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Figure 9. MD simulation of dislocation emission near the crack tip of Cu crystal (at 0 K).

Figure 10. MD simulation of dislocation emission near the crack tip of Al crystal (at 0 K). Two dislocations
of 〈100〉 character are emitted first and move away from the crack tip (t = 24 and 26 ps), which eventually
disintegrate into two bundles of 1

2 〈110〉 dislocations (t = 28 and 30 ps).

20 ps, nearest-neighbor bonds break at the crack front and two blocks of crystal begin to slide
about a particular (010) plane, and thus defects are nucleated at the crack tip, consisting of an
extrinsic step/dislocation pair. Soon after, it can be seen that the dislocation core glides along
the 〈100〉 direction on the (010) plane into the bulk. The products of the nucleation process
consist of a stable extrinsic surface step and a fully-formed dislocation core separated from
the crack tip. This process of rearranging the atom stacking planes leads to the blunting of the
crack tip as seen in Fig. 13.

Crack-tip dislocation nanostructures in fcc metals 153

Figure 14. Dislocation emission processes near the crack tip of Al crystal (at 50 K).

The 〈100〉 dislocation emission process is not observed in Cu. In the early stage of de-
formation in Cu, a sharp crack advances first, and the local crystal symmetry near the crack
tip becomes reduced significantly, before a dislocation is clearly emitted from the crack tip
and an extrinsic step is formed. Even in Al, at finite temperatures the conventional 1

2 〈110〉
dislocation emission is dominant and the 〈100〉 dislocations are not observed (Fig. 14).

4. Summary

Classical molecular dynamics simulations with a million atoms are carried out to study the
effect of temperature on the fracture processes of Cu and Al. We show that the MD method
combined with visualization is well suited for gaining mechanistic insights into the dynamical
failure processes at finite temperatures. The simulations reveal that crack extension in Cu at
zero temperature occurs in a brittle manner at first, and then the crack tip begins to roughen
through profuse dislocation emissions. Crack-tip blunting by dislocation nucleation eventually
arrests crack propagation. In Al at a starting temperature of 0 K, we find that dislocations of
〈100〉 character are nucleated first on the {010} planes, propagate away from the crack tip,
and then break up into bundles of 1

2〈110〉 dislocation loops on oblique {111} slip planes.
The differences in the behaviors of Al and Cu might be attributed to their different degrees
of elastic anisotropy [15, 16, 17], the abnormally large intrinsic stacking fault of Al and
directional bonding in Al [21].
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Figure 9. MD simulation of dislocation emission near the crack tip of Cu crystal (at 0 K).

Figure 10. MD simulation of dislocation emission near the crack tip of Al crystal (at 0 K). Two dislocations
of 〈100〉 character are emitted first and move away from the crack tip (t = 24 and 26 ps), which eventually
disintegrate into two bundles of 1

2 〈110〉 dislocations (t = 28 and 30 ps).

20 ps, nearest-neighbor bonds break at the crack front and two blocks of crystal begin to slide
about a particular (010) plane, and thus defects are nucleated at the crack tip, consisting of an
extrinsic step/dislocation pair. Soon after, it can be seen that the dislocation core glides along
the 〈100〉 direction on the (010) plane into the bulk. The products of the nucleation process
consist of a stable extrinsic surface step and a fully-formed dislocation core separated from
the crack tip. This process of rearranging the atom stacking planes leads to the blunting of the
crack tip as seen in Fig. 13.

Multiscale Goal:
To replace this...

Tadmor, unpublished

...with this.
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8 Energy-based methods

Method Acronym Key Continuum Handshake Coupling Governing
References Model Boundary Condition Formulation

Quasicontinuum QC [1, 2] Cauchy-Born None Strong Compatibility Energy-Based

Coupling of CLS [3] Linear Elasticity None Strong Compatibility Energy-Based
Length Scales

Bridging BD [4] Cauchy-Born Linear mixing of Weak Compatibility Energy-Based
Domain energy (penalty)

Bridging Scale BSM [5, 6] Cauchy-Born None Weak/Stong Mix Energy-Based
Method (least-squares fit)

Composite Grid Atomistic CACM [7] Linear Elasticity None Weak Compatibility Iterative Energy-Based
Continuum Method (average atomic positions) (two energy functionals)

Cluster-Energy CQC(m)-E [8] Averaging of None Strong Compatibility Energy-Based
Quasicontinuum atomic clusters

Ghost-force corrected QC-GFC [9] Cauchy-Born None Strong Compatibility Energy-Based
Quasicontinuum with dead load GFC

Ghost-force corrected CQC(m)-GFC [8] Averaging of None Strong Compatibility Energy-Based
Cluster-Energy QC atomic clusters with dead load GFC

Finite-Element/Atomistics FEAt [10] non-linear, nonlocal None Strong Compatibility Force-Based
Method elasticity

Coupled Atomistics and CADD [11, 12] Linear Elasticity None Strong Compatibility Force-Based
Discrete Dislocations

Hybrid Simulation Method HSM [13] Non-Linear Elasticity atomic averaging Weak Compatibility Force-Based
for nodal B.C. (average atomic positions)

Concurrent AtC Coupling AtC [14, 15, 16, 17] Linear Elasticity Linear mixing Strong Compatibility Force-Based
of stress and atomic force

Ghost-force Corrected AtC-GFC unpublished Linear Elasticity Linear mixing Strong Compatibility Force-Based
Concurrent AtC Coupling of stress and atomic force

Cluster-Force CQC(m)-F [18] Averaging of None Strong Compatibility Force-Based
Quasicontinuum atomic clusters

Table 1: Summary of the methods discussed in this presentation.
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6 Force-based methods
Method Acronym Key Continuum Handshake Coupling Governing

References Model Boundary Condition Formulation
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Length Scales

Bridging BD [4] Cauchy-Born Linear mixing of Weak Compatibility Energy-Based
Domain energy (penalty)

Bridging Scale BSM [5, 6] Cauchy-Born None Weak/Stong Mix Energy-Based
Method (least-squares fit)

Composite Grid Atomistic CACM [7] Linear Elasticity None Weak Compatibility Iterative Energy-Based
Continuum Method (average atomic positions) (two energy functionals)

Cluster-Energy CQC(m)-E [8] Averaging of None Strong Compatibility Energy-Based
Quasicontinuum atomic clusters

Ghost-force corrected QC-GFC [9] Cauchy-Born None Strong Compatibility Energy-Based
Quasicontinuum with dead load GFC

Ghost-force corrected CQC(m)-GFC [8] Averaging of None Strong Compatibility Energy-Based
Cluster-Energy QC atomic clusters with dead load GFC

Finite-Element/Atomistics FEAt [10] non-linear, nonlocal None Strong Compatibility Force-Based
Method elasticity
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Discrete Dislocations

Hybrid Simulation Method HSM [13] Non-Linear Elasticity atomic averaging Weak Compatibility Force-Based
for nodal B.C. (average atomic positions)

Concurrent AtC Coupling AtC [14, 15, 16, 17] Linear Elasticity Linear mixing Strong Compatibility Force-Based
of stress and atomic force

