

ON THE ORIGIN, NATURE, AND MIXING OF MULTIPHASE GAS IN ASTROPHYSICS

KITP 10.15.20

The Impact of **Cosmic Rays** on **Thermal Instability** in the Circumgalactic Medium

IRYNA BUTSKY

Drummond **Fielding**, Chris **Hayward**, Cameron **Hummels**, Tom **Quinn**, Jess **Werk**

The Circumgalactic Medium (CGM)

The Circumgalactic Medium (CGM)

COOL CGM GAS COMPRISES 25-45% OF GALACTIC BARYONS

 $M_{halo} = 10^{12.2} M_{\odot}$

Werk et al. 2014

Quiescent galaxies have **massive reservoirs of cold gas** in their CGM

Cold CGM gas appears to be **out of** thermal pressure **equilibrium**

6

Maller and Bullock 2004, Werk et al. 2014

Is cold gas really out of **pressure** equilibrium?

Cosmic rays alter ionization state in the CGM

gravity

gravity

11

gravity

gravity

Thermal instability **without** cosmic rays

Cosmic Rays and Thermal Instability

pressure

Cosmic Rays and Thermal Instability

Cosmic ray pressure decreases cold gas density

Cosmic ray pressure washes out **density fluctuation**

Without cosmic rays, gas cools in thermal pressure equilibrium (**isobarically**)

With high cosmic ray pressure, gas cools at constant density (**isochorically**)

Cold gas **temperature is independent** of cosmic ray pressure

Cold gas temperature is set by the shape of the **cooling curve**, which is an approximation to atomic physics and insensitive of cosmic ray pressure

Cosmic ray pressure can increase cold mass fraction

Cosmic ray pressure **decreases cold mass flux**

Cosmic Rays and Thermal Instability

Cosmic Rays and Thermal Instability

pressure

transport

10.0

Cosmic ray transport: **streaming** and **diffusion**

Cosmic rays move **down** their energy gradient, **along** magnetic field lines

Impact of cosmic ray transport

Cosmic ray transport redistributes cosmic ray pressure **from** high concentrations (in **cold gas**) **to** low concentrations (in **hot gas**)

Cosmic ray transport **fills larger** density-temperature **phase space**

Cosmic Rays and Thermal Instability

pressure

transport

Non-thermal pressure support **decreases cold gas density** and **increases size of cold clouds**

In summary, **accurate interpretations** of CGM observations **need to account for** the presence of **cosmic rays**.

for example, cosmic rays **decrease** cold gas density and **increase** cold cloud sizes

cosmic ray pressure can also **decrease** cold gas **accretion rates**