Dr. Dan Freed, U Texas (ITP 6/20/01) The Geometry and Topology of p-Form Gauge Fields II

The geometry of p-form gauge fields

X - smooth manifold

j ∈ \Omega^p(X) - current, \; d\mathbf{s} = 0

Q ∈ H^{p+1}(X, \mathbb{Z})

We want j - element in a refined color theory
mapping to (Q, j)

Similarly we had F \in \Omega^2(X) - field strength
\lambda \in H^2(X, \mathbb{Z})
and we want \lambda \mapsto (\lambda), F).

First attempt: Take j, F to be elements in the fiber product

A^q\mathbb{H}(X) \longrightarrow \Omega^q(X)

\lambda \downarrow \downarrow

H^p(X, \mathbb{Z}) \longrightarrow H^q(X, \mathbb{R})

Example: Look at the q = 1 situation from yesterday. There we knew the answer.
\[\phi \mapsto d\phi \]

\[\text{Map}(X; \mathbb{R}/2\pi \mathbb{Z}) \to \text{L}_G(X) \]

\[H^1(X, \mathbb{Z}) \to H^1(X, \mathbb{R}) \]

Clearly, \(\text{Map}(X; \mathbb{R}/2\pi \mathbb{Z}) \) is not \(A^1_H(X) \).

In fact, we have a SES:

\[0 \to \frac{H^0(X, \mathbb{R})}{H^0(X, \mathbb{Z})} \to \text{Map}(X, \mathbb{R}/2\pi \mathbb{Z}) \to A^1_H(X) \to 0 \]

locally constant maps from \(X \) to the circle \(\mathbb{R}/2\pi \mathbb{Z} \).

Conclusion: The actual refinement captures more information than the fiber product \(A^1_H(X) \).

- Look at \(q=2 \). Here we also found an answer yesterday.

\[\text{M}-\text{bundles with connections} \to \text{JCD}(X) \]

\[\text{Char. class} \]

\[H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{R}) \]
Again we have a ses

\[0 \to \tilde{H}^1(X, \mathbb{R}) \to \tilde{H}^1(X, \mathbb{C}) \to \tilde{H}^1(X, \mathfrak{g}) \to \tilde{A}^1(X) \to 0 \]

so the actual answer does have more info than \(\tilde{A}^1(X) \).

In the early 70s Cheeger-Simons and Deligne constructed for each \(q \)

\[\tilde{H}^q(X) \quad \text{Cheeger-Simons diff.} \]

\[H^q(X) \quad \text{characters = smooth Deligne cohomology} \]

s.t. we have a ses

\[0 \to \tilde{H}^q(X, \mathbb{R}) \to \tilde{H}^q(X) \to \tilde{A}^q(X) \to 0 \]

Examples:

\[\tilde{H}^0(X) = \text{Map}(X, \mathbb{C}) \]

\[\tilde{H}^1(X) = \text{Map}(X, \mathfrak{g}) \]

\[\tilde{H}^2(X) = \{ \text{circle bundles with connections} \} \]

So the right answer for the refinement will be \(\tilde{H}^q(X) \).

However: in order to do field theory we need not only \(\tilde{H}^q(X) \) but also a calculus of cochains for elements in \(\tilde{H}^q(X) \), i.e. we want geometric representatives of cohomology classes.
We want something that generalizes the familiar models:

<table>
<thead>
<tr>
<th>Cohomology Groups</th>
<th>Geometric Representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^0(X, \mathbb{R})$</td>
<td>Closed differential forms</td>
</tr>
<tr>
<td>$K(X)$</td>
<td>Vector bundles (with connections)</td>
</tr>
<tr>
<td>$H^1(X, \mathbb{A})$</td>
<td>Principal covering space with Galois group \mathbb{A}</td>
</tr>
<tr>
<td>A - abelian</td>
<td></td>
</tr>
</tbody>
</table>

1st model: A cocycle for an element in $H^q(X)$ is a triple (c, h, w) where

- $c \in C^q(X, \mathbb{Z})$, $\delta c = 0$
- $\omega \in \Omega^q(X)$, $d\omega = 0$
- $h \in C^{q+1}(X, \mathbb{R})$, $\delta h = \omega - c$

Examples:

- $q = 1$
 $h \in C^0(X, \mathbb{R})$ i.e. $h : X \to \mathbb{R}$
 - function (not necessary continuous)

However, the condition $\delta h = \omega - c$ implies A path.