Ghost-force Corrected AtC-GFC unpublished Linear Elasticity Linear mixing Strong Compatibility Force-Based
Concurrent AtC Coupling of stress and atomic force

Cluster-Force CQC(m)-F [18] Averaging of None Strong Compatibility Force-Based
Quasicontinuum atomic clusters

Table 1: Summary of the methods discussed in this presentation.
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!Fig. 12.17 (a) Test problem used to compare the various multiscale techniques. A Lomer
dipole, 40 Å wide, is centered in the model. The darker region around the edges
of the model are held fixed to various levels of applied shear (b) A typical mesh
for the problem, with the atomistic region extending from −30Å to 30Å.

of the study was a comprehensive comparison of the relative accuracy and speed of the
different approaches, which we summarize here. (We invite the reader to turn to the original
reference for all the details.) The code is written so that all methods are treated on as
equal a footing as possible. The main exception is the solution method; the CG algorithm
(see Section 6.2.5) is used for the energy-based methods and the CG-FB algorithm (see
Section 6.3.1) for the force-based approaches.36 All methods use the identical atomistic
model and the identical continuum constitutive law (the Cauchy-Born rule).

12.7.1 The test problem

An important issue in comparing multiscale methods is the determination of a suitable test
problem. Making the problem too simple might hide problems or mask differences be-
tween methods. For example, we have already seen how using linear springs as the atom-
istic model hides spurious forces in the AtC method. As another example, it is possible
to completely eliminate ghost forces in the CQC-E method in one dimension, but not in
higher dimensions. On the other hand, making the problem too complex will make it dif-
ficult to analyze the results. It is also important to choose a problem that is robust and
has a well-defined unique solution, otherwise the comparison between methods becomes
meaningless. The problem described below satisfies these criteria.

36In Section 6.3.1, we showed (in the context of the NEB method) that CG-FB suffers from instabilities if the
system of equations for the forces has a Hessian which is not positive definite. See also detailed discussions of
this in [DLO10a, DLO10b]. We make use of CG-FB with this caveat in mind, and it seems that these instabilities
did not occur for the systems studied here. In Section 12.6, we used the NR method, but here this was avoided
because it would have required difficult coding of the Hessian for all the different methods.

About 28,000 Aluminum atoms
400Å × 400Å × 3Å 

“Multibench” code at www.qcmethod.org

Modelling Simul. Mater. Sci. Eng. 17 (2009) 053001 Topical Review

Figure 8. Test problem used to compare the various multiscale techniques. A Lomer dipole, 40 Å
wide, is centered in the model. The darker region around the edges of the model are held fixed to
various levels of applied shear strain to force the dislocations to move.
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Figure 9. Meshes used in the test problem, whereby the width of the atomistic region (indicated
by the dashed lines) is systematically increased.

7.2. The test problem

The test problem is a block of single crystal aluminum21 containing a dipole of Lomer
dislocations [21], as schematically illustrated in figure 8. The crystal is roughly 400 Å×400 Å
in theX1X2 plane and periodic inX3 (with a periodic length of 2.85 Å). Since the lattice constant
for this model of aluminum is 4.032 Å, this region contains 27 760 atoms.

This problem is studied both ‘fully atomistically’ using lattice statics (we call this the
‘exact’ solution), as well as with the various multiscale methods. For the multiscale models,
we use meshes that are approximately the same across the methods. The meshes used are
illustrated in figure 9 and will be denoted by an extension ‘10’, ‘20’ or ‘30’ as appropriate.
The numbers indicate the extent of the fully refined atomistic region along the middle of the
model. For example, ‘10’ means that the atomistic region extends from X2 = −10 Å to
X2 = +10 Å. In all cases, the Lomer dipole lies on the X2 = 0 plane, with the two cores
initially at X1 = ±20 Å.

For models that do not require the mesh to be refined to the atomic scale along the
atomistic/continuum interface (for example, the BD, BSM or HSM models), the atomic region

21 Modeled using the EAM potentials of [16]; a sufficiently ‘multi-bodied’ model to ensure a rigorous test of the
methods.

30
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Write the potential energy as the sum of two parts:

1. The zero temperature contribution (use Cauchy-Born Rule)

2. A contribution due to the thermal fluctuations of the coarsened atoms about their mean 
positions (use Local Harmonic Approximation (LeSar et al., PRL, 1989) AND the Cauchy-
Born Rule)
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Problem:
• the motion of the nodes is really the 
change of the mean positions of the atoms 
over time
• this carries an unphysical vibrational 
entropy
• this extra entropy is a negligible 
contribution if the elements are very big... 
but not all of them are big.

The Culprit:  “Mesh entropy”
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674 Atomistic/continuum coupling: finite temperature and dynamics
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!Fig. 13.1 Predicted dependence of the lattice constant on temperature for fcc Ni using the
exact MD, hot-QC-static and hot-QC-dynamic with various degrees of mesh
coarsening. In (a), there is no correction for the mesh entropy in hot-QC-dynamic
(HQC

naı̈ve was used), while (b) shows the full, corrected formulation (HQC was
used). See text for details.

13.2.5 Demonstrative examples: thermal expansion and
nanoindentation

Thermal expansion.A simple test of the performance of hot-QC is to calculate the thermal
expansion of a lattice.10 In Fig. 13.1, we show the results of a straightforward simulation
whereby a perfect crystal is left to equilibrate at a specified temperature and the resulting
average lattice constant is recorded. Several curves are shown, all are based on an fcc
crystal of Ni modeled using the pair functional (EAM) potential of [AMB95]. The filled
circles are from a conventional MD simulation containing 4000 atoms in a periodic, cubic
simulation box and equilibrated using the Nosé-Hoover thermostat (see Section 9.4.4) and
with the pressure set to zero (see Section 9.6). This can be considered the “exact” result,
against which we compare the success of hot-QC. The results for hot-QC-static are shown
by the filled squares. No dynamic simulations are necessary in this case, since no atomistic
region is required and the results follow from minimizing the free energy of Eqn. (13.39)
with respect to the displacements of the nodes of a single element. The difference between
these two curves is the error associated with the local harmonic approximation.
Next, we turn to hot-QC-dynamic. The results in Fig. 13.1 were obtained from a model

containing only a continuum region representing an fcc crystal of 80 × 80 unit cells in
9Actually, the second order accuracy can only be shown if the quasi-harmonic approximation is used for

both the effective free energy and the correction to the mesh entropy. The local harmonic assumption is a less
controlled approximation, but is is reasonable to expect that it would work as well here as in other applications,
as discussed on page 665.

10The authors thank Dr. Woo Kyun Kim for performing the thermal expansion simulations.

Test: Thermal Expansion of Ni (Angelo et al., MSMSE, 1995)
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Another Test: Elastic Constants of Ni
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Fig. 15. Mesh after dislocation nucleation at T = 100 K. The fig-
ure shows a closeup of the region under the indenter (which is em-
bedded in a larger continuum region as shown in the inset). The
nucleated dislocation dissociates into a pair of Shockley partial dislo-
cations. See text for discussion.

