# Dual nature of improper ferroelectricity in a magnetoelectric multiferroic



#### Silvia Picozzi

Consiglio Nazionale delle Ricerche - Istituto Nazionale di Fisica della Materia (CNR-INFM), 67100 L'Aquila, Italy



K. Yamauchi (CNR-INFM, L'Aquila), B. Sanyal (Uppsala Univ., Sweden),

I. A. Sergienko and E. Dagotto

(Oak Ridge Natl Lab and Univ. Tennessee, TN, USA)



### How can we induce ferroelectricity in magnets?

Our approach: look at "improper ferroelectricity" in magnets (i.e. **P** appears as a consequence or concomitantly with some other kind of orderings).

For ferroelectricity, we need to break **inversion symmetry.** How to do that in magnets via electronic degrees of freedom?

- 1. Spin degree of freedom:
- Spirals (see previous talks)
- Some kinds of collinear c o m m e n s u r a t e antiferromagnetic spin ordering (e.g. AFM-E)





#### Starting point: the AFM-E spin configuration



- 1. Distorted ortho-manganites: Jahn-Teller and GdFeO<sub>3</sub>-like tilting
- 2. Pnma space group
- 3. Double along a and form zig-zag FM spin chains AFM coupled with respect to neighboring chains



#### When does the AFM-E occur?

- Transition from AFM-A to AFM-E with octahedral GdFeO<sub>3</sub>-like distortions<sup>1,3</sup>
- AFM-E: expts in HoMnO<sub>3</sub> + modelhamiltonian-studies<sup>2</sup>
- 1. T. Kimura et al., PRB 68, 060403 (2003).
- 2. T. Hotta et al., PRL 90, 247203 (2003).
- J. Zhou and J. B. Goodenough, PRL 96, 247202 (2006).





## Magnetic ordering: AFM-E as ground state in distorted RMnO<sub>3</sub>



In-plane spin ordering for AFM-E and AFM-E\* (with AFM and FM interplanar stacking, resp.)



**Table:** energy difference (in meV/Mn) with respect to FM

|        | YMnO <sub>3</sub> | <b>TbMnO</b> <sub>3</sub> (7↑,1↓) | LaMnO <sub>3</sub> |
|--------|-------------------|-----------------------------------|--------------------|
| FM     | 0                 | 0                                 | 0                  |
| AFM-E  | -45               | -32                               | -2                 |
| AFM-E* | -23               | -11                               | +2                 |
| AFM-A  | -29               | -8                                | -17                |
| AFM-C  | -10               | 17                                | 58                 |
| AFM-G  | -24               | 4                                 | 64                 |

S. Picozzi, K. Yamauchi, G. Bihlmayer and S. Bluegel, PRB 74, 094402 (2006)



## Outline/Questions on Ferroelectricity AND Magnetism

AFM-E ortho-HoMnO<sub>3</sub>: is this a novel multiferroic? First-principles density-functional calculations

- Electric polarization from "displacement" mechanism: is it effective?
- Which is the mechanism for polarization induced by AFM-E magnetic ordering?
- Ferroelectric switching path: how can we achieve it?

Conclusions



#### **Computational details**

- VASP<sup>1</sup> simulations with Projector Augmented Wave pseudopotentials
- Generalized Gradient Approx. (PBE exch.-corr.)
- Ho pseudopotential: 4f "frozen"
- Monkhorst-Pack shell: [3,4,6]
- Hubbard potential<sup>2</sup> on Mn d: GGA +U (for various U and J = 0.15\*U)
- Berry phase approach to polarization<sup>3</sup>
- Non-collinear magnetism<sup>4</sup>
- Spin-orbit neglected
- G. Kresse and J. Furthmueller, Phys. Rev. B 54, 11169 (1996) 1.
- 2. V.I. Anisimov, et al., J. Phys.: Condens. Matter. 9, 767 (1997).
- 3. R.D.King-Smith and D.Vanderbilt, PRB 47,1651 (1993); R. Resta, RMP 66, 899 (1994).
- D. Hobbs, G. Kresse and J. Hafner, Phys. Rev. B 62, 11556 (2000). 4.

