Multi-scale Modeling of Biomimetic Systems: Designing Synthetic Leukocytes and Artificial Cilia

Pratyush Dayal, Amitabh Bhattacharya, Olga Kuksenok, German Kolmakov

Anna C. Balazs

Chemical Engineering Department

University of Pittsburgh, Pittsburgh, PA

Design Challenges

- **☐** Integrate interactions among all species
 - Micron and millimeter-sized soft elements
 - Nanoparticles
 - Fluids
- □ Capture dynamic behavior of all species
 - Motion of microscopic compliant objects
 - Diffusion of sub-micron species
 - Fluid flow
- **☐** Provide useful guidelines for experiments
 - Determining ideal materials to observe predicted behavior

• Example 1: Design "Leukocytes" to Heal Synthetic Systems

- ☐ Create synthetic cells with similar features
 - © Can sense & respond to damage
 - Extend lifetime & sustainability of system
- ☐ "Cell": nanoparticle-filled microcapsule

© Contains nano- or micro-crack

- ☐ Localize at crack
- ☐ Trigger release of particles
- ☐ Move on to next crack
 - © Create "repair and go"

- Design Synthetic "Cells" with Biomimetic Functionality
- □ Cells utilize complex biochemical machinery
 - Multiple, interacting components
- ☐ Goal: achieve biomimetic functionality using purely synthetic components
- **□** Focus on microcapsules
 - Same size as cells
- **□** Can encapsulate various species
 - Species diffuse out of porous capsule
 - Set up communication with exterior
- ☐ Can functionalize outer surface of capsule
 - © Capsules can "sense" properties of substrate
- □ Function of interest: response to "wounding"

Cell

Model: Hybrid Computational Approach

- **☐** Microcapsule: fluid-filled elastic shell
- □ Serves as model for
 - Biological cells (leukocytes)
 - Polymeric microcapsules
- □ Encapsulates nanoparticles

- **□** Develop hybrid approach for capturing following interactions:
 - Capsule-substrate
 - Lattice Spring model
 - Shell-fluid (encapsulated & external)
 - Lattice Boltzmann model
 - Particle-fluid & particle-solid
 - Tracer particles
 - Brownian dynamics

LSM node

"Fluid" LBM node

"Solid" LBM node

Interface

LSM node

Model for Elastic Shell in Fluid

- □ Lattice Boltzmann model (LBM) solver for Navier-Stokes equations
 - Fluid particles move along lattice
 - Collisions allow particles to reach equilibrium
 - Hydrodynamic fields obtained from velocity moments of the distribution function
- ☐ Lattice spring model (LSM) solver for continuum elasticity equations
 - Network of harmonic springs connecting mass points
 - = 3D: 18 springs connecting nodes on a regular lattice Δx
 - Integrate Newton equation of motion: Verlet algorithm

At the fluid-solid boundaries

A. Alexeev et al., Macro. 38, 10244 (2005)

Poisson ratio = 1/4

Young's modulus
$$E = \frac{5k}{2\Delta x}$$

Propagation

Collisions

Solid density
$$\rho_s = \frac{M}{(\Delta x)^3}$$

• Repair-and-Go System

- **☐** Amphiphilic microcapsules
 - Hydrophilic exterior
 - Hydrophobic interior

Modeled via Morse potential

$$U(r) = \varepsilon_0 \left(1 - \exp\left(-\frac{r - a}{r^*} \right) \right)^2$$

- **□** Capsules encase hydrophobic nanoparticles
 - Dispersed in oil phase
- □ Capsule driven by imposed shear flow
 - Move over hydrophilic, cracked surface
- **☐** Interior surface of crack hydrophobic

