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If cells play dice, can we
gamble our way out of cancer ?

Jorge M. Pacheco
Math — U. Minho

®ee atp

http://www.ciul.ul.pt/~ATP/

21-FEB-2013




Cancer

( a poor summary of some of David Dingli’s slides )

cancer is a consequence of multicellularity
cellular genome is under permanent attack 3

(environmental or metabolic genotoxic agents) » mutations

DNA replication machinery is not perfect J

many mutations are neutral
others = malignant tranformation = clonal development

impact of mutations: pu rate, # cells@risk, cell-lifetime




tissue architecture

%* tissue architecture has evolved

+ most tissue cells have a ! lifetime & a A turnover

=2 minimize impact of mutations

+* many tissues evolved a hierarchical structure

=>» tree-like structure

s at the root of the tree are the tissue-specific stem-cells

s* example: hematopoiesis
** stem-cell concept was developed in hematopoiesis and has
been extended to many other tissues

** HSC resilience relies on > # & v turnover of stem cells




hematopoietic stem cells (HSC)

O

O self-renewal :

capacity to clone e . O
t h e m S e I ve S Long term  Short term Multipotent

progenitor

O differentiation :
O capacity to differentiate
into all other types of blood cells

stemness is a matter of degree — you have to stand at the
root of the hematopoietic tree




allometric scaling of hematopoiesis in land mammals
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Dingli & Pacheco, PLoS ONE, 2006




allometric scaling of hematopoiesis in land mammals

use experimental estimates for cats for calibration ( fix N, ):

under normal conditions, 2 40 ! ( Abkowitz et al, Blood, 2002 )
what X experimental data

HSC in humans ~400
cat =40 ( Buescher et al, J Clin Invest, 1985 )
rate HSC divisiqn ~ 52-104 week !
cat post-TRX = 8 week ( Rufer, et al, J Exp Med, 1999 )
human post-transplant ~ 116
cat=13 ( Nash et al, Blood, 1988 )
mouse 1

: —————————————————— | ( Abkowitz et al, PNAS , 1995 )

|

|
rate macaques i i 23 week?

: : ( Shepherd et al, Blood , 2007 )

| |
rate baboons i i 36 week™

- - - I ( Shepherd et al, Blood , 2007 )

Dingli & Pacheco, PLoS ONE, 2006



the hematopoietic tree

¢ in humans ~ 400 HSC divide each once per year

* but : daily output of bone marrow ~ 3.5 x 101 cells !!!

how to explain this enormous amplification given
the slow replication rate of HSC ?

** one must consider :
@

differentiation ©

o
o
amplification O e

O

asymmetric division : more parameters, see Dingli et al. PLoS-CB, 2007




the hematopoietic tree

** we consider a compartmentalized structure in which cells from
upstream compartments flow into downstream compartments,
under stationary flux conditions;

etc...

upstream downstream
Dingli, Traulsen & Pacheco, PLoS-ONE, 2007




deterministic dynamics of the hematopoietic tree

N.(t)=—d.N.(t)+b_N,_ (1)
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Werner et al., PLoS-CB, 2011
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the deterministic model provides
numerous insights onto the average
dynamics in the hematopoietic tree;
for instance, that even if you kill the

, you may still die from its progeny
(ex: CML)




the hematopoietic tree

ﬁTime between replications (days) Compartment size (cells) j
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Dingli, Traulsen & Pacheco, PLoS-ONE, 2007
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DISEASE

The Economist, 13t September, 2008
(article on cancer stem cells )




scaling relations.. ..

*** number of HSC in adult mammals :

N, =16.55M"" S

** number of HSC during human ontogeny :
N, =5.5m(t) [-]

¢ HSC replication rate :

r=29M"* [ year?]

** average life-span of organism :

[ year]

([M]=kg)




simple implications.. ..

Hayflick hypothesis (1961):
cells undergo a limited number of divisions during their lifespan

from the scaling relations, each cell divides

N ~ ratexlifespan ~ M "*xM"* ~ M°

that is, constant & independent of the mammalian species

a mouse-HSC and an elephant-HSC replicate, on average, the same
number of times during the ~2-year and the ~70-year lifespans of the
mouse and elephant, respectively; humans are the exception, as we
live much longer than lifespan estimate.



are stochastic effects important ?