#### Structural details

- Experimental lattice constants for paramagnetic HoMnO<sub>3</sub>
- Extremely high GdFeO<sub>3</sub>-like distortions
- Internal atomic positions fully relaxed (forces < 0.01 meV/Å)



### Polarization from "Displacement" mechanism \*



Simple model:

start from centro-symmetric atomic positions

- only O atoms can move and they are forced in the MnO<sub>2</sub> planes

In total: O center of mass move "right": Polarization directed along c axis

\* I.A. Sergienko, C. Sen and E. Dagotto, PRL 97, 227204 (2006).



### Polarization from "Displacement" mechanism





#### Simple model:

- start from centro-symmetric atomic positions
- only O atoms can move and they are forced in the MnO<sub>2</sub> planes



... But.... actually the displacement pattern is not so simple (also Mns move), but the polarization is indeed directed along c



## Does the Mn-O-Mn angle depend on Mn-Mn spin configuration?





|       | α (°) | d <sub>I</sub> (Å) | $d_s(Å)$ |
|-------|-------|--------------------|----------|
| FM    | 143.9 | 2.19               | 1.93     |
| AFM-G | 142.8 | 2.24               | 1.90     |

In-plane FM (AFM) interactions Larger (Smaller) angles







# HoMnO<sub>3</sub> AFM-E: in-plane structural parameters

**NB:** Zig-zag chains and symmetry reduction:

- 2 different Mn-O-Mn angles (FM and AFM)
- 2 different Mn-O "long" bond lengths
- 2 different Mn-O "short" bond lengths

|       | $\alpha_{\mathrm{b}}$ | $\alpha^{ap}$ | d <sup>l</sup> <sub>1</sub> | $d_l^2$ | $d_s^{-1}$ | $d_s^2$ |
|-------|-----------------------|---------------|-----------------------------|---------|------------|---------|
| FM    | 143.9                 | -             | 2.19                        | 2.19    | 1.93       | 1.93    |
| AFM-G | -                     | 142.8         | 2.24                        | 2.24    | 1.90       | 1.90    |
| AFM-E | 145.3                 | 141.9         | 2.25                        | 2.18    | 1.92       | 1.92    |





### Ferroelectric switching

#### Sergienko et al.<sup>1</sup>:

- Model calculations using Landau theory
- two E-phase domains differing for orientation of half of the Mn spins and giving opposite P



1. I.A. Sergienko, C. Sen and E. Dagotto, PRL 97, 227204 (2006).

## How to go from $E_1$ to $E_2$ ?

- Via progressive rotation of "central" spins
- Non collinear
   VASP calculations
   constraining the
   direction of local
   moments









# Ferroelectric switching



Depth of the well ~ 8 meV/f.u.

(cfr 18 meV/f.u. in BaTiO<sub>3</sub>)





### Insulating character along the switching path





NB: the DOS look pretty much unaltered along the path: no drastic charge rearrangement...



# What about polarization?



Electrical control of AFM domains

P much higher than other multiferroic manganites (in TbMnO<sub>3</sub> P~0.1 μC/cm<sup>2</sup>) P<sub>PCM</sub> P<sub>DFT:BP</sub>

45 90 135 180

P<sub>PCM</sub> not reliable!
Need for fully
quantum approach:
electronic effects at
play!





# What about polarization?







Take centro-symmetric positions from  $\bot$  and switch the AFM-E1 or AFM-E2 spin-configurations:  $P \sim 3 \mu C/cm^2$  (with opposite sign):

Magnetism breaks the symmetry and gives P!!!



## Model study: Landau theory of phase transitions

$$P_c = \chi_z (c_{xz} \sin \phi - c_0 \cos \phi)$$
  $P_a = c'_{xz} \chi_x \sin \phi$ 

$$P_a = c'_{xz} \chi_x \sin \phi$$

$$P_b = 0$$

 $\chi_{z}(\chi_{x}) = z(x)$  component of dielectric susceptibility = rotation angle of the central spins

**NB**:  $c_{xz}$  and  $c'_{xz}$  originate from coupling of **P** to the product of the a

and c components of the magnetic moments (relativistic origin)

No SOC  $\Rightarrow$  Only ccomponent of P left:

$$P_c = -\chi_z c_0 \cos \phi$$

Excellent agreement!