N = 2 layers x 122

D= $10\Delta x$, $\Delta x \approx 1.5$

$$r*=D/10$$

Crack width = D

Nanoparticle Dynamics

□ Dynamics within capsule

$$d\mathbf{r} = \mathbf{u}\,dt + \sqrt{2D}\,d\mathbf{W}\,(t)$$

Equivalent to convectiondiffusion for NP density

$$\frac{\partial n}{\partial t} = (\mathbf{u} \nabla) n + D \Delta n$$

"Tunneling" toward crack wall

$$k = t_{tun}^{-1} e^{-r/r_{tun}}$$

$$w_{tun} = 1 - e^{-k\Delta t}$$

 $r_{\text{tun}} \sim R^*$; $R^* = \text{range of adhesion force}$

□ If particle tunnels through

Becomes stuck at crack walls

• Motion of Capsules

- □ Effect of imposed shear flow
- □ Low shear:
- **■** Moderate shear:
 - Move along substrate—(2)
- ☐ High shear:
 - Fly away due to lift force—(3)

(3)

(2)

Phase Map for Capsule Motion

☐ Dimensionless capsulesurface adhesion strength

$$\Phi = \frac{attraction \quad strength}{capsule \quad stiffness} = \frac{\varepsilon_0 N}{ERr *^2}$$

- F E Young's modulus
- ☞ R capsule radius
- ϵ_0 capsule-surface interaction
- r^* interaction cut-off length
- > N number of gel nodes

G. Kolmakov et al ACS Nano, <u>4</u> (2010) 1115-1123

Deposition of Nanoparticles

- □ Capsule releases NPs on crack surface
- ☐ At low shears and strong adhesion:
 - Arrested capsule
 - Virtually full coverage of crack surface by NPs

$$\Theta_{\text{final}} = N_{NP}/N_{NP}^{(max)} \sim 1$$

- ☐ At high shear and weak adhesion:
 - Moving capsule
 - Partial coverage $\Theta_{\text{final}} \sim 0.1$

Arrested Capsule

□ Deposition of NPs on crack surface

$$N_{NP}^{(caps)}(t) = N_{NP}^{(caps)}(0) \exp(-t/\tau_d)$$

 $= \tau_d - characteristic deposition time$

 $rac{1}{2}$ Coverage at $t \gg \tau_d$

$$\Theta = 1 - \exp(-t/\tau_d) \to 1$$

\Box Value of τ_d depends on

- Adhesion strength
 - Deform capsule by adhesion
- Shear rate at weak adhesion
 - Deform capsule by fluid flow

☐ But want repair and go

Need capsule to leave crack

Possible Solution: Capsule in Pulsatile Flow

- **☐** Motion of capsule
 - Arrested at low shear period
 - Releases NPs
 - Leaves crack at high shear period
 - Moves toward next crack
- **□** Resultant coverage Θ~1

• Experiments: A. Crosby, T. Emrick, T. Russell, UMass

- ☐ Microcapsule: formed from amphiphilic comb copolymer
 - Hydrophilic teeth, hydrophobic backbone
- **□** Nanoparticles: quantum dots with hydrophobic coating
- ☐ In oil/water mixtures: form nanoparticle-loaded capsules
 - Nanoparticles localized in encapsulated oil phase
 - Forms in one step
 - Capsule stable in water—hydrophilic teeth

Crack Repair with Nanoparticle-loaded Capsules

Site-specific Nanoparticle Deposition

Repair-and-go with PC-polyolefin microcapsules

K. Kratz et al. Nature Nanotechnology, 7 (2012) 87-90

□ Bottom image

- Left—capsule before exp.
- Right—capsule after exp.
 - Nanoparticles remain in crack

Control Experiments

□ No nanoparticles in capsules

- No localization of capules into cracks
 - Capsules labeled with rhodamine

80 um

20 un

- **□** No capsules—free particles
 - ☞ In water and PEG-coating, particles bound everywhere on surface
 - In toluene and hydrophobic coating, non-selective deposition

□ No difference in surface energies

- Oxidation of surface after cracking
 - No hydrophobic domains
- No surface deposition of particles
 - Remain in capsules

• Example 2: Design Artificial Chemo-responsive Cilia

☐ Cilia in respiratory system

- Exhibit collective motion
 - Metachronal waves
- Can expel particulates

☐ Design artificial cilia

System undergoes collective motion

□ Devise BZ cilia

- Control collective behavior using light
 - Regulate transport of particles in microfluidic devices