Based on the above results, a Nosé-Poincaré thermo-
stat (using the parameter M = 0.01kBT ) was used for the re-
maining nanoindentation simulations. The system was tested
at five temperatures: T = 0 K, 100 K, 200 K, 300 K and
400 K. For the 0 K test, the conventional static QC method
was used. In the finite temperature simulations, the hot-QC-
dynamic method with mesh entropy correction was used. At
the start of each simulation, the system was equilibrated for
100 ps with the indenter position held fixed. Following the
equilibration process, the cylindrical indenter was lowered
at a constant velocity of 0.05 Å/ps. The simulation stopped
when the indentation depth reached 20 Å. Dislocation nu-
cleation occurred at all temperatures before this indentation
depth was reached.

Fig. 15 shows the hot-QC mesh after the first disloca-
tion is nucleated. The dislocation nucleates on the (111̄) slip
plane and dissociates into two Shockley partial dislocations
separated by an intrinsic stacking fault. The initial nucle-
ation positions are shown as circles. One partial then moves
upward to the surface while the other moves downward and
stops inside the atomistic region. Fig. 16 shows the load ver-
sus indentation depth curves at different temperatures and
the curve obtained at 0 K using the static QC method. In
Fig. 16(a) all curves are superposed which shows the soften-
ing of the initial elastic response due the increasing temper-
ature. In Fig. 16(b) the curves are shifted apart horizontally
to help view them and the location of the first dislocation
nucleation is indicated. The nucleation event is associated
with a small drop in the load which is sometimes difficult to
discern due to the thermal fluctuations. It is clear from the
figure that the nucleation load decreases with increasing tem-
perature. This is expected since at finite temperature dislo-

0 5 10 15 20

Indentation Depth (Å)
0

10

20

30

40

50

60

70

80

90

Fo
rc

e 
(n

N
)

0K
100K
200K
300K
400K

(a)

0 5 10 15 20 25 30

Indentation Depth (Å)
0

10

20

30

40

50

60

70

80

90

Fo
rc

e 
(n

N
)

0K
100K
200K
300K
400K

100K

200K

300K
400K 0K

(b)

Fig. 16. Force versus indentation depth curves for nanoindentation
at different temperatures. (a) All curves superposed to demonstrate
the elastic softening. (b) Curves shifted horizontally for visibility. Ar-
rows indicate the points on each curve where dislocation nucleation
first occurs.

cation nucleation is a thermally-activated process. At higher
temperatures the probability of a transition increases. This
dependence is made explicit in Fig. 17 which shows the dis-
location nucleation load plotted as a function of temperature.
The error bars indicate the standard error obtained from 10
separate runs at each temperature.

The nonlinear response shown in Fig. 17 can be ratio-
nalized using a modified Tomlinson model which was origi-
nally introduced to account for the velocity and temperature
dependence of atomic-scale friction [84, 85]. In this model,
dislocation nucleation under the indenter is assumed to occur
via a thermally-activated process involving a unidirectional
transition between two states. The energy barrier governing
this transition is assumed to decrease linearly with increas-
ing driving force (i.e. the indentation load). The barrier van-
ishes when the driving force reaches a critical value. At zero
temperature, a dislocation can nucleate only when the load
reaches the critical value. However, at finite temperature nu-
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Fig. 15. Mesh after dislocation nucleation at T = 100 K. The fig-
ure shows a closeup of the region under the indenter (which is em-
bedded in a larger continuum region as shown in the inset). The
nucleated dislocation dissociates into a pair of Shockley partial dislo-
cations. See text for discussion.

Based on the above results, a Nosé-Poincaré thermo-
stat (using the parameter M = 0.01kBT ) was used for the re-
maining nanoindentation simulations. The system was tested
at five temperatures: T = 0 K, 100 K, 200 K, 300 K and
400 K. For the 0 K test, the conventional static QC method
was used. In the finite temperature simulations, the hot-QC-
dynamic method with mesh entropy correction was used. At
the start of each simulation, the system was equilibrated for
100 ps with the indenter position held fixed. Following the
equilibration process, the cylindrical indenter was lowered
at a constant velocity of 0.05 Å/ps. The simulation stopped
when the indentation depth reached 20 Å. Dislocation nu-
cleation occurred at all temperatures before this indentation
depth was reached.

Fig. 15 shows the hot-QC mesh after the first disloca-
tion is nucleated. The dislocation nucleates on the (111̄) slip
plane and dissociates into two Shockley partial dislocations
separated by an intrinsic stacking fault. The initial nucle-
ation positions are shown as circles. One partial then moves
upward to the surface while the other moves downward and
stops inside the atomistic region. Fig. 16 shows the load ver-
sus indentation depth curves at different temperatures and
the curve obtained at 0 K using the static QC method. In
Fig. 16(a) all curves are superposed which shows the soften-
ing of the initial elastic response due the increasing temper-
ature. In Fig. 16(b) the curves are shifted apart horizontally
to help view them and the location of the first dislocation
nucleation is indicated. The nucleation event is associated
with a small drop in the load which is sometimes difficult to
discern due to the thermal fluctuations. It is clear from the
figure that the nucleation load decreases with increasing tem-
perature. This is expected since at finite temperature dislo-
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Fig. 16. Force versus indentation depth curves for nanoindentation
at different temperatures. (a) All curves superposed to demonstrate
the elastic softening. (b) Curves shifted horizontally for visibility. Ar-
rows indicate the points on each curve where dislocation nucleation
first occurs.

cation nucleation is a thermally-activated process. At higher
temperatures the probability of a transition increases. This
dependence is made explicit in Fig. 17 which shows the dis-
location nucleation load plotted as a function of temperature.
The error bars indicate the standard error obtained from 10
separate runs at each temperature.

The nonlinear response shown in Fig. 17 can be ratio-
nalized using a modified Tomlinson model which was origi-
nally introduced to account for the velocity and temperature
dependence of atomic-scale friction [84, 85]. In this model,
dislocation nucleation under the indenter is assumed to occur
via a thermally-activated process involving a unidirectional
transition between two states. The energy barrier governing
this transition is assumed to decrease linearly with increas-
ing driving force (i.e. the indentation load). The barrier van-
ishes when the driving force reaches a critical value. At zero
temperature, a dislocation can nucleate only when the load
reaches the critical value. However, at finite temperature nu-
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(Å

)

Fig. 15. Mesh after dislocation nucleation at T = 100 K. The fig-
ure shows a closeup of the region under the indenter (which is em-
bedded in a larger continuum region as shown in the inset). The
nucleated dislocation dissociates into a pair of Shockley partial dislo-
cations. See text for discussion.

Based on the above results, a Nosé-Poincaré thermo-
stat (using the parameter M = 0.01kBT ) was used for the re-
maining nanoindentation simulations. The system was tested
at five temperatures: T = 0 K, 100 K, 200 K, 300 K and
400 K. For the 0 K test, the conventional static QC method
was used. In the finite temperature simulations, the hot-QC-
dynamic method with mesh entropy correction was used. At
the start of each simulation, the system was equilibrated for
100 ps with the indenter position held fixed. Following the
equilibration process, the cylindrical indenter was lowered
at a constant velocity of 0.05 Å/ps. The simulation stopped
when the indentation depth reached 20 Å. Dislocation nu-
cleation occurred at all temperatures before this indentation
depth was reached.

