Studies of Charge Order in Single Crystals of LuFe₂O₄ and Fe₂OBO₃

David Mandrus

Oak Ridge National Laboratory

Work supported by BES Division of Materials Sciences and Engineering

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Collaborators

ORNL -- M. Angst, B.C. Sales, D.-H. Kim, M. Lumsden, S. E. Nagler, A. Christianson, G. Veith, W. Tian, D. Mandrus

UT – J. Musfeldt, Y. Luan, V. Keppens

UMass -- P. Khalifah

Julich - R. Hermann, W. Schweika

N.C. State – H. J. Xiang, M.-H. Whangbo

Ames -- J. W. Kim

UK – V. Varadarajan, J. W. Brill

Special thanks to Art Sleight

Andy Christianson

Manuel Angst

• Search for model charge order systems in which electrostatics play an important role

 Charge ordering is an intriguing route to ferroelectricity, and there may be strong coupling between magnetic & ferroelectric order parameters

 ORNL has good tools for these studies – i.e., neutron scattering, electron microscopy, piezoelectric force microscopy

Outline

 $LuFe_2O_4$ – snapshot of work in progress

- Magnetization & thermal properties
- Neutron scattering
- Resonant Ultrasound Spectroscopy
- IR spectroscopy

Fe₂OBO₃ – summarize results presented in 2 papers*

- first growth of single crystals
- first observation of C.O. superstructure
- BVS analysis showing integer iron valence
- discovery of incommensurate phase

*M. Angst, et al. PRL **99**, 086403 (2007) M. Angst, et al. cond-mat: 0707.3127

LETTERS

Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe₂O₄

Naoshi Ikeda¹, Hiroyuki Ohsumi¹, Kenji Ohwada², Kenji Ishii², Toshiya Inami², Kazuhisa Kakurai³, Youichi Murakami⁴, Kenji Yoshii², Shigeo Mori⁵, Yoichi Horibe⁵ & Hijiri Kitô⁶

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Large Magneto-Dielectric Effect in LuFe₂O₄

M. Subramanian et al., Adv. Mater. 18, 1737 (2006)

Structure of LuFe₂O₄

Figure 1. Crystal structure of LuFe₂O₄ showing the layered arrangement of Lu (large dark–grey spheres), Fe (small black spheres), and oxygen (large white spheres) along the *c*-axis (left). The Fe double layers are shown with a triangular interconnectivity (right). The Fe—Fe distances within a layer (3.44 Å) are longer than the Fe—Fe distances between the layers (3.156 Å).

M. Subramanian et al., Adv. Mater. (2006)

lida, et al. JPSJ (1993)

Proposed Charge Ordering Pattern (Ikeda)

Yamada & Ikeda, JKPS (1998)

Ikeda, Nohdo, Yamada JKPS (1998)

LuFe₂O₄ Optical Floating Zone Growth

LuFe₂O₄ Magnetic Response

Thermal Properties

3D Charge Order below 320 K

Neutron work by Andy Christianson Shull Fellow, ORNL

 3D charge order develops below 320 K and is observed with propagation vector (1/3 1/3 1/2)

Magnetic Ordering In LuFe₂O₄

- Two Magnetic transitions-240 K (previously observed) and 180 K (new).
- Both transitions are 3D, however the peaks are not resolution limited (indicating a finite correlation length).
- Intensity occurs on peaks indexed as (1/3 1/3 L) where L is either an integer or half integer. The L integer peaks are the fundamental magnetic peaks and the half integer peaks are a consequence of the charge order at 320 K.

Magnetic Structure at 220 K

- Peaks at Integer L are purely magnetic while peaks at ½ integer L are related to both the charge order and magnetic order.
- The magnetic contribution to the L=1/2 integer peaks arises solely due to the charge order.

Magnetic Structure of $LuFe_2O_4$ at T = 220 K

- Spins point along c-axis
- Ordering wavevector (1/3, 1/3, 0)
- 3 symmetry equivalent mag. structures
- 2/3 moments point up, 1/3 down
- Consistent with magnetization

180 K Transition

- Significant broadening occurs in magnetic peaks below 180 K.
- A 2D component to the scattering becomes easily observable below 180 K, however, this appears to be the remnants of unordered parts of the sample as this 2D diffuse scattering is stronger in samples with worse oxygen stoichiometry (comparison above). This is consistent with the old work which shows only 2D scattering.

Low Temperature Satellites

• New satellites appear below 180 K. At present the origin is unknown, however they appear to not be magnetic in origin.