$\Rightarrow h(q) - h(p) = \int_{p}^{q} \omega - \langle c, x \rangle$
and so

\[e^{ih(p)} = \exp \left(\frac{i}{\hbar} W(p) \right) \]

i.e. \(h \) can be arbitrary but \(\exp \) must be a nice smooth map.

What is the equivalence relation on the triples \((c, \omega, h)\)?

If we have a cochain complex

\[\cdots \rightarrow C^{q-2} \rightarrow C^{q-1} \rightarrow C^q \rightarrow C^q \rightarrow \cdots \]

The \(q \)-th cohomology group \(H_q \) of this complex can be realized as

\[T^a (\text{category}) \]

This category will have

Objects: \(\mathbb{Z}^q \)

Morphisms: \(a \rightarrow a' \) will be \(b \in C^{q-1} \)

s.t. \(a' = a + \delta b \)

In particular, the automorphisms of \(a \) are all \(b \) s.t. \(\delta b = 0 \) i.e. \(\delta^2 = 0 \).

Now to find the equivalences of the cochain \((c, \omega, h)\) we will just define the corresponding category.
A map \((c, w, h) \rightarrow (c', w', h')\) will be a pair

\[
(s, t) : (c, h, w) \rightarrow (c', h', w')
\]

where \(s \in C^{q-1}(X, \mathbb{Z})\), \(t \in C^{q-2}(X, \mathbb{R})\)

\[
\begin{align*}
 c' &= c + \delta s \\
 w' &= w \\
 h' &= h - s - \delta t
\end{align*}
\]

Also we can define equivalence of maps

\[
(s, t) \sim (s + \delta e, t + \delta f)
\]

\(e \in C^{q-2}(X, \mathbb{Z})\), \(f \in C^{q-2}(X, \mathbb{R})\)

and get further a structure of a \(2\)-category etc.

Variants:

1. Čech model
2. tame triples: \(c : X \to K(q, \mathbb{Z})\)

\(c, h, w\) was before

\[
\delta h = c_4 - c^2 n
\]

where \(n \in C^4(K(q, \mathbb{Z}), \mathbb{R})\)

is a fixed cocarin.
To get the cochain model we considered above we need to form the fibered product
\[C^0(q)(x) \rightarrow \mathbb{R}_x^q \]
\[\downarrow \quad \downarrow \]
\[C^0(x, \mathbb{R}) \rightarrow C^0(x, \mathbb{R}) \]
and consider the bigraded Deligne theory
\[H(p)^q(X) := H^p(C^0(q)(x)) \]
Then
\[H^q(X) := H(q)^q(X) \]

Example: Let us work out the cochain model for \(q = 2 \).

\[\alpha = (c, b, \omega) \]

What is a trivialization of \(\alpha \)? This is an isomorphism of \(\alpha \) with \(\delta \).

To prescribe such a trivialization we need to solve
\[\delta b = c \]
\[db = c \]
\[d\omega = c \]
How to do this for generalized cohomology theories?

A generalized cohomology theory

\[X \rightarrow \Gamma^*(X) \]

satisfying the Eilenberg-MacLane axioms

without the normalization axiom.

Normalizations:

1. \(\Gamma = H \mathbb{Z} \):
 \[H^q(pt) = \begin{cases} \mathbb{Z} & q = 0 \\ 0 & q \neq 0 \end{cases} \]

2. \(\Gamma = K \):
 \[K^q(pt) = \begin{cases} \mathbb{Z} & q \equiv 0 \mod 2 \\ 0 & q \equiv 1 \mod 2 \end{cases} \]

3. \(\Gamma = K0 \):
 \[K0^q(pt) = \begin{cases} \mathbb{Z} & q = 0 \\ \mathbb{Z}/2 & q = 1 \\ \mathbb{Z}/4 & q = 2 \\ 0 & q \equiv 3 \mod 4 \end{cases} \]

Note: For every \(\Gamma \)-generalized cohomology theory, there is a natural map

\[\Gamma^*(X) \rightarrow (H^*(X, \mathbb{K}) \otimes \Gamma^*(pt)) \]

Example: \(\Gamma^*(pt) \otimes \mathbb{K} \cong \mathbb{K} \mathbb{C}^* \mathbb{C}^* \) deg \(u = 2 \)

\(u^{-1} = \text{Hopf bundle over } S^2 \)

The map \(K^*(X) \rightarrow H^*(X, \mathbb{K} \mathbb{C}^* \mathbb{C}^*) \) is just the Chern character.
For example

\[ch : K^0(X) \to (H(Y, K(C(U, U^{-1}), J)) \times J \to ch_0(x) + ch_1(x)u^{-1} + ch_2(x)u^{-2} + \ldots) \]

A cochain model for \(K^0 \) can be described as follows.