Fig. 15 shows the hot-QC mesh after the first disloca-
tion is nucleated. The dislocation nucleates on the (111̄) slip
plane and dissociates into two Shockley partial dislocations
separated by an intrinsic stacking fault. The initial nucle-
ation positions are shown as circles. One partial then moves
upward to the surface while the other moves downward and
stops inside the atomistic region. Fig. 16 shows the load ver-
sus indentation depth curves at different temperatures and
the curve obtained at 0 K using the static QC method. In
Fig. 16(a) all curves are superposed which shows the soften-
ing of the initial elastic response due the increasing temper-
ature. In Fig. 16(b) the curves are shifted apart horizontally
to help view them and the location of the first dislocation
nucleation is indicated. The nucleation event is associated
with a small drop in the load which is sometimes difficult to
discern due to the thermal fluctuations. It is clear from the
figure that the nucleation load decreases with increasing tem-
perature. This is expected since at finite temperature dislo-
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Fig. 16. Force versus indentation depth curves for nanoindentation
at different temperatures. (a) All curves superposed to demonstrate
the elastic softening. (b) Curves shifted horizontally for visibility. Ar-
rows indicate the points on each curve where dislocation nucleation
first occurs.

cation nucleation is a thermally-activated process. At higher
temperatures the probability of a transition increases. This
dependence is made explicit in Fig. 17 which shows the dis-
location nucleation load plotted as a function of temperature.
The error bars indicate the standard error obtained from 10
separate runs at each temperature.

The nonlinear response shown in Fig. 17 can be ratio-
nalized using a modified Tomlinson model which was origi-
nally introduced to account for the velocity and temperature
dependence of atomic-scale friction [84, 85]. In this model,
dislocation nucleation under the indenter is assumed to occur
via a thermally-activated process involving a unidirectional
transition between two states. The energy barrier governing
this transition is assumed to decrease linearly with increas-
ing driving force (i.e. the indentation load). The barrier van-
ishes when the driving force reaches a critical value. At zero
temperature, a dislocation can nucleate only when the load
reaches the critical value. However, at finite temperature nu-
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Fig. 15. Mesh after dislocation nucleation at T = 100 K. The fig-
ure shows a closeup of the region under the indenter (which is em-
bedded in a larger continuum region as shown in the inset). The
nucleated dislocation dissociates into a pair of Shockley partial dislo-
cations. See text for discussion.

Based on the above results, a Nosé-Poincaré thermo-
stat (using the parameter M = 0.01kBT ) was used for the re-
maining nanoindentation simulations. The system was tested
at five temperatures: T = 0 K, 100 K, 200 K, 300 K and
400 K. For the 0 K test, the conventional static QC method
was used. In the finite temperature simulations, the hot-QC-
dynamic method with mesh entropy correction was used. At
the start of each simulation, the system was equilibrated for
100 ps with the indenter position held fixed. Following the
equilibration process, the cylindrical indenter was lowered
at a constant velocity of 0.05 Å/ps. The simulation stopped
when the indentation depth reached 20 Å. Dislocation nu-
cleation occurred at all temperatures before this indentation
depth was reached.

Fig. 15 shows the hot-QC mesh after the first disloca-
tion is nucleated. The dislocation nucleates on the (111̄) slip
plane and dissociates into two Shockley partial dislocations
separated by an intrinsic stacking fault. The initial nucle-
ation positions are shown as circles. One partial then moves
upward to the surface while the other moves downward and
stops inside the atomistic region. Fig. 16 shows the load ver-
sus indentation depth curves at different temperatures and
the curve obtained at 0 K using the static QC method. In
Fig. 16(a) all curves are superposed which shows the soften-
ing of the initial elastic response due the increasing temper-
ature. In Fig. 16(b) the curves are shifted apart horizontally
to help view them and the location of the first dislocation
nucleation is indicated. The nucleation event is associated
with a small drop in the load which is sometimes difficult to
discern due to the thermal fluctuations. It is clear from the
figure that the nucleation load decreases with increasing tem-
perature. This is expected since at finite temperature dislo-
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Fig. 16. Force versus indentation depth curves for nanoindentation
at different temperatures. (a) All curves superposed to demonstrate
the elastic softening. (b) Curves shifted horizontally for visibility. Ar-
rows indicate the points on each curve where dislocation nucleation
first occurs.

cation nucleation is a thermally-activated process. At higher
temperatures the probability of a transition increases. This
dependence is made explicit in Fig. 17 which shows the dis-
location nucleation load plotted as a function of temperature.
The error bars indicate the standard error obtained from 10
separate runs at each temperature.

The nonlinear response shown in Fig. 17 can be ratio-
nalized using a modified Tomlinson model which was origi-
nally introduced to account for the velocity and temperature
dependence of atomic-scale friction [84, 85]. In this model,
dislocation nucleation under the indenter is assumed to occur
via a thermally-activated process involving a unidirectional
transition between two states. The energy barrier governing
this transition is assumed to decrease linearly with increas-
ing driving force (i.e. the indentation load). The barrier van-
ishes when the driving force reaches a critical value. At zero
temperature, a dislocation can nucleate only when the load
reaches the critical value. However, at finite temperature nu-
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Fig. 17. Dislocation nucleation load as a function of temperature.
The bars indicate the standard error in the measurement obtained
from 10 simulations at the same temperature. The dashed line is
an analytical fit based on a modified Tomlinson model. See text for
details.

cleation can occur below the critical load with the nucleation
load and temperature related as follows:

findent = f 0
indent +!1T ln !2

T
. (163)

Here f 0
indent is the zero-temperature force (= 74.991 nN), and

!1(= −0.049105 nN/K) and !2(= 3509.5 K) are fitting pa-
rameters. The fit based on eqn. (163) is shown as the red
dashed curve in Fig. 17. It is clear that the Tomlinson model
describes the data well. Note that the underlying assump-
tion of the unidirectional transition in the Tomlinson model
means that all the dislocation sites in our nanoindentation
system (at least the most probable sites) behave largely in
the same way as the indenter moves down. The verification
of this conjecture remains for future work.

5 Conclusions
We have presented a new method for finite temperature

multiscale mechanics referred to as “hot-QC”. This is a cou-
pled continuum and atomistic approach which is designed
to reproduce equilibrium phase averages of the correspond-
ing fully-atomistic system for functions that depend only on
the atomistic region. The method is suitable for studying
processes under equilibrium or near equilibrium (quasistatic)
conditions which are localized to regions that can be treated
atomistically. Examples include phenomena at atomically-
sharp cracks or under nanoindenters. It is demonstrated that
the method is accurate to second-order in temperature.

The key step in developing hot-QC is the derivation of
an effective Hamiltonian that adequately approximates the
contributions of the unrepresented atoms in the continuum

region. This is solved, in essence, by computing the missing
entropy associated with those atoms using a local harmonic
approximation at the nominal set temperature. The effect of
non-uniform deformation on the local harmonic model is in-
cluded using a finite element discretization, the Cauchy-Born
rule, and a piecewise constant deformation within each finite
element. The dynamics of the atomistic region can then be
evolved using MD with forces computed from the effective
Hamiltonian.