Shah et al Science 2009, 325, 1131

users.umassmed.edu/michael.sanderson/

• Enabling Material—BZ Polymer Gels

□ BZ reaction in solution

Exhibits rich dynamical behavior

□ BZ in gel causes periodic, *autonomous* swelling/deswelling

Catalyst grafted to polymer:

R. Yoshida et al, JACS, 1996, 118, 5134.

Orange: contracted polymer

Larger: 3 x 3 mm

I. Chen et al, Soft Matter, 2011, **7**, 3141

Model for Chemo-responsive Gels in 3D

□ Evolution equations:

V.V.Yashin et al, JCP, 2007, **126**, 124707

O. Kuksenok et al. PRE (2008)

$$\phi$$
, \mathbf{v}^{p} volume fraction & velocity of polymer

v concentration of oxidized catalyst

 u, \mathbf{v}^s concentration & velocity of activator

$$\mathbf{j}^{s} = -(1 - \phi) \nabla \frac{u}{1 - \phi} \quad \text{diffusion of } u \text{ in system}$$

 $\frac{\partial \phi}{\partial \mathbf{v}} = -\nabla \cdot (\phi \mathbf{v}^p)$

 $\frac{\partial v}{\partial v} = -\nabla \cdot (v\mathbf{v}^p) + \varepsilon G$ $\frac{\partial u}{\partial u} = -\nabla \cdot (u\mathbf{v}^s) - \nabla \mathbf{j}^s + F$ ∂t

Reaction kinetics : modified Oregonator model

$$F = (1 - \phi)^{2} u - u^{2} - f v (1 - \phi) \frac{u - q(1 - \phi)^{2}}{u + q(1 - \phi)^{2}}; \qquad G = (1 - \phi)^{2} u - (1 - \phi) v$$

Relaxational dynamics:

Neglect total velocity

$$\nabla \cdot \hat{\mathbf{\sigma}} \sim \zeta(\phi)(\mathbf{v}^p - \mathbf{v}^s)$$

 $\nabla \cdot \hat{\mathbf{\sigma}} \sim \zeta(\phi)(\mathbf{v}^p - \mathbf{v}^s)$ $\hat{\boldsymbol{\sigma}}$ stress tensor $\zeta(\phi)$ friction coeff.

$$\phi \mathbf{v}^p + (1 - \phi) \mathbf{v}^s \equiv 0$$

Model for Chemo-responsive Gels in 3D

□ Define energy density of deformed gel

$$U = U_{el}(I_1, I_3) + U_{FH}(I_3)$$

- Flastic energy $U_{el} = \frac{c_0 v_0}{2} (I_1 3 \ln I_3^{1/2})$
- Interaction energy $U_{FH}^{2} = \sqrt{I_{3}} \left[(1 \phi) \ln(1 \phi) + \chi_{FH}(\phi) \phi (1 \phi) \chi^{*} v (1 \phi) \right]$
- c_0 is crosslink density, $\chi^* > 0$: hydrating effect of oxidized catalyst

□ Use 3D gLSM model

Calculate velocities of node **n** of element **m**

$$\frac{d\mathbf{r}_{n}(\mathbf{m},t)}{dt} = M_{n}(\mathbf{m},t) \left[F_{1,n}(\mathbf{m},t) + F_{2,n}(\mathbf{m},t) \right]$$
Spring-like From pressure

- $\mathcal{F} \text{ Update } v(\mathbf{m},t) \text{ and } u(\mathbf{m},t)$
 - Combination of finite elements & finite difference techniques

O. Kuksenok et al. PRE (2008)

• 3D gLSM: Compare Simulations and Experiment

- **□** Small cubic samples
 - Oscillations uniform though the sample

 \mathcal{E}

- ☞ In-phase synchronization of chemical & mechanical oscillations
 - Similar to experiments R. Yoshida et al, J.Phys.Chem, 104, 2000
- **□** Long rectangular samples attached to wall
 - Traveling wave propagates from wall towards free end
 - Similar to experiments R. Yoshida et al, Chaos, 9,1999,

- At higher ε transition to steady-state
 - Similar to experiments D. Suzuki at al, J.Phys.Chem. B 112, 2008

☐ Simulations are in qualitative agreement with experiments

Gels with Gradient in Crosslink Density

□ What can we learn from experiments?

