saclay

C.D. Frost, T.G. Perring ISIS

A. Ivanov ILL Grenoble

μSR

C. Bernhard Univ. Fribourg

samples

D.P. Chen, C.T. Lin MPI Stuttgart

Motivation: electronic liquid crystals?

electronic nematic phase

- fourfold rotational symmetry spontaneously broken
- translational symmetry unbroken

Strength of interactions

Kivelson et al., Nature 1998

Pomeranchuk instability

in weak-coupling renormalization group calculations

→ spontaneous formation of open Fermi surface

Halboth & Metzner, PRL 2000

YBCO samples for neutron scattering

- arrays of ~ 200 small single crystals
- individually characterized
- total mass ~ 2g

Hinkov et al., Nature 2004

- no impurity phases
- sharp superconducting T_c
- nearly perfectly detwinned

YBCO_{6.6} spin dynamics below T_c

untwinned $YBCO_{6.6}$ ($T_c = 61K$)

two-dimensional "hour glass" dispersion also seen in YBCO₇ and other high-T_c cuprates

Hinkov et al., Nature 2004 Nature Phys. 2007

Spin exciton model

simplest formalism: RPA

$\chi(q, \omega) = \frac{\chi_0(q, \omega)}{1 - J(q) \chi_0(q, \omega)}$

J(q) antiferromagnetic amplitude ~ 100 meV, as in AF insulator

reproduces "hour glass" dispersion

Eremin et al., PRL 2005 see also:

- many other RPA calculations
- memory-function approach

YBCO_{6.6} spin dynamics in pseudogap state

prevailing wisdom

incoherent precursor of superconducting state

Fong et al., PRB 2000

new measurements on untwinned crystals

qualitative difference between superconducting and pseudogap states

YBCO_{6.6} spin dynamics in pseudogap state

superconducting state

- "hour glass" dispersion
- many aspects described by RPA

pseudogap state

- "hour glass" replaced by "vertical" dispersion
- large in-plane anisotropy not described by RPA

Hinkov et al., Nature Phys. 2007

YBCO_{6+x} transport properties

in-plane resistivity anisotropy

high-field phase diagram

Ando et al., PRL 2002

Sun et al., PRL 2005

für Festkörperforschung

Comparison: YBCO_{6.4} and YBCO_{6.6}

$YBa_2Cu_3O_{6.6}$ (T_c = 61 K)

- large spin gap
- qualitative difference between superconducting and normal states

$YBa_2Cu_3O_{6.4}$ (T_c = 35 K)

- small or absent spin gap
- spectrum evolves smoothly through T_c

YBCO_{6.4} constant-energy cuts

1.4

1.5 Q (r.l.u.)

1.7

1.6

YBCO_{6.4} high-resolution measurements

incommensurate along a*, commensurate along b*

→ one-dimensional geometry at low energies

Fujita et al. PRB 2002

modulation along Cu-O bond direction but magnitude matches "diagonal" pattern in LSCO with $x \le 5\%$

Magnetic order?

quasielastic neutron scattering

 $E \le 0.2 \text{ meV}$ significant signal for $T \le 30 \text{ K}$ same geometry as inelastic signal

muon spin relaxation

 $E \sim 1 \mu eV$ slow electronic spin re

slow electronic spin relaxation for $T \le 10 \text{ K}$ static magnetic order for $T \le 2 \text{ K}$

generally consistent with

spin freezing phenomenology

in spin-glass regime of LSCO

Nematic order?

phase transition at T_{IC} ~ 150 K

spin system spontaneously develops 1D incommensurate modulation
weak structural in-plane anisotropy selects unique incommensurate domain

 T_{IC} two orders-of-magnitude higher than onset of static magnetic order

für Festkörperforschung

Nematic order?

at T_{IC}, pronounced increase of

- intensity of low-energy incommensurate spin fluctuations

NB: in YBCO_{6.6} both quantities strongly reduced

Analogies

- 1. nematic liquid-crystal in weak electric field
- 2. "electronic nematic phase" in Sr₃Ru₂O₇

Borzi et al., Science 2007

- 3. "fluctuating stripes" in La_{15/8}Ba_{1/8}CuO₄ twinned crystal → 1D pattern not seen with neutrons other differences:
 - much sharper peaks
 - incommensurability larger, weakly T-dependent
 - static spin and charge order for T ≤ 50 K

Fujita et al., PRB 2004

Fluctuating stripes?

correlation length almost isotropic

- → almost isotropic exchange interactions
- → at most weak longitudinal spin modulation

alternative: transverse spin modulation

disordered spiral pattern proposed for $La_{2-x}Sr_xCuO_4$ for $x \le 0.05$

Luscher et al., PRL 2007

YBCO_{6.4} summary

robust electronic liquid-crystal phase in weak aligning field

Kivelson et al. Nature 1998

Strength of interactions

- dynamical spin correlation functions determined
- ullet some similarity to gapped "vertical dispersion" in pseudogap state of YBCO $_{\!6.6}$
- open question: longitudinal or transverse spin modulation?