Two variants of hot-QC were described which differ in
the way that the continuum region is treated. In “hot-QC-
static” the free energy of the continuum is minimized at each
MD time step of the atomistic region. In “hot-QC-dynamic”
the nodes in the continuum region are evolved dynamically
together with the atoms in the atomistic region. The hot-QC-
dynamic approach is computationally more efficient, how-
ever in order to maintain the same level of accuracy it is nec-
essary to correct for an artifact we refer to as mesh entropy.
This is an artificial contribution to the total entropy of the
system due to the motion of the nodes storing the discretized
field of mean atom positions. A simple correction is intro-
duced to restore the second-order accuracy of the approach.

Constant temperature is maintained in the hot-QC for-
mulation by an external thermostat which is tied to the sys-
tem. In hot-QC-static only the atomistic region is ther-
mostated while in hot-QC-dynamic both the atoms and
nodes are controlled. Three different thermostating strategies
were explored: Langevin, Nosé-Poincaré and Nosé-Hoover
chains. Generally it was found that the Langevin thermostat
provided the best mix of ease of use and effective tempera-
ture control. This was particularly true for hot-QC-dynamic
where simultaneously thermalizing an atomistic and coarse-
grained continuum region was a challenge for the Nosé-
Poincaré thermostat which was not able to achieve temper-
ature uniformity. The Nosé-Hoover chain thermostat per-
formed better than Nosé-Poincaré but required more param-
eters to set than Langevin. On the other hand, we found that
the results of our indentation simulations were more sensi-
tive to the choice of parameters for the Langevin thermostat
than they were to the Nosé-Poincaré parameters. As such, we
used the Nosé-Poincaré thermostat for the indentation simu-
lations.

As a first test, the hot-QC methodology was used to
compute the thermal expansion of a Ni fcc crystal. The
lattice parameter calculations demonstrate that the hot-QC-
static method does not exhibit mesh dependence and has er-
rors as small as 0.34% at 1000 K compared with an MD sim-
ulation result. In contrast, the thermal expansion in a hot-
QC-dynamic simulations does depend on element size and
orientation, with greater error introduced as the mesh size
becomes smaller and approaches the atomic scale. The error
is significantly reduced by the inclusion of the mesh entropy
correction, but some discrepancies remain.

Finally, the hot-QC method was applied to a nanoin-
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Fig. 17. Dislocation nucleation load as a function of temperature.
The bars indicate the standard error in the measurement obtained
from 10 simulations at the same temperature. The dashed line is
an analytical fit based on a modified Tomlinson model. See text for
details.

cleation can occur below the critical load with the nucleation
load and temperature related as follows:

findent = f 0
indent +!1T ln !2

T
. (163)

Here f 0
indent is the zero-temperature force (= 74.991 nN), and

!1(= −0.049105 nN/K) and !2(= 3509.5 K) are fitting pa-
rameters. The fit based on eqn. (163) is shown as the red
dashed curve in Fig. 17. It is clear that the Tomlinson model
describes the data well. Note that the underlying assump-
tion of the unidirectional transition in the Tomlinson model
means that all the dislocation sites in our nanoindentation
system (at least the most probable sites) behave largely in
the same way as the indenter moves down. The verification
of this conjecture remains for future work.

5 Conclusions
We have presented a new method for finite temperature

multiscale mechanics referred to as “hot-QC”. This is a cou-
pled continuum and atomistic approach which is designed
to reproduce equilibrium phase averages of the correspond-
ing fully-atomistic system for functions that depend only on
the atomistic region. The method is suitable for studying
processes under equilibrium or near equilibrium (quasistatic)
conditions which are localized to regions that can be treated
atomistically. Examples include phenomena at atomically-
sharp cracks or under nanoindenters. It is demonstrated that
the method is accurate to second-order in temperature.

The key step in developing hot-QC is the derivation of
an effective Hamiltonian that adequately approximates the
contributions of the unrepresented atoms in the continuum

region. This is solved, in essence, by computing the missing
entropy associated with those atoms using a local harmonic
approximation at the nominal set temperature. The effect of
non-uniform deformation on the local harmonic model is in-
cluded using a finite element discretization, the Cauchy-Born
rule, and a piecewise constant deformation within each finite
element. The dynamics of the atomistic region can then be
evolved using MD with forces computed from the effective
Hamiltonian.

Two variants of hot-QC were described which differ in
the way that the continuum region is treated. In “hot-QC-
static” the free energy of the continuum is minimized at each
MD time step of the atomistic region. In “hot-QC-dynamic”
the nodes in the continuum region are evolved dynamically
together with the atoms in the atomistic region. The hot-QC-
dynamic approach is computationally more efficient, how-
ever in order to maintain the same level of accuracy it is nec-
essary to correct for an artifact we refer to as mesh entropy.
This is an artificial contribution to the total entropy of the
system due to the motion of the nodes storing the discretized
field of mean atom positions. A simple correction is intro-
duced to restore the second-order accuracy of the approach.

Constant temperature is maintained in the hot-QC for-
mulation by an external thermostat which is tied to the sys-
tem. In hot-QC-static only the atomistic region is ther-
mostated while in hot-QC-dynamic both the atoms and
nodes are controlled. Three different thermostating strategies
were explored: Langevin, Nosé-Poincaré and Nosé-Hoover
chains. Generally it was found that the Langevin thermostat
provided the best mix of ease of use and effective tempera-
ture control. This was particularly true for hot-QC-dynamic
where simultaneously thermalizing an atomistic and coarse-
grained continuum region was a challenge for the Nosé-
Poincaré thermostat which was not able to achieve temper-
ature uniformity. The Nosé-Hoover chain thermostat per-
formed better than Nosé-Poincaré but required more param-
eters to set than Langevin. On the other hand, we found that
the results of our indentation simulations were more sensi-
tive to the choice of parameters for the Langevin thermostat
than they were to the Nosé-Poincaré parameters. As such, we
used the Nosé-Poincaré thermostat for the indentation simu-
lations.

As a first test, the hot-QC methodology was used to
compute the thermal expansion of a Ni fcc crystal. The
lattice parameter calculations demonstrate that the hot-QC-
static method does not exhibit mesh dependence and has er-
rors as small as 0.34% at 1000 K compared with an MD sim-
ulation result. In contrast, the thermal expansion in a hot-
QC-dynamic simulations does depend on element size and
orientation, with greater error introduced as the mesh size
becomes smaller and approaches the atomic scale. The error
is significantly reduced by the inclusion of the mesh entropy
correction, but some discrepancies remain.