Let \(B \) be a smooth model for the classifying space of \(K \) (Recall: the classifying space of \(K \) is \(\mathbb{Z} \times B \)).

We can take

\[B = \text{Fred}(T^*) \quad \text{for separable (or Hilbert)} \]

Fix

\[x \in (H(B, K(C(U, U^{-1}) \to)) \]

e.g. as the Chern character of the universal connection \(\nabla_{\text{uni}} \).

Then a class in \(K^0(X) \) is a triple \((c, h, w)\) where

\[c : X \to B \quad \text{and} \quad h : (C(X, K(C(U, U^{-1}) \to)) \to B \]

\[w \in (T^2(X, \ldots)) \quad \text{with} \quad dw = 0 \]

Alternatively, one may dance \((E, \nabla)\) - vector bundle with connection as a cocycle representative.

(Left)
Remark: \(\tilde{\Gamma} \) has a multiplicative structure,
\[\tilde{\Gamma} \otimes \tilde{\Gamma} \rightarrow \tilde{\Gamma} \]
This can also be lifted to cochains!

- \(\tilde{\Gamma} \) has evaluation maps (integration).

For example, \(\iota : W \rightarrow X \) - inclusion \(\pi : X \rightarrow T \) - fiber bundle.

If \(\tilde{\alpha} \in \tilde{\Gamma}(X) \) has curvature \(\omega \), then

\[
\text{curvature} \left(\tilde{\alpha} \right) = \int_{X/T} \hat{A}_p \left(\frac{X}{T} \right) \wedge \omega
\]

where \(\hat{A}_p \left(\frac{X}{T} \right) \) is a Todd-like class, depending on \(\tilde{\Gamma} \).

- \(\tilde{\Gamma} = H \mathbb{Z} \Rightarrow \hat{A}_p = 1 \)
- \(\tilde{\Gamma} = KO \Rightarrow \hat{A}_p = \hat{A} \)
- \(\tilde{\Gamma} = K \Rightarrow \hat{A}_p = \hat{A} \cdot e \)

How to recast the discussion of higher gauge fields from yesterday in terms of generalized differential cohomology theory?
Data:
(1) degree \(d = (d_1, d_2, \ldots, d_k) \)

(2) coupling constant \(e = (e_1, e_2, \ldots, e_k) \)

(3) \(\Gamma \) - cohomology theory

(4) normalization

\(\omega^x = (\omega^x_1, \ldots, \omega^x_k) \) degree 0

These are differential forms that depend functorially on \(X \).

Example:
If \(\Gamma = \mathbb{H}^2 \Rightarrow \omega^x = 2\pi \)

If \(\Gamma = \mathbb{K} \Rightarrow \omega^x = 2\pi \sqrt{A(x)} \)

(5) homomorphisms \(\Gamma' \to \mathbb{H}^2 \)

Example:
If \(\Gamma = \mathbb{K} \Rightarrow \mathbb{K}' \to \mathbb{H}^2 \)

\(f : \mathbb{K} \to \Omega(\mathbb{K}) \) def \(f \)

Ingredients:
\(j_x \in \mathbb{Z}_{p+1}(X) \) currents

\(j_x \in \mathbb{Z}_p \)

\(\gamma \to (\Omega, \frac{j_x}{\gamma}) \).
gauge field \(A \in \mathfrak{g}^d(X) \) - non-flat

\[\text{covariant derivative } = \frac{F_A}{\omega_X} \]

let \(F_A \) = equivalence class of \(A \).

Action for a family of manifolds:

\[
\begin{align*}
\mathcal{X} & \supset \mathcal{X}_t \\
\uparrow & \quad \uparrow \\
\mathcal{T} & \supset \mathcal{T}_t
\end{align*}
\]

\[
\mathcal{L}(A) = \exp \left(-\frac{1}{2e^2} \left(\sum_{X/T} F_A \wedge \ast F_A \right) \right)
\]

\[
\exp \left(-\frac{i}{e} \int_{X/T} \mathcal{F}_X \cdot \mathcal{F}_X \right)
\]

trivialization or \(\exp \left(-\frac{i}{e} \int_{X/T} \mathcal{F}_X \cdot \mathcal{F}_X \right) \)

which can be interpreted as an element in \(\mathfrak{g}/\mathfrak{t} \) via the map (6) i.e.

\[
\exp \left(-\frac{i}{e} \int_{X/T} \mathcal{F}_X \cdot \mathcal{F}_X \right) \text{ is a trivialization of a circle bundle with connection}
\]