# Symmetry-breaking induced by magnetic ordering

- "Centro-symmetric positions" with AFM-E<sub>1</sub> ordering
- Plot charge density for Mn  $e_g$  + O p orbitals

- O atom bonded to AFM Mn is different from O bonded to two FM spins
- More charge on the "short" compared to the "long" bond: relevance of magnetic ordering, Jahn-Teller and GdFeO<sub>3</sub> tilting





### In-plane Mn and O Born effective charges

$$Z^*_{\kappa,\alpha\beta} = \Omega (\Delta P)_{\alpha}/|e|u_{\kappa,\beta}|$$

- $(\Delta P)_{\alpha}$  = change of polarization along direction  $\alpha$
- $u_{\kappa,\beta}$  = displacement of atom  $\kappa$  in direction  $\beta$
- $\Omega$  = unit cell volume
- NB: calc. only the (3,3) comp. of the Z\* tensor



|       | Mn           | Oap           | Op            |
|-------|--------------|---------------|---------------|
| ""    | 3.9 <i>e</i> | -3.1 e        | -3.1 <i>e</i> |
| AFM-E | 3.8 <i>e</i> | -2.6 <i>e</i> | -3.5 e        |



- Z\* values not so "anomalous": rather "ionic" picture
- Polarization in centrosymmetric structure comes from inequivalency of the oxygens



# How about correlations? "GGA+U"

- Difference between Mn-O-Mn angles for FM and AFM Mn decreases with U
- The two "short" Mn-O bond lengths are very similar
- The two "large" Mn-O bond lengths become closer with U

**Smaller distortions!** 





#### What about P vs U?



- P follows the displacement trend and decreases with U. It makes sense: U = energy penalty paid for adding an extra-e on Mn  $\longrightarrow$  If U increases, hopping is less favourable, therefore  $\alpha^{p}$   $\alpha^{ap}$  (and eventually P) decreases
- However, P > 0.5 μC/cm<sup>2</sup> in the whole U range



## Theory vs Experiment\*

Polarization from integrating pyroelectric current on HoMnO<sub>3</sub> poly-cristalline samples (single crystals not available)

- P small (although it is a lower bound...)
- P increases at ordering temperature of Ho spins!



- 1. Expt: Make better samples ???? Deposit thin films ???
- 2. Theory: Make better simulations??? Ho 4f spins???

<sup>\*</sup> B. Lorenz, YQ. Wang and C.W.Chu, cond-mat/0608195



### Summary#

AFM-E ortho-HoMnO<sub>3</sub>: is this a novel multiferroic? First-principles density-functional calculations

- Electric polarization from "displacement" mechanism
   Largest P predicted so far for an "improper ferroelectric" where
   P is induced by antiferromagnetism
- Ferroelectric switching path
   Via spin-rotations: Electrical control of AFM domains
- Polarization induced by AFM-E magnetic ordering
  - 1. **P** has a both of "*ionic*" and "*electronic/magnetic*" origin. This solves controversy in model Hamiltonian studies
    - + we believe it is rather *general* in the class of IMF
  - 2. It is possible to achieve "large" P (i.e. few  $\mu$ C/cm<sup>2</sup>) with centrosymmetric positions

# S.Picozzi, K.Yamauchi, B.Sanyal,I.A.Sergienko and E.Dagotto, arXiv/0704.3578



#### Take-home message:

- "Dual nature" of P in real compounds:
- displacements of ions
   and
- electronic/magnetic effects
   can both sizably contribute to P

## How can we induce ferroelectricity in magnets?

For ferroelectricity, we need to break **inversion symmetry**. How to do that in magnets via the electronic degrees of freedom?

- 1. Spin degree of freedom 1
- 2. Charge degree of freedom
- 3. Orbital degree of freedom



