
Los	muertos	al	cajón	y	los	vivos	al	fiestón:

Max	Gronke	
JHU	/	NHF

The	life	&	death	of	
cold	gas	in	hot	
surroundings

Image	:villapalmarcancun.com



Cajón	or	fiestón?
tcool,mix/tcc = rcl,crit /rcl ∼ 8

tcool,mix/tcc = rcl,crit /rcl ∼ 0.08



Cajón	or	fiestón?
tcool,mix/tcc = rcl,crit /rcl ∼ 8

tcool,mix/tcc = rcl,crit /rcl ∼ 0.08



Cajón	or	fiestón?
tcool,mix/tcc = rcl,crit /rcl ∼ 8

tcool,mix/tcc = rcl,crit /rcl ∼ 0.08

➞	cajón

➞	fiestón
(fuel	SF,	tracer	for	

outflows,	…)

➞	As	seen	in	Prateek’s	talk.	This	talk’s	focus:	implications,	long-term	evolution.



Magnetic	compression
Implications	of	cooling	supported	survival:

χ ≡ ρcl/ρhot ∼ 100, βcl ∼ βwind ∼ 1

➞	Non-thermally	supported	cloud 
						(as	seen	in	observations?	Werk	et	al.	2014;	larger	scale	sims,	Nelson	et	al.	2020)	

MG	&	Oh	(2020)

β = Pthermal /PB



Molecular	outflows

Mass	Growth Dust	Survival

Ryan	Farber	
(University	of	Michigan)

➞	Molecules	&	dust	can	survive	but	surviving	fraction	  
						depends	strongly	on	details	of	dust	destruction.

Implications	of	cooling	supported	survival:
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Mass	Growth Dust	Survival

Ryan	Farber	
(University	of	Michigan)

➞	Molecules	&	dust	can	survive	but	surviving	fraction	  
						depends	strongly	on	details	of	dust	destruction.

not	dead!  
(cf.		Kanjilal	et	al.	2020, 

Prateek’s	talk)

Implications	of	cooling	supported	survival:
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MG	&	Oh	(2020a,b)

·mtheory ∼ cs,coldAreacoldρhot(tsound−cross/tcool)1/4

Converged	mass	growth	rate 
(resolving	 )min(cstcool)

but	
one-cell	thick	emission	layer!	

( )·m ∝ L ∼ ϵV

mass	growth	rate

velocity	difference
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converged
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unconverged

➞ 		by	galactic	windsMcold,CGM ∼ ∫ ·m dt ∼ M*

c

Implications	of	cooling	supported	survival:



Tan,	Oh,	MG	(2020)

Zooming	in	on	turbulent	mixing	layers

vshear

·m

Consistent	3D	results
Seemingly	converged	mass	growth	rate

Brent	Tan	(UCSB)

also	see	Fielding	et	al.	(2020)	&	
Drummond’s	great	talk!	
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Scaling	of	mass	growth

wide	range	&	
analytic	solution!

because	of	
unresolved	
Field	length	

λF ∼ (Dcond.tcool)1/2

vshear

·m

(cf.	Ji	et	al.	2019)
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Insights	from	turbulent	combustion
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Damköhler	number:

Fuel	&	oxidizer	instead	of	hot	&	cold	gas:	

Insights	from	turbulent	combustion

corrugated	flame	
(wrinkled	flamefront)

Da > 1 →

well	stirred	
(straight	flamefront)	

Da < 1 →well	stirred

corrugated	
flame

Turbulent	flame	speed	important	 ,	not	·m ∝ ST SL

Tan,	Oh,	MG	(2020)

SL
ST



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

burning
∝

· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

burning

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame

Da = L /u′�tcool
Gülder	(1991)	scaling	

	fits	to	
experimental	data!
ST ∼ u′�Da1/4



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame

Initial	questions	
1. Convergence 
 

2. ?  
 
 

3. Scalings

·m ∝ cs,cold ≪ cs,hot

Da = L /u′�tcool
Gülder	(1991)	scaling	

	fits	to	
experimental	data!
ST ∼ u′�Da1/4



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame

Initial	questions	
1. Convergence 
 

2. ?  
 
 

3. Scalings

·m ∝ cs,cold ≪ cs,hot

✓

Da = L /u′�tcool
Gülder	(1991)	scaling	

	fits	to	
experimental	data!
ST ∼ u′�Da1/4



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame

Initial	questions	
1. Convergence 
 

2. ?  
 
 

3. Scalings

·m ∝ cs,cold ≪ cs,hot

✓

Da = L /u′�tcool
Gülder	(1991)	scaling	

	fits	to	
experimental	data!
ST ∼ u′�Da1/4

Dnum ≪ Dturb Cooling	set	by	rate	of	
mixing	on	outer	scale!τl ∼ l /vl ∝ l2/3}

(Kolmogorov	spectrum)



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame

Initial	questions	
1. Convergence 
 

2. ?  
 