Finally, the hot-QC method was applied to a nanoin-
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Excellent fit to a modified Tomlinson model 
proposed for thermally-activated friction of an 
AFM on NaCl (Gnecco et al, PRL, 2000)
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1. Introduce blending functions
2. Compute atomic forces
3. Find force on each atom using blending:

4. Find nodal forces using complementary blending 
function:

5. Impose positions of handshake atoms from interpolated 
displacements (strong compatibility)
6. Linear elasticity in the continuum

Example 2:  The AtC Method

26

633 Force-based formulations
!

12.5.4 The atomistic-to-continuum (AtC) method

The Atomistic-to-Continuum (AtC) method was presented and analyzed in a series of pa-
pers [FNS+07, PBL08, BPB+08, BBL+07]. This method is, in essence, a force-based
version of the BD method discussed earlier. Recall that the BD method used Eqn. (12.11),
with the energy of the handshake region coming from the blending of a continuum and
atomistic energy via Eqn. (12.15). The AtC method achieves its coupling by blending at
the level of forces, as follows.
The derivation starts by assuming that the atomistic and continuum regions are com-

pletely uncoupled, even though they physically overlap in the handshake region. The forces
on the atoms and nodes are

fα =
∑

β !=α

fαβ , f
I = −

nelem∑

e=1

∫

Be

P (F̃ (u))
∂SI

∂X
dV. (12.66)

Here fα is the force on atom α, fαβ is the force on atom α due to the presence of atom β,
f
I is the force residual on node I , P is the first Piola-Kirchhoff stress tensor obtained from
the FE constitutive law, and SI is the shape function of node I . The numerical approximant
to the deformation gradient F̃ is obtained from the finite element displacement field. We
have not included externally applied forces, to simplify the discussion somewhat.
The forces between atoms are gradually weakened across the handshake region from the

atomistic to the continuum side, using a weight function, η, that linearly decreases from 1
to 0. The weight for atom α is

ηα = η(Rα). (12.67)

Then, the force between two atoms α and β is weakened by a factor

ηα,β =
ηα + ηβ

2
, (12.68)

so that the atomic forces become

fα =
∑

β !=α

ηα,βfαβ . (12.69)

The symmetric definition of ηα,β ensures that Newton’s third law is satisfied, i.e., the weak-
ened force exerted on atom α due to the presence of atom β is equal to the weakened force
due to α exerted on β.
A complementary weight function26, Θ = 1 − η, is used to gradually weaken the finite

element nodal forces across the handshake region from the continuum to the atomistic side:

f
I = −

nelem∑

e=1

∫

Be

Θ(X)P (F̃ (u))
∂SI

∂X
dV, (12.70)

which can be evaluated using numerical quadrature:

f
I =

nelem∑

e=1

nq∑

q=1

Θ(Xe
q)wqV

e
0

(
−P

∂SI

∂X

)
. (12.71)

26Note that Θ is the same as the weight function introduced in the BD method earlier.
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f
I is the force residual on node I , P is the first Piola-Kirchhoff stress tensor obtained from
the FE constitutive law, and SI is the shape function of node I . The numerical approximant
to the deformation gradient F̃ is obtained from the finite element displacement field. We
have not included externally applied forces, to simplify the discussion somewhat.
The forces between atoms are gradually weakened across the handshake region from the

atomistic to the continuum side, using a weight function, η, that linearly decreases from 1
to 0. The weight for atom α is

ηα = η(Rα). (12.67)

Then, the force between two atoms α and β is weakened by a factor

ηα,β =
ηα + ηβ

2
, (12.68)

so that the atomic forces become

fα =
∑

β !=α

ηα,βfαβ . (12.69)

The symmetric definition of ηα,β ensures that Newton’s third law is satisfied, i.e., the weak-
ened force exerted on atom α due to the presence of atom β is equal to the weakened force
due to α exerted on β.
A complementary weight function26, Θ = 1 − η, is used to gradually weaken the finite

element nodal forces across the handshake region from the continuum to the atomistic side:

f
I = −

nelem∑

e=1
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Θ(X)P (F̃ (u))
∂SI

∂X
dV, (12.70)

which can be evaluated using numerical quadrature:

f
I =

nelem∑
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nq∑

q=1

Θ(Xe
q)wqV

e
0

(
−P

∂SI

∂X

)
. (12.71)

26Note that Θ is the same as the weight function introduced in the BD method earlier.
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AtC summary:

• force-based
• overlap (handshake)
• strong compatibility
• Linear Elasticity
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Fig. 8. Mode III  shear  crack and  its p las t ic  zone  observed  in copper .  A D F Z  is p resen t  b e t w e e n  the  crack t ip  and  
t he  plast ic  zone.  ( F r o m  ref. 8.) 
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Fig. 9. Crack t ip  con f igu ra t ion  of  a m o d e  I I I  e l a s t i c -  
plast ic  crack observed  in an e l ec t ron  microscope .  A 
D F Z  is p resen t  b e t w e e n  the  crack t ip  e and  the  plast ic  
zone  ( f rom e to a). ~p is the  plast ic  po r t i on  of  the  
COD c o n t r i b u t e d  by  the  d is locat ions .  ( F r o m  ref.  14.) 

2.5. Nickel 
Since nickel is considered to be a metal of 

relatively high stacking fault energy, it is of 
interest to study the arrangement of disloca- 
tions in the plastic zone of propagating cracks 
and to compare the results with those found 
in metals of low stacking fault energy. It is 
found that  there are two distinct distributions 
of  dislocations in the plastic zone associated 

with cracks in nickel [11]. The plastic zone 
shown in Fig. 10 appears as a thin ribbon and 
consists of a number of partial dislocations 
with stacking fault fringes. From contrast 
analysis and stereoscopic observations the 
crack was found to be close to mode III type 
and the plane of the plastic zone was identi- 
fied as (111). It can be seen again that  the 
area immediately ahead of the crack tip is dis- 
location free. This crack tip geometry is very 
similar to those observed in metals of low 
stacking fault energy, namely stainless steel 
and copper. The second type of plastic zone 
observed was not  in the form of a thin ribbon. 
As shown in Fig. 11, the dislocations in the 
plastic zone are not  split into partial disloca- 
tions. Since the dislocations are not  split, they 
cross slipped readily from the original slip 
plane and formed a broad plastic zone. 

It is surprising that  the dislocations ob- 
served in the plastic zone in nickel are some- 
times split into partials because nickel is be- 
lieved to be a metal of  high stacking fault 
energy. This observation, however, is in agree- 
ment  with the internal friction results ob- 
tained for nickel which indicate that  disloca- 
tions are not  split during stage I of deforma- 
tion but rather are split into partials at the 
onset of stage III [28, 29]. In order to under- 
stand the possible causes of the dislocation 
splitting, the effect of purity on the disloca- 
tion configuration was studied. It was found 
that  the specimen purity was not  an important  

Fig. 10. E lec t ron  m i c r o g r a p h  showing  a shear  crack and  its plast ic  zone  in nickel .  Dis loca t ions  in the  plast ic  zone  
are split  i n to  two  par t ia ls  c o n n e c t e d  b y  a s tack ing  faul t .  ( F r o m  ref. 11.) 

Ohr, Mater. Sci. Eng., 1985

Ohr is in copper
de la fuente is gold.