** in vivo stochastic effects in hematopoiesis were found in 1996
( Abkowitz et al, Nat. Med. , 1996 )

*** deterministic models (of hematopoiesis) at best describe average
population dynamics behaviour, and may provide poor descriptions
of small cell populations and neutral dynamics, in particular of HSCs ;
this may have sizeable impact on disease dynamics

(single mutant, years)
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trouble
normal : 107 < u < 10 per cell per replication

normal

hematopoiesis
CMP

CEU-GEMM *

. BFU-E

Bone Marrow

PLT




trouble
normal : 107 < u < 10 per cell per replication

transient

CEU-GEMM *

Bone Marrow
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trouble

normal : 107 < u < 10 per cell per replication

long term, yet transient, O @
trouble |
b

CEU-GEM *
;

. BFU-E

Bone Marrow




average # mutant cells in each compartment

3
time (years)

mutations arising in early progenitors
may lead to long term trouble but are
ultimately washed out (after many years)




trouble
normal : 107 < u < 10 per cell per replication

long term trouble

CMP

CEU-GEMM *

Bone Marrow




average # mutant cells in each compartment

time (years)

mutations arising in H5C lead to potentially permanent
trouble as hematopiesis inay.evolve toward a hew steady state
{ stochastic effects may change this)




troubled hematopoiesis
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cancer dynamics becomes a multi-scale ecology of cell competition

starting upstream with a small number of HSC & CSC and getting downstream into very large numbers of cells of all kinds




stochastic dynamics of HSC (birth-death)

stochastic model for HSC :

°
‘ normal stem cells

** SC population remains constant (16.55 M*/*#)

** HSC divide at normal rate (2.9 M-/*)

X divide at rate r x normal, where 1 = relative fitness

** when a cell is selected , gives rise to two new identical cells
X subsequently, 1 cell is randomly selected for export

** HSC may suffer mutations and transform into

Dingli, Traulsen & Pacheco, Cell Cycle, 2007



stochastic dynamics of HSC

several possible scenarios out of this simple process:

Extinction

AL N X B N X X
® ©® T e e

Latency

Disease

Dingli, Traulsen & Pacheco, Cell Cycle, 2007




on the small number of HSC

** a patient is diagnosed in association with some level of disease burden

»» diagnosis can only happen during the lifetime of the organism

\/

** ... which means there may be no time for diagnosis to happen

*»» for an organism with a finite lifetime, in whch disease means some
threshold is surpased, selection & mutation play a curious game . . .

** if we assume that disease is equally represented in all cell lineages, we may
look at dynamics within the HSC compartment only ( not always true )

the previous model provided average values

stochastic dynamics — time distribution functions
probability during lifetime



on the small number of HSC

+* is there a good reason for a small HSC pool ? ( use scaling for all M )
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on the small number of HSC

** is there a good reason for a small HSC pool ?

< r is usually very difficult to determine experimentally;
unfortunately, it is consensual that, in general, r is large ( >1.5 )

** when , large mammals are more protected than small mammals;

*** when , small mammals are more protected, since the probability
for the organism to acquire cancer mutations is minimized;

** a small active HSC pool minimizes the risk of mutations;
once mutations occur, the path to full blown disease opens up easily
(whenever r >1).

how about the probability distribution functions ?

Lopes, Dingli, & Pacheco, Blood 110 (2007) 4120 - 4122



stochastic dynamics of HSC in Humans

disease diagnosis : 20% “blasts” in AML
( acute myeloid leukemia )

10% of plasma cells in MM

( multiple myeloma )

how much time is required
for a mutation to develop
& give rise to diagnosis of
a HSC disorder ?
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Dingli, Traulsen & Pacheco, Cell Cycle, 2007




stochastic dynamics of HSC in Humans

disease diagnosis : 20% “blasts” in AML
( acute myeloid leukemia )

10% of plasma cells in MM

( multiple myeloma )

how much time is required
for a mutation to develop
& give rise to diagnosis of
a HSC disorder ?

—

even for r=2, the FWHM
is ~4 years !
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stochastic effects at play in specific diseases



paroxysmal nocturnal hemoglobinuria

** rare disease
** true HSC disorder, since it originates in the PIG-A gene of a HSC
** rate of PIG-A gene mutation is known to be normal

+ often BMF is later observed

¥ 1t mutation is neutral but a 2" mutation leads to a fithess

advantage of PNH cells — disease expansion ( rare event )
Dingli, Pacheco & Traulsen, Physical Review E77 (2008) 021915

upper limit for the appearance of a 2"
mutation until the first one leads to diagnosis

** relative fitness advantage of PNH cells due to an imunne
attack to normal HSC disease expansion




PNH - model features

% use N, =400

** simulate HSC activity in virtual USA (109 virtual Americans)

¢ use normal mutation rate for HSC PNH transformation
** assume neutral drift (r=1) between HSC & PNH cells

+* fold data with CENSUS 2000 for USA population

** compare results with incidence data in USA




results

normal mutation rate
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results above (& other results) suggest that it is not
necessary to invoke a relative fitness difference to explain
incidence of PNH




results — individual history & variable outcomes

sensitivity of flow cytometry
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neutral evolution relies on the stochastic nature of cell behavior, & PNH
shows us that, likely, many individuals suffer the PIG-A mutation but are
never diagnosed PNH, as it is more likely for the mutant to become extinct
than to evolve into a clone. This, in turn, suggests that the current way of
approaching the (now over) 40-year old war-on-cancer, that is,

cure = kill-every-single-cancer-cell

is perhaps not alwayss the best, or sometimes maybe even unnecessary.
In fact, profiting from competition through natural selection may turn out
to be a more viable strategy.



