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Design Challenges

Ç Integrate interactions among all species

FMicron and millimeter-sized 

soft elements

FNanoparticles

FFluids

Ç Capture dynamic behavior of all species

FMotion of microscopic compliant objects

FDiffusion of sub-micron species

FFluid flow

Ç Provide useful guidelines for experiments

FDetermining ideal materials to observe 

predicted behavior



Example 1: Design ñLeukocytesò to Heal Synthetic Systems

Ç Create synthetic cells with similar features

FCan sense & respond to damage

FExtend lifetime & sustainability of system

Ç ñCellò: nanoparticle-filled microcapsule

Ç Drive capsules to move along 

damaged surface

FContains nano- or micro-crack

Ç Localize at crack

Ç Trigger release of particles

Ç Move on to next crack

FCreate ñrepair and goò 



Design Synthetic ñCellsò with Biomimetic Functionality

Ç Cells utilize complex biochemical machinery

FMultiple, interacting components

Ç Goal: achieve biomimetic functionality 
using purely synthetic components

Ç Focus on microcapsules

FSame size as cells

Ç Can encapsulate various species

FSpecies diffuse out of porous capsule 

FSet up communication with exterior

Ç Can functionalize outer surface of capsule

FCapsules can ñsenseò properties of  substrate

Ç Function of interest: response to ñwoundingò

Motile

Cell

Capsule



Model: Hybrid Computational Approach

Ç Microcapsule: fluid-filled elastic shell

Ç Serves as model for 

FBiological cells (leukocytes)

FPolymeric microcapsules

Ç Encapsulates nanoparticles

Ç Develop hybrid approach for capturing following interactions:

FCapsule-substrate

FLattice Spring model

FShell-fluid (encapsulated & external)

FLattice Boltzmann model

FParticle-fluid & particle-solid

FTracer particles

FBrownian dynamics

LSM node

ñFluidò LBM node

ñSolidò LBM node

Interface

LSM node
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Model for Elastic Shell in Fluid

Ç Lattice Boltzmann model (LBM) ïsolver for Navier-Stokes equations

F Fluid particles move along lattice

F Collisions allow particles to reach equilibrium

F Hydrodynamic fields obtained from velocity

moments of the distribution function

Ç Lattice spring model (LSM) ïsolver for

continuum elasticity equations

F Network of harmonic springs connecting mass points

F 3D: 18 springs connecting nodes on a regular lattice

F Integrate Newton equation of motion: Verlet algorithm

Ç Coupling of LB and LSM

F At the fluid-solid boundaries

( )
3

x

M
s

D
=rSolid

density

Poisson ratio = 1/4

Collisions

Propagation

k

M

Dx

A. Alexeev et al., Macro.38, 10244 (2005)



Repair-and-Go System

Ç Amphiphilic microcapsules

FHydrophilic exterior

FHydrophobic interior 

Ç Adhesion between capsule and substrate

FModeled via Morse potential

Ç Capsules encase hydrophobic nanoparticles 

FDispersed in oil phase

Ç Capsule driven by imposed shear flow 

FMove over hydrophilic, cracked surface

Ç Interior surface of crack hydrophobic
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D=10Dx,  Dx º1.5

r*=D/10

Crack width = D 



Nanoparticle Dynamics

Ç Dynamics within capsule

F Equivalent to convection-

diffusion for NP density

Ç ñTunnelingò toward crack wall

Ç If particle tunnels through

F Becomes stuck at crack walls
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Motion of Capsules

Ç Effect of imposed shear flow 

Ç Low shear:

FCaptured in crackð(1)

Ç Moderate shear:

FMove along substrateð(2) 

Ç High shear: 

FFly away due to lift forceð(3)

(1)

(2) (3)



Phase Map for Capsule Motion

Ç Dimensionless capsule-

surface adhesion strength

FEïYoungôs modulus

FR ïcapsule radius 

Fe0ïcapsule-surface 

interaction 

F r* ïinteraction cut-off 

length

FNïnumber of gel nodes
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Deposition of Nanoparticles
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Ç Capsule releases NPs on 

crack surface

Ç At low shears and strong 

adhesion:

FArrested capsule

FVirtually full coverage of 

crack surface by NPs

Ç At high shear and weak 

adhesion:

FMoving capsule

FPartial coverage

Qfinal = NNP/NNP
(max) ~ 1

Qfinal ~ 0.1



Arrested Capsule

Ç Deposition of NPs on crack surface

Ftdïcharacteristic deposition time

FCoverage 

Ç Value oftd depends on 

FAdhesion strength

FDeform capsule by adhesion

FShear rate at weak adhesion

FDeform capsule by fluid flow

Ç But want repair and go

FNeed capsule to leave crack
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Possible Solution: Capsule in Pulsatile Flow
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Ç Motion of capsule

FArrested at low shear period

FReleases NPs

F Leaves crack at high shear 

period

FMoves toward next crack

Ç Resultant coverage Q~1