Collaborators: Superlattices

neutron scattering

J. Chakhalian

J. Stahn, C. Niedermayer

T. Charlton, R. Dalgliesh

x-ray spectroscopy

J. Chakhalian

J. Freeland

J. Cesar

IR spectroscopy

A. Boris

C. Bernhard

theory

G. Khaliullin

M. van Veenendaal

samples

H.U. Habermeier, G. Cristiani

MPI Stuttgart → Univ. of Arkansas

PSI Villigen

ISIS

MPI Stuttgart → Univ. of Arkansas

Argonne National Lab.

ESRF

MPI Stuttgart

MPI Stuttgart → Univ. of Fribourg

MPI Stuttgart

Argonne National Lab.

MPI Stuttgart

YBCO-LCMO superlattices

LCMO = $La_{0.7}Ca_{0.3}MnO_3$ metallic ferromagnet, $T_C = 160 \text{ K}$ lattice constants almost indentical to YBCO

superb interface quality

- TEM: atomic-scale epitaxy
- neutron reflectivity of 1×1 cm² sample:
 average roughness ~ 5 Å

YBa₂Cu₃O_{6+x}

lattice structure

electronic structure

strong superexchange of electrons in Cu x²-y² orbital nearly antiferromagnetic spin fluctuations throughout phase diagram

YBCO-LCMO interface

- different magnetic environment
- different crystal field
- different covalent bonding?

YBCO-LCMO superlattices

suppression of metallicity

for layers thinner than ~ 5 nm

Holden et al., PRB 2004

YBCO-SRO, YBCO-LNO superlattices

similar behavior in YBa₂Ca₃O₇ / SrRuO₃ SL (ferromag. metal)

much weaker effect in $YBa_2Ca_3O_7$ / $LaNiO_3$ SL (paramag. metal)

→ significant role of magnetism

surprising because

- robust AF spin correlations
- short spin diffusion length expected in YBCO

YBCO-LCMO superlattices

neutron reflectivity

→ Bragg reflections due to structural and magnetic periodicity

Stahn et al., PRB 2005

magnetic circular dichroism

at L- absorption edges

→ element-specific magnetization

- ferromagnetic polarization of Cu in YBCO
- direction antiparallel to Mn

Spin polarization at interface

magnetization profile

superexchange across interface

Chakhalian et al., Nature Phys. 2006

Exchange coupling across interface

assume bulk orbital occupancy is maintained at interface

→ weak ferromagnetic exchange across interface expected from Goodenough-Kanamori rules

inconsistent with experiment → orbital reconstruction?

X-ray linear dichroism

bulk YBCO

- absorption cross section
 much greater for E | | ab-plane
 → x²-y² orbital partially occupied
- peak position independent of doping (Zhang-Rice singlet state)

X-ray linear dichroism

interface sensitivity through "cap layers"

- FY bulk sensitive
- **TEY** low electron escape depth → probes first interface

Orbitals at interface

Chakhalian et al. submitted

FY matches data on bulk YBCO (Nücker et al.)

TEY shifted → ~ 0.2 electrons / Cu ion transferred across interface not subject to Zhang-Rice singlet formation

almost isotropic \rightarrow partial occupation of Cu $3z^2$ - r^2 orbital

Cluster calculations

possible origins

- different crystal fields at interface unlikely
- covalent bonding?

Cu x^2-y^2 Cu $3z^2-r^2$ B

exact-diagonalization calculations on small clusters

→ covalent bonding realistic

Exchange coupling across orbitally reconstructed interface

Cu 3z²-r² orbital partially occupied

- → strong antiferromagnetic exchange across interface
- $\rightarrow \textbf{reduced in-plane antiferromagnetic correlations}$

combination may explain large ferromagnetic susceptibility, suppression of metallicity and superconductivity of YBCO near interface

Summary

bulk YBCO

nearly antiferromagnetic spin correlations electronic nematic phase

YBCO-LCMO interface

ferromagnetic spin correlations orbital reconstruction driven by covalent bonding