 

3. Scalings

·m ∝ cs,cold ≪ cs,hot

✓
tKH ∼ χ1/2L /vshear 	

common 
in	CGM

ℳhot ∼ 1

Da = L /u′�tcool
Gülder	(1991)	scaling	

	fits	to	
experimental	data!
ST ∼ u′�Da1/4

Dnum ≪ Dturb Cooling	set	by	rate	of	
mixing	on	outer	scale!τl ∼ l /vl ∝ l2/3}

(Kolmogorov	spectrum)

u′� ∼ L /tKH ∼ vshear χ−1/2 ∼ ℳhotcs,coldShear:



Two	different	cooling	regimes
Tan,	Oh,	MG	(2020)

·m ∼ ρhotAcoldST

τreact ∼ λF,turb/u′�
⇒ ·m ∝ (u′�)3/4(L /tcool)1/4

burning

τreact ∼ tcool

⇒ ·m ∝ (u′�L /tcool)1/2 ∝ t−1/2
cool

“Turbulent	Field	length”	
	

(vs	 )

λF,turb ∼ (Dturbtcool)1/2

λF ∼ (Dcond.tcool)1/2

∝ ST ≈ (Dturb/τreact)1/2 ∼ (u′�L /τreact)1/2
Turbulent	diffusion	

coefficient 
Dturb ∼ u′�L

∼ u′�(L /u′�tcool)1/4 ∝ t−1/4
cool

∝
· m

∝ 1/tcool

well	stirred

corrugated	
flame

well	stirred corrugated	flame

Initial	questions	
1. Convergence 
 

2. ?  
 
 

3. Scalings

·m ∝ cs,cold ≪ cs,hot

✓

Da = L /u′�tcool
Gülder	(1991)	scaling	

	fits	to	
experimental	data!
ST ∼ u′�Da1/4
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u′� ∼ L /tKH ∼ vshear χ−1/2 ∼ ℳhotcs,coldShear:

Pulsations:	Cold	front	(=mass)	moving	at	cs,cold ∼ u′ �
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Cool	things	you	can	do	with	the	model
Tan,	Oh,	MG	(2020)

Scalings	for	mass	&	
momentum	transfer

Resolution	requirement	for	
larger	scale	simulations

(resolving	 	not	necessary)λF

Mixing	length	model

Observables	(OVI,	…)

model	
simulation

Calibrate	 	from	adiabatic	simDturbu′� → Q

Shearing	layer	u′�
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Requirements	for	pulsations
Large	enough	cloud 

( )rcl > lshatter ≡ min(cstcool)

Initial	perturbation	δP/P ≳ 0.5

…but	not	too	large 
( )χfinal ≡ χTcl /Tfloor ≲ χcrit ∼ 300

MG	&	Oh	(2020)

χ ∼ 100, Tcl /Tfloor ∼ 10 ⇒ χfinal ∼ 103

pulsations

shattering

(but	see	Das	et	al.	2020!)
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“Magical” boundary at χfinal ∼ χcrit
χfinal ∼ 200 χfinal ∼ 400

➔Competition between 
fragmentation  

and  
coagulation.

χcrit ∼ 300

MG	&	Oh	(2020)

χinitial ∼ 100
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What	drives	coagulation?

2D	simulation

“Shattering	boundary”	
χfinal ≡ Tcl /Tfloor χinitial ≳ χcrit

·mcloud ∼ vmixAclρhot

Cooling	driven	coagulation
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↳ “height of drop”
Tcl /Tfloor ∝ δP

 
↳(relative) strength of cooling
tgrow,cloud ≡ m / ·m ∝ χinitial
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tdrag

tgrow
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≫ 1

Pressure	( )	or	mass	
transfer	( )?

∼ tdrag
tgrow,droplet

(cf.	MG	&	Oh	2018	for	clouds)

➞mass transfer
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Fun	with	coagulation

➞Well	modeled	with	cooling	&	entrainment	scalings.

solid	=	sims.,	dashed	=	theory
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Many	droplet	coagulation	(3D)
rd /lshatter ∼ 500 rd /lshatter ∼ 5

no	pulsations	
=	

less	cooling	
=	

slower	coagulation
solid	=	sims.,	dashed	=	theory
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Schneider	et	al.	(2020)

Cloud	size

rcl > rcl,critrcl < rcl,crit
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Can	coagulation	save	the	doomed?

✓

✘
The	elephant	in	the	room:	
(large	scale)	turbulence!
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Can	coagulation	save	the	doomed?

➞	Only	if	 	,i.e.,	only	in	quiescent	regions.vturb ≲ vcoag ∼ cs,c(d̄ /rcl)2
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Take	away	points

	
survival	criterion	also	in	turbulent	
media.

tcool,mix/tcc ≲ 1 ⇔ rcl /rcl,crit ≳ 1

Cooling	induced	mass	growth	has	many	
implications	and	is	backed	up	by	theory	&	
experiments	of	mature	field	of	turbulent	
combustion.

Coagulation	inefficient	but	sets	barrier	
between	shattering	and	pulsation.


