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Introduction

Coarse graining

To describe the system with reduced degrees of freedom




Static coarse graining

Ensure equilibrium properties
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This is exact in the sense:
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Dynamical coarse graining

Ensure the time evolution of x(t)

. oH
9i=——
op; . r
. oH = Xi :\/i(xl"xn)+\/i (t)
Pi ——ai
Iyl iy

(% (1)) = [ dI% (Dw(r' ) (xi(0)




Brownian motion
-Classical example of dynamical
coarse graining-

Theory of Brownian motion:
Prototype of dynamical coarse graining

Microscopic equation
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Langevin equation
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Fluctuation dissipation theorem

x=- R (Y
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Impose that the distribution of x at equilibrium is

given by U(x)
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Brownian Motion of Rigid Particle

Particles moving in a viscous fluid
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Potential energy
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Time evolution of the particle state
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Reciprocal relation

Hydrodynamic drag  Fy; = —ZCU— (X)X; Gi(¥)=C;i(®)
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Onsager’s proof for the reciprocal
relation
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Fluctuation dissipation theorem
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Time reversal symmetry

<A(t) B(O)> = <A(—t) B(O)> No hydrodynamics

is used




Formal proof by stat-mech
H(l’& Parameters representing the configuration of
Brownian particles

Phase space variables representing the
configuration of solvent molecules

Force exerted on the particle by fluid molecules
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Suppose that the particles is pulled with velocity Xi

X (t) =Xjo + Xt




Result of the perturbation solution
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If the correlation time of the force is short
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Principle of dynamical coarse
graining




What we have learned

If X=(X;,.X,) is the set of slow variables
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Fix the particle position at x and
©0 90 measure the force acting on the
0QP o o

O

0%000 particle . oH
Q FI(t)=—

QQ@ UORS
o> °

0 0P - o 1 7
TR G JHRORO)

—00

ZCij(X)Xj :_%}EX)

+Fi(1)

¢ =3 A Ly
X = ZMIJ(X) 8Xj +Vr|(t)




Application

May 3, Hydroweek KITP

Eric Vanden-Eijnden (with Pep Espanol, Rafael Delgado Buscalioni)
“Mori-Zwanzig Formalism as a Practical Computational Tool

00X 05
;/,OOO %OOOO\\\ 8()
52809000 ¢ Seoee 88

%
Brownian Dssipative Liquid of star polymer
dynamics particle
dynamics

Brownian motion in polymer solutions

Introduce polymer conformation
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Introduce internal variable
Q=(r)
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Conclusion

 Brownian motion theory is the classical example
of dynamical coarse graining.

* Onece slow variables are given, it tells us how to
obtain the equation of motion
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Onsager type time evolution equation

+ Vri (t)

Is it appropriate to call this Mori-Zwanzig
formalism?
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