Images are provided by R. Yoshida et. al.

Kuksenok, Yoshida, Balazs J Mat. Chem. 21 (2011) 8360

- Bending is smaller at early times and increases with reaction time
- Amplitude of motion of gel's ends increases with reaction time
- Sample seen to slowly move "up"
- ☐ Simulations show qualitative agreement with experiments

• Modify gLSM: Introduce Diffusion/Reaction in Solution

- Activator (u) produced inside the gel only
 - Diffuses to/from gel's surfaces
 - Concentration in outer solution decays
 - Due to disproportionation reaction

$$\frac{du}{dt} = \nabla^2 u - u^2$$

O. Steinbock et $\frac{du}{du} = \nabla^2 u - u^2 \qquad al, Science 1995,$ 269, 1857

Diffusivity of u:

- Fequal in solvent & outer solution
 - $P = 2x \cdot 10^{-9} \text{m}^2/\text{s}$

R. Yoshida et al,

J. Phys. Chem. A 2001, 105, 3667

- \sim Unit of length: $\sim 25 \mu$
- ⊕ Unit of time: ~0.3 s

P. Dayal et al, J. Mater. Chem. 2012, 22, 241

• Dependence of Frequency of Oscillations on *u*

- \Box Frequency increases with increase in u at fluid boundaries
 - Sample size: 8x8x8
 - ☞ Frequency ~0.032-0.055 Hz
- **□** For longer samples
 - Each node is an oscillator
- ☐ Area of higher frequency dominates
 - Sets directionality of wave propagation
 - From higher u to lower u
 - Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
 - A. S. Mikhailov and A. Engel, Phys. Lett. A 117, 257 (1986)
 - B. Blasius and R. Tonjes, Phys. Rev. Lett. 95, 084101 (2005)

• Wave Propagation in Single Cilium: Effect of Activator *u*

□ Boundary conditions

$$u = 0.0 \text{ at } x = 0, L$$

 $\mathcal{F} u = u_{\text{top}}$ at top of the fluid box

□ Wave propagates from top to bottom at higher values of $u_{top}^{-\lambda}$

P. Dayal et al, J. Mater. Chem. 2012, 22, 241

□ Activator concentration changes direction of wave propagation

Two Cilia: Effect of Spacing

• Two Cilia: Distribution of Activator u

- **□** Directionality of wave propagation
 - Determined by local distribution of u
- ☐ Cilia spaced close together
 - Fighest *u* concentration above cilia
 - Wave propagates top-down
- ☐ Cilia spaced further apart
 - Fighest u concentration between cilia at midpoint of each gel
 - Wave propagates from center of each cilium
- ☐ Control directionality of wave propagation
 - By varying spacing

Communication Between Five Cilia

□ Boundary conditions

$$u = 0.0$$
 at $x = 0$, $x = L$

☐ At early times

Wave travels from bottom to top

\Box At late times

- Wave travels from top to bottom
- Cilia bends towards center
 - Highest concentration of *u*

☐ Multiple cilia exhibit collective behavior

- Wave in cilium 3 leads
 - \sim Higher concentration of u
- Oscillations are synchronized

P. Dayal et al, J. Mater. Chem. 2012, 22, 241

Exploit Photosensitivity of BZ Reaction

- **□** Ruthenium-catalyzed BZ reaction photosensitive
- ☐ Introduce external light source of specific wavelength (~ 450 nm)
 - Increases production of bromide ions

Suppresses oscillations

Krug, H.-J.; Pohlmann, L.; Kuhnert, L. *J. Phys. Chem.* 1990, *94*, 4862-4866.

$$F(u, v, \phi) = (1 - \phi)^{2} u - u^{2} - (1 - \phi) [fv + \Phi] \frac{u - q(1 - \phi)^{2}}{u + q(1 - \phi)^{2}}$$

- ☐ Without external light source
 - 100 0 100 150 200
 - Similar results seen experimentally