Veerle Keppens

advantages of RUS: all elastic constants can be obtained in one measurement small samples (mm³)

The University of Tennessee _

Magnetite Displays Bi-Linear Coupling at Verwey Transition

T. Goto and B. Lüthi

Figure 10. Normalized soft modes $c_{44}(T)/c_{44}(270 \text{ K})$ for the $\text{Fe}_{3-x}\text{Zn}_x\text{O}_4$ (x = 0, 0.02 and 0.032) crystals together with a fit (-----) discussed in the text.

Schwenk et al., Eur. Phys. J. B **13**, 491 (2000)

Elastic strain induced by the ultrasonic wave couples to the charge fluctuation modes

88

LuFe₂O₄ RUS Measurements in Magnetic Field

Optical Properties of LuFe₂O₄: Musfeldt Group, University of Tennessee

- Optical properties are dominated by excitations in the minority spin channel
- $\sqrt{3} \times \sqrt{3}$ and chain structures have similar density of states pictures. Possibility of extracting domain distribution information via temperature dependence of 1.5 eV excitation.
- Magneto-optical work in progress.

Mössbauer Spectroscopy (R. Hermann)

Assuming 50% Fe^{2+} and 50% Fe^{3+} is compatible with the spectra.

Upon heating, the charge order vanishes with an increase in the electron hopping frequency.

Below 260 K the hopping is slower than resolvable, ie than 0.1 MHz.

Fe₂OBO₂

Should lead to unit cell doubling in *a* direction [weak (h+0.5 k l) reflections]

not observed (on polycrystalline material)

- No superstructure observed &
- Resistivity feature associated with CO very broad

possible charge order model [Attfield et al., Nature **396**, 655 (1998)]

\rightarrow Single-crystal study highly desirable

○ Fe³⁺

• Fe^{2+}

Single crystals of Fe₂OBO₃

Try flux growth in Fe – B – O system

Starting point : growing FeBO₃ from

- $Fe_2O_3 B_2O_3 PbO PbF_2$ flux
- [following Kotrobova et al.,
- J. Crystal Growth 71, 607 (1985)]

Then tune growth parameters to favor crystallisation of Fe₂OBO₃

Fe₂OBO₃ crystallised as **thin needles** (||a|) of weight **up to ~1 mg** Phase confirmed by powder x-ray diffraction (and various phys. propert.)

Fe₂OBO₃ : electron diffraction ([001] zone)

T = 350 K

T = 300 K

T = 117 K

Experiments performed by Jing Tao on Urbana TEM

X-ray diffraction: Doubling of unit cell along a at low T

Structure refinement

Fe₂OBO₃ seems best example so far of ionic charge order

"...the inductive effect of the antagonistic bond..."

F. Menil, J. Phys. Chem. Solids 46, 763 (1985)

From Art Sleight:

In EuBaFe₂O₅, the impact of the Eu and Ba would be to increase Fe-O covalency relative to Fe₃O₄. In Fe₂OBO₃, the impact of B would be to increase ionicity relative to Fe₃O₄. And I am convinced that it is this increased ionicity that gives basically the ideal values in Fe₂OBO₃.

Fe - O - T

Fe₂OBO₃ : intermediate phase

Activated transport : $(\rho \propto e^{E_a/kT})$

Resistivity and Differential scanning calorimetry : Two phase transitions

Fe₂OBO₃ : intermediate phase

Structurally, **II** is monoclinic-orthorhombic transition

Fe₂OBO₃ : intermediate phase

Correlations Above CO Transition

Incommensurate Phase Belongs to Class of Phenomena Known as "Modulated Phases"

Cu-Au 50-50 at. %

- Above 410 °C stable phase disordered
- Below 385 °C equilibrium phase CuAu I, in which Cu and Au occupy alternating atomic Layers
- Between these 2 transition temperatures CuAu orders into a one dimensional long Period superlattice called CuAu II, which consists of a periodic array of antiphase boundaries with an average modulation wavelength approx. 10 times the size of the underlying CuAu cell

Malis, Ludwig, PRB 60, 14675 (1999)

"the origin of the modulated phase is still under debate"

Future Work

Optics – Willie Padilla, Boston College

"Switching" Effects in IV curves -- Ana Akrap, L. Forro, EPFL Impedance Spectroscopy, search for ferroelectricity TEM work

Summary

 $LuFe_2O_4$

- Oxygen stoichiometry strongly affects physical properties
- Observation of thermal anomaly at 330 K
- 3D magnetic structure solved
- New phase transition observed at 180 K

Fe₂OBO₃

- Crystal growth of Fe₂OBO₃
- Found C.O. superstructure reflections
- Showed that Fe₂OBO₃ is best example to date of ionic C.O.
- Found the incommensurate phase, assigned it to the same class of phenomena as the CuAu II "modulated phase"

Papers: M. Angst, et al. PRL 99, 086403 (2007); M. Angst, et al. cond-mat: 0707.3127