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Why Nano-structured Polymers? 

Nano-structuring is a way to achieve functionality 
that differentiates and adds value to existing and 
new families of polymers 

We aim to develop simulation tools that can guide the 
design of nano/meso-structured polymer formulations 

SIS triblock 
copolymer 

http://www.energysun-bags.de/


Outline 

 Introduction to equilibrium polymer 
field theory 

 Computational approaches 

 Self-Consistent Field Theory (SCFT) 

 Field Theoretic Simulations (FTS) 

 Coarse-graining by force-matching 

 Discussion and outlook 



Why Field-Based Simulations? 

 Relevant spatial and time scales 
challenging for fully atomistic, 
classical “particle-based” 
simulations 

 Use of fluctuating fields, rather 
than particle coordinates, has 
computational advantages: 

 Simulations become easier at high 
density & high MW 

 Systematic coarse-graining similar 
to numerical RG 

 Seamless connection to continuum 
mechanics  

 

 

Copolymer nanocomposite 
BJ Kim 

Polymeric microemulsion 
F. S. Bates 

Nano/meso: 1 nm to 1 ¹m 



Models 

 Starting point is a 
coarse-grained particle 
model 

 Continuous Gaussian 
chains 

 Pairwise contact 
interactions 
 Excluded volume v, Flory 

  parameters 

 Easily added: 
 Electrostatic interactions 
 Incompressibility (melt) 

 Arbitrary branched 
architectures 

A branched “multiblock” polymer 



From Particles to Fields 

We convert the many-body problem into a 
statistical field theory 

 

 

Boltzmann weight is a complex number! 

Polymers 
decoupled!  



The Edwards Model 

 Model of flexible homopolymers dissolved in good, implicit solvent 
(S. F. Edwards, 1965) 

 

 

 

 Field-theoretic form 

 

 

 

 

 

 Q[iw] is the single-chain partition function for a polymer in an 
imaginary potential field iw(r) 

Formalism known to Edwards: numerical simulations new 



Single-chain statistics 

 Q[iw] calculated from propagator q(r,s) for 
chain end probability distribution 

 

 

 

 Propagator obtained by integrating a 
complex diffusion (Fokker-Planck) equation 
along chain contour s 

s 

Numerically limiting “inner loop” in field-based simulations!  



Observables and Operators 

0 

s 

q(r,s) 
N 

r 

q (r,N-s) 

•Observables can be expressed as averages of 
operators O[w] with complex weight exp(-H[w]) 

•Density and stress operators (complex) can be 
composed from solutions of the Fokker-Planck equation 



Types of Field-Based Simulations 

• The theory can be simplified to a “mean-field (SCFT)” 
description by a saddle point approximation: 

 

 

• SCFT is accurate for  

 

• We can simulate a field theory at two levels: 

high MW melts 

“Mean-field” approximation (SCFT): F  H[w*] 

Full stochastic sampling of the complex field 
theory: “Field-theoretic simulations” (FTS) 



SCFT: Finding Saddle Points 

 Relax to a saddle point in complex plane with fictitious dynamics  

 

 

 

 

 Numerical algorithms should have excellent stability; accuracy in t 
not important 

 

 Pseudo-spectral methods largely adopted from computational fluid 
mechanics, not statistical mechanics! 

Implement with plane wave spectral collocation and parallel FFTs 

H. D. Ceniceros and G. H. Fredrickson,  
SIAM Multiscale Modeling and Simulation 2, 452-474 (2004) 



High-Resolution SCFT Simulations 

 By spectral collocation methods we 
can resolve fields using up to ~107 
basis functions 

 Unit cell calculations for ordered 
phases with variable cell shape 
to relax stress 

 Large cell calculations for 
exploring self-assembly in new 
systems 

 A broad range of complex polymer 
melts, solutions, alloys, and 
copolymers can be treated 

 

Confined BC films 

2.5 µm 

Triply-periodic gyroid 
phase of BCs 

Block copolymer-homopolymer blend 

High internal phase emulsions 



Mènages en blocs 

Multiblock polymers have a multiplicity of designs that can be realized 
by modern polymer chemistry 
What is the relationship between sequence and collective mesoscopic 
structure and materials properties?  

Number of distinct linear polymers with k species and n blocks: 

Mènage problem: 
E. Lucas, 1891 



Large Cell SCFT of an ABC Triblock Melt 

Parameters for PI-PS-PEO known to exhibit a stable orthorhombic 
Fddd (O70) phase:  

 
fA = 0.275, fB = 0.55, χABN= χBCN =13, χACN = 35 

Relaxed from random seed Defect free 3x3x3 unit cells. Relaxed 
from leading harmonics of Fddd 

K. Delaney, using GPUs 
Abundant metastable states! 



Beyond Mean-Field Theory 

 In many situations, mean-field theory (SCFT) is inaccurate 

 Polymer solutions, especially polyelectrolytes 

 Melts near a critical point or order-disorder transition 

 

 We need to sample field configurations far from any saddle 
point 

 

 But… H[w] is complex; exp(-H) not positive! 

 

 This “sign problem” is familiar in other branches of chemistry 
and physics 

 QCD, lattice gauge theory, correlated electrons 

 Quantum rate processes 

How do we statistically sample the full field theory? 