Dislocations move long distances due to high local stresses and 
low lattice resistance
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FIG. 1. !98 3 98 nm2" STM image of two nanoindentations
in the Au(001) surface. Rows of hillocks stemming from the
nanoindentation points and following a #110$ direction are
visible. Bumps of pileup material surround nanoindentation
points (the contrast in these bumps is saturated to enhance the
visibility of the hillocks). Capital letters on one of the hillocks
are used to compare their orientations with the ones in Fig. 2.

can ascertain that these loops are of interstitial character
based on the fact that for Au (Fig. 2a) we observe a miss-
ing reconstruction fringe on top of the hillock. As the
interatomic spacing of the substrate is larger than the one
of the uppermost reconstructed layer, the position of the
missing fringe in the moiré-like pattern [11]corresponds to
the position of the extra row of interstitial atoms below.
Furthermore, for the Ag(001) atomic resolution image of
Fig. 2c, it is clear that each partial dislocation produces a
mismatch of one-half interatomic unit between the rows
on both sides of each stacking fault, the two mismatches
adding up to one extra row of atoms in the inner side of
the hillock.

To gain insight into the atomic processes involved in
the creation of these hillocks, atomistic simulations [12]
were carried out. A repulsive potential [6] was used to
model a spherical indenter of radius 4 nm penetrating the
surface of a Au(001) crystal modeled with the embedded
atom method potential [13]. The reconstructed layer is
thought to behave similar to a floating layer [14]. Thus,
it is not expected to affect dislocation generation and be-
havior during nanoindentation and was not included in the
simulations. A top view of the surface after the simulated
nanoindentation is shown in Fig. 3. In agreement with ex-
periment, it is observed that two hillocks have been gener-
ated around the nanoindentation trace. To make a more
quantitative comparison between simulations and dislo-
cation models, a quantity closely related to the Burgers
vector can be defined for every atom [15]. This quan-
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FIG. 2. (a) !25 3 25 nm2" STM image in Au(001) of a
hillock, such as seen near nanoindentation points. (b) Scheme
of the dislocation configuration proposed for dissociated loops.
Burgers vectors in the Thompson tetrahedron notation and line
directions are shown for each segment. (c) !11.6 3 11.6 nm2"
A hillock in a Ag(001) surface previously ion-bombarded and
annealed. Note the atomic resolution and the positions of the
emerging partial dislocations.

tity is called the slip vector, si , being defined for atom
i as

si ! 2
1

Ns

NnnX

jfii
!rij 2 r0

ij" , (1)

where rij and r0
ij are the vectors linking atom i and all

its Nnn nearest neighbors j in their current and reference
(prior to the indentation) positions, respectively. Ns stands
for the number of slipped neighbors. The spatial distribu-
tion of the slip vector moduli jsi j around the nanoindenta-
tion trace, with a suitable color scale, is shown in Fig. 4.
Green atoms with jsi j % a0&

p
6 are atoms on a stacking

fault (a0 is the Au lattice parameter). Blue atoms corre-
spond to values of the slip-vector modulus between the
stacking fault value and zero, while yellow ones have a
slip vector ranging between a complete lattice parameter
and the stacking fault value. Blue and yellow atoms are,
consequently, around the core of a Shockley partial dislo-
cation. The configuration shown in Fig. 4, with a height
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FIG. 3. Top view of the nanoindentation simulation. The dark
region in the middle of the picture corresponds to the inden-
tation point. Two hillocks are emitted along !110" directions.
Note the striking similarity of these simulated defects with the
experimental image of Fig. 2c.

displacement for the topmost atoms of 0.6 Å, strikingly re-
produces the previously proposed subsurface structure of
a hillock.

A dynamical picture of the process is obtained by
recording successive frames of the simulated atomic
events. To obtain the sequence, the indenter is first
lowered in increments of 0.01 nm down to a depth of
0.58 nm in a quasistatic way at zero temperature. At this
point, dislocation loops are observed below the indenter,
in agreement with previous results [6]. Then, a constant
energy molecular dynamics simulation follows the evo-
lution of the system for 36 ps. A different dislocation
configuration (again reproducing the previously proposed
subsurface structure of a hillock) is created close to the tip
and, then, glides away in a !110" direction. We stress that,
although the experimentally observed hillocks are usually
much larger than the simulated ones (and the indentation
itself is also much deeper), we observe also hillocks of
the same size in both experiment and simulation.

Hillocks are seen to glide as a whole unit. This behav-
ior can be understood on the grounds that Shockley par-
tial dislocations bounding a stacking fault are expected to
glide easily on the #111$ gliding planes. In our simulation,
they indeed glide away dragging with them the stair-rod
dislocation (motion of structures formed by stair-rod dis-
locations and Shockley partial dislocations in thin films
has been recently reported [16]). We argue that the rows
of hillocks appearing in the STM image of Fig. 1 are the
result of successive emission of loops that glide away from
the nanoindentation trace. Once started into motion due to
the high stress close to the indentation, the hillocks would
glide away from the indentation point until they collide

FIG. 4 (color). 3D simulation side views from different orien-
tations of the dissociated dislocation loop (corresponding to the
subsurface configuration of Fig. 3, colored according to the slip
vector. Atoms which signify a stacking-fault plane are colored
green. Blue and yellow atoms define the core of the leading and
the trailing partial dislocations, respectively. Red designs atoms
which have slipped a full !110" vector. Black arrows indicate
the indentation point and its axis. The bottom picture can be ob-
tained rotating the top one about 90± counterclockwise around
the nanoindentation axis.

or interact with other defects in the crystal. The simula-
tion cell is too small to observe in detail this effect, al-
though the hillocks move with a constant velocity within
the unit cell once they are far enough from the indentation
point. Hillocklike structures (although interpreted in a dif-
ferent way) have been observed to drift in highly stressed
regions [17]. The creation of hillocks following ion irra-
diation can also be explained in terms of the above model:
After long ion irradiation and further annealing, the sur-
face is known to exhibit a multistoried pit structure [18],
whereas the presence of a large supersaturation of adatoms
and, probably, subsurface interstitials, is suspected. These
extra atoms can cluster on crystallographic planes and, af-
ter relaxation, give rise to perfect loops that start the above
mechanism.

In the course of the many simulations performed, a va-
riety of hillock structures have been found. They differ
in the exact arrangement of the loop below the surface:
More complex configurations than the simplest one ob-
served in Fig. 4 (an edge V-shaped loop dissociated along
#111$ planes) are possible. But the defining characteristics
are the same for all of them: The Burgers vector of the
undissociated loop is a lattice vector, all the sections of the
loop appear dissociated along #111$ planes, and the loop
glides as a whole unit in a !110" direction. It is also worth
remarking that, in the simulations, the hillocks remain in
place once the tip is retracted from the surface, in agree-
ment with the experiment.
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The bottom surface of the cell rests on a rigid half-space,
whereas all other surfaces are traction-free. The energy of
the crystal is modeled using the embedded-atom method
potential of Johnson et al. [24,25]. Following Kelchner
and co-workers [13,20], we model the indenter as an ad-
ditional external potential of the form AH!R" r#!R" r#3,
where R is the indenter radius, r denotes the distance
between an atom and the center of the indenter, A $
5:3 nN= !A2 is the force constant, and H!r# is the step
function. Two values of indenter radius are considered:
70 and 700 !A. The former radius represents a typical
value used in previous atomistic simulations [13,20],
whereas the latter radius corresponds to the nanoindenta-
tion experiments of Kiely and Houston [3].