Chronic Myeloid Leukemia

*+* Hematopoietic stem cell disorder

¢ Initial event: Philadelphia chromosome

%* 7 HSC are enough to drive chronic phase ?
+»* clonal expansion and myeloproliferation

*+* stem cell derived but progenitor cell driven

¢ abl-kinase inhibitors very effective



CML dynamics

*** Q-RT-PCR data from patients treated with imatinib
¢ 2 data sets available

** Michor et al, Nature, 2005

** Roeder et al, Nature Medicine, 2006

¢ other data recently available for nilotinib

¢ data fitting ( using deterministic model )



CML - model features

¢ use existing model of hematopoiesis
< how to get from HSC origin to progenitor driven
disease ?

** bone marrow expansion

*** how does imatinib/nilotinib work ?
*»* does imatinib/nilotinib induce cell death?

** how many cells are responding to imatinib/nilotinib ?



CML - model constraints

*»* time from initial insult to diagnosis is 3.5 — 6 years
¢ progenitor cell expansion >14%

¢ total number of active HSC is not increased

+»* daily bone marrow output is ~ 3 x normal

** imatinib/nilotinib leads to

*»* imatinib/nilotinib does not affect HSC

¢ at any time a fraction z of cells responds to
imatinib/nilotinib
we extract & Z from data ...



imatinib ® nilotinib

© IRIS study
0 GIMEMA study
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Traulsen et al, Cancer Letters, 2010




imatinib ® nilotinib
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imatinib ® nilotinib

in vitro : no differences detected
in vivo : important differences
(ecology of cancer cells is important)

I I I I I
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Traulsen et al, Cancer Letters, 2010




evolutionary dynamics of CML
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stochasticity in CML

.. stochastic dynamics of 10*? cells is unfeasible hybrid model
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stochasticity in CML

in 84% of individuals, CSC population goes extint before diagnosis
in 16% of individuals, CSC population grows, on average, 1 per year

Average time to
diagnosis

Average clone size

4 6 8
time (years)

time (years)

Tom Lenaerts et al., Haematologica 2010




stochasticity in CML

in 84% of individuals, CSC population goes extint before diagnosis
in 16% of individuals, CSC population grows, on average, 1 per year

Average time to
diagnosis

Average clone size

2 4 6 8
time (years)

Tom Lenaerts et al., Haematologica 2010
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stochasticity in CML

c1/ no LSC @ diagnosis| |c2 [l including 16% patients with LSC @ diagnosis
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despite NOT affecting directly ,
imatinib + natural selection can cure the majority of patients
ongoing: development of resistance mutations . . .




stochasticity in CML

treatment with TKl-inhibitors helps an individual to stay alive and live his
everyday life while natural selection helps him getting rid of the cause of the
disease; however, it takes years for one to gamble his way out of cancer.
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CML in other mammals

there is no reason, a priori, to suppose that what we observe in humans stays
with humans; how will CML proceed in other mammals ?

¢ HSC population remains constant (16.55 M?/%)
* HSC & divide at normal rate (2.9 M-*/%)
** how many drive (or are required to drive) CML in other mammals ?

*¢* how many compartments will behave stochastically in other mammals ?

species lifespan
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CML in other mammals

to which extent do stochastic effects remain important in CML on
other mammals ?

®—e mice
=—=a rats
macaques

a~—adogs
v—v humans
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forward difference formula for the derivative of the TTD as a function of the #
of compartments treated stochastically, taking as reference K=4 for humans &
1 CSC@start.




conclusions

** across mammals, hematopoiesis is generated by numbers of HSC that may
change significantly from species to species, flowing downstream in a multi-
compartmental tree-structure in which consecutive compartments interact

+* in this simple model, homeostasis is nothing but the stationary solution of
the coupled problem.

* this coupled dynamics, together with specific thresholds for disease
diagnosis and the finite lifespan of organisms leads to a complex interplay
between selection and mutation in hematopoiesis . . .

** ... Wwhere stochastic effects may play an important role and, in some cases,

a crucial one.

** in some rare HSC diseases (ex: CML), evolutionary dynamics of the disease
may favor the patient to get rid of its cause, but this alone may not be
enough & treatment may be crucial to keep patient alive






