Morphology of Ionomers

Mark Stevens, Lisa Hall, Dan Bolintineanu and Amalie Frischknecht

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administrationunder contract DE-AC04-94AL85000.

<u>lonomers</u>

2

Ion containing polymer in melt or glass (no solvent)

ionic interactions are strong (>> kT) since ε is small

A distinguishing feature of ionomers is the peak in S(q) known as the 'ionomer peak.'

- Low angle scattering peak ubiquitous in ionomers
- Related to ionic clustering

Actual structure is unknown.

Sharp peak for precise ionomers.

2000 Precise Random 1500 Intensity [a.u.] 1000 Zn82 Zn81 500 Zn0 Zn0 0 12 2 10 14 6 8 q [nm⁻¹]

M. E. Seitz et al., J. Am. Chem. Soc. 2010, 132, 8165-8174.

Peak: q = 4/nm or r = 1.5 nm

Ionomers for Battery Applications

- Ionomer electrolyte advantages
 - Single ion conducting ability (potential to increase efficiency)
 - Chemically, mechanically stable (safe, smaller packaging)
 - Polymer acts as separator; no need for separate separator
- Challenges
 - Low ion conduction (due to aggregation?)
 - Clustering, charge transport not well understood
 - What do the aggregates look like, exactly?
 - composition, size & shape
 - What's the dependence on polymer architecture?
 - charge spacing
 - cation & anion type

Difficult to measure local structure experimentally.

Can simulations resolve issue?

Research Approach

Focus on new controlled system(s): precise acid copolymers/ionomers

National Laboratories

- spacing of charges is controlled
- allows direct comparison between simulation and experiment
- study effect of increasing spacing, different cations

Collaboration with: Prof. Karen Winey (U Penn) Prof. Ken Wagener (U Florida)

Methods:

Coarse-grained Models

CG MD simulations

- Bead spring model
 - bonds, LJ, charges
 - bulk dielectric constant
- focus on ionic interactions with polymeric constraints

Analysis

- cluster (percolation)
- image analysis
- radial distribution functions g(r)
- structure factor S(q)
 - compare to experiment !
- mean square displacement
 - diffusion constant

Will it work? Will we get stuck in slow dynamics?

We varied ϵ from 2 to 10.

Aggregate Morphology: Architecture Matters

lonenes: percolated

Pendants: not percolated

Mean cluster size 31

Ion-Ion Pair Correlation Functions

- A clue to difference between ionenes and pendants
- Pendants have larger peaks
- More counterions about pendant charge in polymer

Structure Factor (Scattering)

- Ionomer peak appears for *both* ionenes, pendants
 - Ionene peak: mesoscale order within percolated aggregate
 - Pendant peak: cluster center-of-mass to center-of-mass order
- Experimental peak ~4 nm⁻¹, MD peak 1.2-1.8 $\sigma^{-1} \rightarrow$ ~3-4 nm⁻¹

Randomly Spaced Ionomer Model

- Random block grouping mimics outcome of ring-opening polymerization
- Fully random mimics outcome of typical random polymerization (without branching)
- Random block results not always between periodic and fully random!

N_{bb} = Number of **b**ackbone **b**eads per charged bead

Aggregate Morphology: Random vs. Periodic

Random Block Copolymer Pendants: stringy, large clusters

Mean cluster size 87

Periodic Pendants: narrow cluster size distribution

Mean cluster size 31

CG MD: Comparison to X-ray Scattering

Experimental/Simulation Agreement

- Peak location similar
- Increasing spacing moves peak to left
- Random spacing moves and broadens peak

Cluster Dynamics

Is there any?

Color distinct clusters by different color

lons move.

Cluster Dynamics

1000 steps between pictures

Mean squared displacemnt

ionene chains and anions move faster

• Conversion to real units: $D(\sigma^2/\tau)*1.3e-3 \sim D(cm^2/s)$

Summary of CG Simulation Results

- Ionomer peak observed & understood in simulations
- Cluster morphology depends on polymer architecture
 - ionenes percolate more easily
 - pendant ions yield narrow cluster sizes and compact shapes
 - random spacing leads to larger clusters
- Conductivity better in random block ionenes
- Implications for battery electrolytes
 - polymer architecture is crucial
 - blocky random in-chain anions best

Hall, Stevens, Frischknecht, *Phys Rev Lett* **106**, 127801 (2011)

Hall et al., J. Am Chem. Soc. (2012)

Atomistic Simulations

• Polyethylene backbone with precisely spaced acrylic acid functional groups:

- Variations in:
 - cation type: M⁺ = Li⁺, Na⁺, Cs⁺, Zn²⁺
 - neutralization level = 43% (COO⁻M⁺ vs COOH)
- All atom OPLS force-field
- 800 molecules with n = 4 monomers
- 64 Å box, total of ~25,000 atoms
- T = 150 C
- ~ 100 ns
 - long enough to get equilibrated structures
 - calculate S(q) with scattering form factors
- ~ 7 ns/day on 96 cores

Experimental scattering data

Cluster visualization

Li+

 Cs^+

Summary: Results to Date

- Relatively good match between S(k) from MD simulations and experimental scattering data
- MD simulations provide additional important insight into cluster morphology:
 - effect of ion type on structure
 - spherical vs 'stringy'
 - Na⁺, Li⁺: medium-sized, stringy aggregates
 - Cs⁺: Percolated network
 - Zn²⁺: small, single-ion clusters
 - some correspondence with DFT calculated local structures
- Detailed atomistic insight into cluster structure:
 - Ions preferrentially coordinated by O⁻ atoms
 - Small ion-O⁻ clusters are bridged by -OH and =O groups

Discussion Points/Issues

How do we coarse-grain hydroxyls? orientational dependence How to do coarse-graining for other systems? polymerized ionic liquids nonspherical geometries

Atomistic force-fields & simulations (too slow) need polarization (and ?)

DFT Calculations

Next step: study multiple counterion structures and energies