□ With external light source

Shinohara et al, Angew. Chem. Int. Ed. 2008, 47, 9039

• Multiple Cilia: Effect of Light

☐ Use light to alter dynamics

- ☞ Illuminate cilia 1-3
 - $Φ = 6x10^{-4}$: Suppresses oscillations in isolated sample
- ☐ Communication between cilia through fluid
 - Light does not suppress oscillations in cilia 1-3
 - Due to diffusion of u in fluid
 - Wave originates in dark region
- ☐ "Play" cilia like piano keyboard
 - Address individual cilium
 - Control collective behavior

P. Dayal et al, J. Mater. Chem. 2012, 22, 241

Summary

■ Multiple cilia exhibit collective behavior

- Oscillations synchronized
- Degree of bending determined by gradient in u
 - Cilium bends towards higher *u*
- Direction of wave propagation is controlled by distribution of u

□ Effect of light

- Provides means for remote and non-invasive control
- Changes frequency of oscillations
 - Dynamics can be controlled by non-uniform illumination

• Experimental Evidence for *u*-mediated Communication

- **□** BZ gels mechano-responsive
 - Can drive non-oscillatory sample into oscillatory phase

Kuksenok et al, *Soft Matter*, 5 (2009) 1835; Soft Matter, 3 (2007) 1138; Chen, I.C., Van Vliet. K.J., *et al Adv. Func. Mat*, 2012 (DOI:10.1002/adfm.201103036).

- **□** Exploit mechanical force as stimulus
- **□** All pieces initially non-oscillatory
- □ Push on smile (through cover slip)
 - Driven to pulsate
 - Releases *u* into surrounding solution
- \Box *u* diffuses to eyes
 - Initiates oscillations in eyes
- ☐ If eyes too far away
 - To not sense *u*
 - Do not wink

blogs/nstv/2012/03

• Conclusions: Used Modeling to Design Biomimetic Systems

- □ Leukocytes
 - Sense damage
 - Migrate to damaged site
 - Initiate repair
- **□** Synthetic leukocytes
 - Heal nanoscale cracks in substrates

K. Kratz et al. Nature Nano., 7 (2012) 87

- □ Cilia
 - Exhibit collective dynamics
- → Artificial cilia
 - © Communicate via diffusion of u
 - Can be controlled by light
 - Regulate transport in microfluidic devices

P. Dayal et al, J. Mater. Chem. 22 (2012) 241

Leukocytes

• Model for Chemo-responsive Gels in 3D

□ Define energy density of deformed gel

$$U = U_{el}(I_1, I_3) + U_{FH}(I_3)$$

- Flastic energy $U_{el} = \frac{c_0 v_0}{2} (I_1 3 \ln I_3^{1/2})$
- Finteraction energy $U_{FH} = \sqrt{I_3} \left[(1 \phi) \ln(1 \phi) + \chi_{FH} (\phi) \phi (1 \phi) \chi^* v (1 \phi) \right]$
- c_0 is crosslink density, $\chi^* > 0$: hydrating effect of oxidized catalyst

☐ Use 3D gLSM model

Calculate velocities of node **n** of element **m**

$$\frac{d\mathbf{r}_{n}(\mathbf{m},t)}{dt} = M_{n}(\mathbf{m},t) \left[F_{1,n}(\mathbf{m},t) + F_{2,n}(\mathbf{m},t) \right]$$
Spring-like From pressure

- $\mathcal{F} \text{ Update } v(\mathbf{m},t) \text{ and } u(\mathbf{m},t)$
 - Combination of finite elements & finite difference techniques

O. Kuksenok et al. PRE (2008)

Introduce Light

☐ Focus on array of BZ gels attached to substrate

- Cilia communicate via diffusion of reagents
- Motion can be controlled by light

P. Dayal et al, J. Mater. Chem. 2012, 22, 241

□ Effect of visible light on BZ gels

- Enhances production of bromide ions
 - Inhibits oscillations

$$I = 6.45 \, mW$$
; $\lambda = 436 \, nm$

S. Shinohara et al, Angew. Chem. 2008, 47, 9039

Additional flux of bromide ions

 $(\Phi \propto I)$

Wa<u>ve</u>