Complex Langevin Dynamics 
 

G. Parisi, J. Klauder 1983; V. Ganesan & GHF 2001 

 A Langevin dynamics in the complex plane for sampling 
complex field theories and avoiding the sign problem 

 

 

 

 

 Thermal noise is asymmetrically placed and is Gaussian 
and white satisfying usual fluctuation-dissipation 
relation: 

 

The stochastic lattice field equations are stiff, nonlocal, nonlinear 



Fluctuation-mediated order-disorder transition: 
AB diblock copolymer melt 

N = 14 ! 11 

f = 0.396 

IC: 23 unit cells of 
stress-free gyroid 
from SCFT 

 

E. M. Lennon, G. O. Mohler, H. D. Ceniceros, C. J. Garcia-Cervera, and G. H. Fredrickson, 
SIAM Multiscale Modeling and Simulation 6, 1347 (2008) 



Large Multiscale Systems: Coarse-Graining 

 Complex Langevin simulations require lattice discretization 
 
 
 
 Ideal efficiency: lattice spacing commensurate with largest 

structures, CG/RG to embed fine-scale fluctuation physics 

Example: solvent swollen micellar phases 

M. Villet 



Systematic Coarse-Graining (CG) 

Linear basis function approx: 

Define CG mapping M(w) from fine to coarse lattice: 

Mapping defines complex PDF of a coarse-grained model: 



Parameterizing the CG Model 

"Force-Matching“ metric: 

Minimize with respect to K':  Linear system 

CG Hamiltonian parameters obtained from 
a single fine-grained simulation 

Operators coarse-grained using identical framework: 

(adapted from Noid et al. formalism) 

Noid, Voth, Andersen et. al. JCP 2008 

Villet and Fredrickson, JCP 2010 
New to numerical RG literature? 



Coarse-Graining Mapping Schemes 

Real-Space Block Averaging Fourier Mode Elimination 

Compatible with even number of 
lattice points: 
FFT efficiency improved by 2n grids 

More flexible rate of coarse-graining 
 
Fourier-space properties (e.g. structure factor) 
can be computed for CG models 
 
Requires odd number of lattice points 

c.f., Wilson-style RG 



The Gaussian-Regularized Edwards Model 

Edwards model is UV divergent:  regularize with repulsive Gaussian  

interaction 

Single-Chain Statistics Excluded Volume 

Length Scales (scaled by R
g
): 

Excluded Volume Range Solution Correlation Length 

Excess chemical potential: 



Lattice Resolution and Accuracy 

Lattice spacing constrained by 
excluded volume range a 

Accurate simulation 

Fluctuations suppressed, 
mean-field recovered 

Model Parameters: 

  B = C = 1.0 

  a = 0.1 R
g 

  Box Length L = 3.2 R
g 

M. Villet 



Coarse-Grained Trial Functionals 

Minimal “3+2” basis for regularized Edwards model: 
 Allow renormalization of existing parameters 

 Add simple extra functionalities to improve coarse-graining accuracy 



Fixed-Volume Coarse Graining 

Represent same system with 
progressively fewer lattice points 

Initial System: 
Δr = 0.1 R

g
 

L = 3.1 / 3.2 R
g 
(Fourier/Real CG) 

 

CG Protocol: 
Real-Space: 23 Cubic Blocking 
Fourier: ~ (½)3 mode elimination 

CG models accurate 
at low resolution!  

M. Villet 



Coarse-Graining and Contour Resolution 

Can lower contour resolution be used with CG models? 
 
Algorithm of choice: second-order splitting with Richardson extrapolation 
 (J. Qin 2009, D. Audus (in prep)) 
 

CG models accurate at low 
contour resolution! 

M. Villet 



Box Expansion: Coarse-Graining “Cascades” 

Iteratively progress to 
larger system volumes 
at fixed number of grid 
points : 

Finite size effects are reasonably described by CG cascades! 



Coarse-Grained Basis Comparison 

Fourier CG Real-Space CG 

Systematic improvement to a limiting value Inconsistent results from larger basis sets 

Basis identification plagued by nonlocal, nonlinear character of field theory 



Coarse-graining in FTS: Future studies 

 Force field parameterization is currently a limitation -- 
can a different field theoretic representation help?  

“Coherent states” representation of Edwards Model (GCE): 

Theory is finite polynomial order in fields and gradients! 

X. Man, K. Delaney, M. Villet, H. Orland, GHF 



Applications of Coarse-Graining 

Analytically intractable: duc=8 ! 

 Solvent swollen block 
copolymer mesophases 

 Coarse grain until SCFT accurate 

 

 

 

 

 

 

 Bicontinuous microemulsions in 
A+B+AB blends 

 Coarse grain to finest feature 
size ~25nm 

 FTS of coarse model to study 
long-wavelength fluctuation 
physics 

Bates et. al. PRL 79, 849 (1997) 



Discussion and Outlook 

 “Field-based” computer simulations are powerful tools for 
exploring equilibrium self-assembly in polymer formulations 

 

 Good numerical methods are essential! 
 Complex Langevin sampling is our main tool for addressing the sign problem 

 Free energy and variable cell shape methods progressing 

 Coarse-graining/RG techniques improving 

 

 Emerging application areas are 
 Multiblock phase diagrams 

 Thin films: directed self-assembly 

 Polyelectrolyte complexes  

 Bicontinuous microemulsions  

 Hybrid simulations with nanoparticles and colloids 

 Supramolecular polymers 

 Nonequilibrium extensions to coupled flow and structure 

The Equilibrium Theory of Inhomogeneous Polymers  (Oxford, 2006) 
G. H. Fredrickson et. al., Macromolecules 35, 16 (2002) 


