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Protein Allostery W D

 Effect of binding one molecule
on a second binding

 Central role in biochemical pathways
» Binding an activator causes binding to DNA

» Binding a ligand enhances or inhibits binding
elsewhere to regulate a process
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Allosteric Binding W D

1 Classically explained by conformational

W-N-N

change

1 Free energy contributions from changes in protein vibrations
W-W-w
) )

AG=AH—-TAS
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Allosteric Binding — example of CAP WDurham
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] Catabolite Gene Activator

Protein (CAP)
AAG = AGy — AGy

d Negative cooperativity
AAG >0

(affinity for binding 2" ligand is reduced)

 Positive cooperativity

AANG <0

Catabolite Activated Protein (CAP) homodimer shows negative co-operativity

between two identical binding sites for cyclic AMP (cCAMP) without a change
In structure
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Aims of this talk W Durham

1. Use multi/many-scale models to investigate dynamic
allostery for (the protein dimer) CAP

» Elastic Network Model insights
» Super-coarse-grained models

> Atomistic Models

Use the models to show how we can control
dynamic allostery by selected mutation

» hence control dynamic landscape of a protein

» provide a new route for drug design?

Point to some other ways in which proteins have
evolved to harness dynamic pathways
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Elastic Network Model (ENM) W Durham

Join C_ atoms with Catabolite Gene Activator Protein (CAP)
Hookean springs

Diagonalize mass-
weighted Hessian matrix

Eigenvectors — normal
modes

Eigenvalues — frequencies

Low frequency modes most
Important for motion
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ENM cutoff W Durham

T [
— Experimental
— 8A
— 12A

Residue

«» Smaller cut-off Is better
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ENM cutoff W Durham

Connectivity
problems Insensitive
<€

>

J Smaller cut-off is better
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Note: - movements of the whole protein
- Importance of the strength of hydrophobic
Interactions between helices
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Variation of Mode Frequency ~ ¥ Durham

d Large number of
contributing modes

Low frequency modes
Involve whole protein
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Calculating Allostery with the ENM W Durham

CAP, +2cCAMP =222 CAP, ., + CAMP —=22CAP, .,

1,unbind K2,unbind

 Experimental Allostery coefficient,
Kz . K2,unbind K1,bind

K1 K1,unbind K2,bind

1 Calculate vibrational free energy

H 02| |H
AAG = (AGholo2 o AGho|01) - (AGhoIol — AGapo) — KT In L holoz‘ apo J

2 ‘Hholol‘2

d Determine K,/K,

ENM predicts K,/K,; > 1 negative cooperativity
(reduced affinity — as seen experimentally)
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Protein Mutations in the ENM W Durham

d Mutations represented by varying residue spring constant

d Can investigate sensitivity of vibrational contribution to AAG
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CAP mutations W Durham
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CAP mutations W Durham
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CAP mutations
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stiffening

loosening
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Protein Engineering W D
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Protein Engineering W D
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Protein Engineering with the ENM W Durham

Decreasing stiffness in red regions leads to increased —ve cooperativity
Decreasing stiffness in blue regions leads to +ve cooperatvity




Prote_in_engineering in practice §=Qurham
- Variation in V132 i

Alanine

?Negative cooperativity

e

J Positive cooperativity

0.25 0.5 0.75
k132/k
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Motion Variation W Durham
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1 At the dimer interface changes in hydrophobic
Interaction have big effect on motion across protein

] Mutation to alanine or leucine have opposite effects




AR
cAMP affinities for proteins W Durham

d The ratio of the second to first dissociation constants for
cAMP (K,/K,) for wild type and mutant CAP proteins

CAP protein | K,/K, (ENM) K,/K, (ITC)

© Wild Type 1.13 1.6 v
© V132A/k=0.25 N N v

© V132L/k=0.25 J +ve I +ve vV
© H160L/k=0.25 N N v" H-bond removal

V140A X-ray shows
Q V140/k=0.25 J, +ve l, +ve \/ conformational

V179/k=4 change

© V140L/k=4 N N v

©High resolution X-ray — confirm no change in protein structure
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Super-Coarse Graining Yo

. ENM provides valuable insights

1 ENMSs can predict motion and allostery
But....

d A 3N x 3N Interaction matrix to work with

& it looks like there are some generic
features that could be captured by a simpler
model
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Rotational Translational Block method  WDurham
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d Now (4 x 6) X (4 x 6) matrix — interactions easier
to identify
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Super-Coarse Grain Models ¥ounam

—X7 1 CAP monomer
approximated as 4
‘scissor’ domains

., Internal spring constants
T k= ko, k=K

3 independent coupling
spring constants Ky,, K,
and k,,
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Super-Coarse Grained Models W Dyrham

X X
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Super Coarse-Grained CAP W Drham

AAG/ET
0.0—+




Atomic Simulations

J Full atomistic simulations in water
(AMBER, 2 fs time step, ffO9SB/GAFF) (,5%;,”_,

—~ e
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i e

0 200+ ns molecular dynamics #7355 s A
Kt Hoth il TR )

. . o SATT TR YRR IR 1

J 6457 protein atoms *‘7%!5 50
‘T” :"‘r*\’" J‘, ,J':"’

® 401 amino acids

B 10297 water molecules

1 1 1
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Atomistic Simulations W Durham

Analysis of 200 ns trajectory by principal component
analysis (PCA) P (M2 (- () (M2 (- () )

calculate and diagonalize the (mass-weighted) covariance
matrix.

 Pulls out key

dynamical modes

of motion & frequencies
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PCA comparison W ucham

* Test repeatability of analysis
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Comparisons W Ducham

J ENM, PCA, and atomic NMA produce
similar frequencies and atomic motions

— ENM
— NMA
— PCA
— Experimental

Frequency / cm

[a—

H=068""-1.10
R =0.992
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Mode Number Amino Acid Number

Ca and NMA data scalled to fit PCA data (x0.447)
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Final ideas W Durham

O Allosteric binding modelled at different levels suggests
proteins may have evolved to harness dynamic pathways

d Also shown for LacR, GIxR (larger effects)

O Possibility of studying dynamic
contribution to DNA binding
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Connexin 26 (a gap junction protein) WDurham
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J 6 monomers form a funnel pore

2 pore units form the inter-cellular pathway

Cytoplasmic diameter

Intracellular
region

19 A

Maximum diameter 92 A

region

Extracellular
region
40 A

€
Transmembrane p;
region
38 A
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CO, binding Weham

d CO, binds between monomers at the end of the channel
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Variation in Main mode ¥ Durham
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Summary W ucham
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Calculations point to interesting phenomenon
“dynamic allostery”

Thermodynamics basis for this is the vibrational
contribution to AAG

Simulations of ENM, super-CG and atomistic models
provide valuable insights

Third site mutation provides a mechanism to control
this effect

Potential for many interesting insights from the role
of dynamics in protein function




