Modelling Allosteric Signalling in Protein Homodimers

Mark Wilson Department of Chemistry Durham University, UK

Modelling Allosteric Signalling in Protein Homodimers

Chemistry

- Dr. Tom Rodgers
- David Burnell
- Prof. Tom McLeish (Physics)
- Hedvika Toncrova (Leeds University)

Biophysical Sciences Institute

- Dr. Martin Cann
- Dr. Philip Townsend
- Dr. Ehmke Pohl

Engineering and Physical Sciences Research Council

Protein Allostery

Effect of binding one molecule on a second binding

Central role in biochemical pathways

Binding an activator causes binding to DNA

Binding a ligand enhances or inhibits binding elsewhere to regulate a process

Allosteric Binding

Classically explained by conformational change

□ Free energy contributions from changes in protein vibrations

$\Delta G = \Delta H - T \Delta S$

Allosteric Binding – example of CAP

Catabolite Gene Activator Protein (CAP) $\Delta\Delta G = \Delta G_2 - \Delta G_1$

Durham

University

Negative cooperativity

 $\Delta\Delta G > 0$

(affinity for binding 2nd ligand is reduced)

Positive cooperativity

 $\Delta\Delta G < 0$

Catabolite Activated Protein (CAP) homodimer shows negative co-operativity between two identical binding sites for cyclic AMP (cAMP) without a change in structure

Aims of this talk

- Use multi/many-scale models to investigate dynamic allostery for (the protein dimer) CAP
 - Elastic Network Model insights
 - Super-coarse-grained models
 - > Atomistic Models
- Use the models to show how we can control dynamic allostery by selected mutation

hence control dynamic landscape of a protein

provide a new route for drug design?

3. Point to some other ways in which proteins have evolved to harness dynamic pathways

Elastic Network Model (ENM)

- Join C_α atoms with
 Hookean springs
- Diagonalize massweighted Hessian matrix
- Eigenvectors normal modes
- Eigenvalues frequencies
- Low frequency modes most important for motion

Catabolite Gene Activator Protein (CAP)

$$K_{ij} = \begin{cases} rac{k_{ij}}{2} (r_{ij} - R_{ij})^2 & R_{ij}^2 \le R_c^2 \\ 0 & R_{ij}^2 > R_c^2 \end{cases}$$

ENM cutoff

Smaller cut-off is better

ENM cutoff

Smaller cut-off is better

Note: - movements of the whole protein - importance of the strength of hydrophobic interactions between helices

Variation of Mode Frequency

- Large number of contributing modes
- Low frequency modes involve whole protein

Calculating Allostery with the ENM University

Determine K_2/K_1

ENM predicts $K_2/K_1 > 1$ negative cooperativity (reduced affinity – as seen experimentally)

Protein Mutations in the ENM

- Mutations represented by varying residue spring constant
- \Box Can investigate sensitivity of vibrational contribution to $\Delta\Delta G$

CAP mutations

CAP mutations

CAP mutations

Protein Engineering

Protein Engineering

Protein Engineering with the ENM

Decreasing stiffness in red regions leads to increased –ve cooperativity Decreasing stiffness in blue regions leads to +ve cooperatvity

Protein engineering in practice - Variation in V132

Motion Variation

- At the dimer interface changes in hydrophobic interaction have big effect on motion across protein
- Mutation to alanine or leucine have opposite effects

cAMP affinities for proteins

□ The ratio of the second to first dissociation constants for cAMP (K_2/K_1) for wild type and mutant CAP proteins

	CAP protein	K_2/K_1 (ENM)	<i>K</i> ₂ / <i>K</i> ₁ (ITC)	
\odot	Wild Type	1.13	1.6	\checkmark
\odot	V132A/ <i>k</i> =0.25	\uparrow	\uparrow	\checkmark
\odot	V132L/k=0.25	\downarrow +ve	\downarrow +ve	\checkmark
\odot	H160L/k=0.25	\uparrow	\uparrow	✓ H-bond removal
Ð	V140A V140/ <i>k</i> =0.25 V179/ <i>k</i> =4	\downarrow +ve	↓ +ve	X-ray shows conformational change
\odot	V140L/k=4	\uparrow	\uparrow	\checkmark

☺High resolution X-ray – confirm no change in protein structure

Super-Coarse Graining

- ENM provides valuable insights
- ENMs can predict motion and allostery But....
- □ A 3N x 3N interaction matrix to work with
- & it looks like there are some generic features that could be captured by a simpler model

Rotational Translational Block method

Now (4 x 6) x (4 x 6) matrix – interactions easier to identify

Super-Coarse Grain Models

CAP monomer
 approximated as 4
 'scissor' domains

□ Internal spring constants $k_1 = k_2, k_3 = k_4$

 3 independent coupling spring constants k₁₂, k₁₃, and k₂₄

Super Coarse-Grained CAP

Atomic Simulations

- Full atomistic simulations in water (AMBER, 2 fs time step, ff99SB/GAFF)
- 200+ ns molecular dynamics
- 6457 protein atoms
 - 401 amino acids
 - 10297 water molecules

$$V = \sum_{\text{bonds}} \frac{1}{2} k_b (l - l_0) + \sum_{\text{angles}} \frac{1}{2} k_a (\theta - \theta_0) + \sum_{\text{torsions}} \frac{1}{2} V_n (1 + \cos(n\varphi - \gamma))$$
$$+ \sum_{i,j} \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{q_i q_j}{r_{ij}} + \sum_{i,j} 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^6 \right)$$

Atomistic Simulations

- Analysis of 200 ns trajectory by principal component analysis (PCA) $\mathbf{F} = \left\langle \mathbf{M}^{1/2} \left(\mathbf{x} - \langle \mathbf{x} \rangle \right) \left(\mathbf{M}^{1/2} \left(\mathbf{x} - \langle \mathbf{x} \rangle \right) \right)^T \right\rangle$
- calculate and diagonalize the (mass-weighted) covariance matrix.
- 2 4 Pulls out key 2 --6 0 dynamical modes -2 of motion & frequencies⁻⁴ -2 2 $^{-4}$ -6 2 6 -6 4 4 2 -2 -2 $^{-4}$ -610

PCA comparison

Test repeatability of analysis Frequency / cm⁻¹ Time / ns 0.5 0.2^{L}_{1} 40 50 Mode Number

ENM, PCA, and atomic NMA produce similar frequencies and atomic motions

 C_{α} and NMA data scalled to fit PCA data (x0.447)

Motion of protein

Final ideas

- Allosteric binding modelled at different levels suggests proteins may have evolved to harness dynamic pathways
- ☐ Also shown for LacR, GlxR (larger effects)

Possibility of studying dynamic contribution to DNA binding

Connexin

CAP/DNA

Also see how dynamics

is of key importance for other proteins

CO₂ binding

□ CO₂ binds between monomers at the end of the channel

Connexin ENM

Variation in Main mode

Variation in Main mode

No CO_2

When CO_2 is bound the channel never closes

 CO_2

Summary

- Calculations point to interesting phenomenon "dynamic allostery"
- □ Thermodynamics basis for this is the vibrational contribution to $\Delta\Delta G$
- Simulations of ENM, super-CG and atomistic models provide valuable insights
- Third site mutation provides a mechanism to control this effect
- Potential for many interesting insights from the role of dynamics in protein function