The initial triangulation of the cube is specifically
tailored to the nanoindentation geometry (Fig. 1). Thus,
in a small region of the crystal located directly under-
neath the indenter, full atomistic resolution is supplied
from the outset. Away from this region, the triangulation
becomes gradually coarser. The resulting number of rep-
resentative atoms in the initial mesh is 25 329, which
represents a 7 order-of-magnitude reduction in the size
of the calculation relative to direct atomistic simulation.
The indenter is driven into the slab in small displacement
increments, and at each step the new stable equilibrium
configuration is computed using the Polak-Ribiere vari-
ant of the conjugate gradient method [26].

In order to reliably identify the defects in the crystal,
we resort to the technique of Kelchner et al. [13], which
relies on the value of the centrosymmetry parameter in
order to detect and identify lattice defects. The centro-
symmetry parameter is defined as

P $
X

6

i$1

jRi % R"ij2; (3)

where Ri and R"i are the vectors corresponding to the six
pairs of opposite nearest neighbors in the fcc lattice. By
way of illustration, the centrosymmetry parameter takes
the value of zero for an atom in the perfect Au lattice,
24:9 !A for a surface atom, 8:3 !A for an atom in a stacking
fault, and 2:1 !A for an atom at the core of a partial
dislocation. In all subsequent dislocation structure plots,
the atoms are colored according to the magnitude of the
centrosymmetry parameter with blue corresponding to
surfaces, red to partial dislocations, and yellow to stack-
ing faults.

The computed dislocation structures for a 70 !A-radius
indenter at a depth of indentation of 9:2 !A are shown in
Fig. 2. As expected, slip occurs predominantly on f111g
planes, the dominant slip planes in fcc crystals. In par-
ticular, slip is observed on four sets of distinct f111g slip
planes that terminate at the !001# surface. After a certain
amount of slip, dislocation loops gliding in these planes
react to form locks and arrest. Further indentation then
induces activity on neighboring slip planes which carry

all the plastic deformation until they, too, become inac-
tive, the entire process repeating itself several times in the
course of the calculation.

The deformed computational mesh at a depth of pene-
tration of 9:2 !A is shown in Fig. 3. The total number of
representative atoms in this configuration is 203 816,
which represents almost an order of magnitude increase
with respect to the initial triangulation. All new repre-
sentative atoms are inserted in the vicinity of the inden-
ter, with the result that the induced dislocation structures
are contained in a fully atomistic region. The permanent
imprint left on the surface of the crystal after retraction is
also clearly visible in the deformed mesh.

The computed force vs displacement curve for inden-
tation and retraction is plotted in Fig. 4. As may be seen
from this figure, the curve ceases to be monotonic at
6:75 !A, at which point an abrupt force drop is observed.
This drop is followed by another interval of monotonic
increase of the force, in excellent agreement with experi-
mental results [3]. Upon retraction, the force decreases,
with the indenter detaching from the crystal surface
at a penetration depth of 3 !A. This behavior owes to the
presence of stable self-equilibrated dislocation struc-
tures left in the crystal upon retraction of the indentor,

FIG. 2 (color). Dislocation structures for the 70 !A indenter at
an indentation depth of 9:2 !A.

X Y

Z

FIG. 3 (color online). Cross section of the computational
mesh for the 70 !A indenter at an indentation depth of 9:2 !A.

P H Y S I C A L R E V I E W L E T T E R S week ending
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Fig. 11. Lattice parameters as function of temperature: (a) 10×10
mesh, (b) 20×20 mesh, (c) 40×40 mesh, and (d) 80×80 mesh.
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Fig. 12. Thermal fluctuation in the x-displacement of the bottom left
node of the hot-QC-dynamic mesh.

mulation are significantly larger for the “naı̈ve” implementa-
tion. This suggests that these errors are at least partly associ-
ated with the loss of second-order accuracy in temperature as
explained in Section 2.5.1. Fig. 12 explicitly shows how the
situation improves with the mesh entropy correction. Not
only does the correction term move the mean of the x dis-
placement of the bottom left node close to the static solution
(as borne out in Fig. 11), but it also reduces the magnitude
of thermal fluctuation. The latter result is consistent with the
idea that the mesh entropy correction reduces the spurious
vibrations of the continuum nodes.20

Although the mesh entropy correction improves accu-
racy it does not completely resolve the mesh dependence as
seen in Fig. 11, especially with the fully-refined mesh. The
development of more effective schemes for addressing this
problem is an important topic for future research.

4.3 A nanoindentation test
As a final example, we apply the hot-QC method to sim-

ulate a nanoindentation experiment at finite temperature in
which a thin film of single crystal Ni deposited on a rigid
substrate is indented by a cylindrical indenter. The objec-
tive is to determine how the temperature affects the initial
nucleation of dislocations from under the indenter (prelim-
inary results were reported in [42]). Nanoindentation is an
ideal problem for hot-QC because the long-range stress field
of the indenter can drive nucleated dislocations far into the
film. This makes the problem computationally expensive for
conventional fully-atomistic methods such as MD. We will
see below that the number of degrees of freedom needed to
accurately simulate this problem is significantly reduced by
applying the hot-QC methodology.

20Recall that both the static and dynamic variants of hot-QC involve the
assumption that the nodes in the continuum region occupy stationary posi-
tions corresponding to a minimum of the effective free energy of the system.
The vibrations of the nodes mean that they incorrectly carry kinetic energy
(see eqn. (66)) and leads to the spurious entropy contribution which the en-
tropy correction is attempting to remove. The fact that the vibrations of the
nodes are reduced by the mesh entropy correction supports this interpreta-
tion.
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mulation are significantly larger for the “naı̈ve” implementa-
tion. This suggests that these errors are at least partly associ-
ated with the loss of second-order accuracy in temperature as
explained in Section 2.5.1. Fig. 12 explicitly shows how the
situation improves with the mesh entropy correction. Not
only does the correction term move the mean of the x dis-
placement of the bottom left node close to the static solution
(as borne out in Fig. 11), but it also reduces the magnitude
of thermal fluctuation. The latter result is consistent with the
idea that the mesh entropy correction reduces the spurious
vibrations of the continuum nodes.20

Although the mesh entropy correction improves accu-
racy it does not completely resolve the mesh dependence as
seen in Fig. 11, especially with the fully-refined mesh. The
development of more effective schemes for addressing this
problem is an important topic for future research.

4.3 A nanoindentation test
As a final example, we apply the hot-QC method to sim-

ulate a nanoindentation experiment at finite temperature in
which a thin film of single crystal Ni deposited on a rigid
substrate is indented by a cylindrical indenter. The objec-
tive is to determine how the temperature affects the initial
nucleation of dislocations from under the indenter (prelim-
inary results were reported in [42]). Nanoindentation is an
ideal problem for hot-QC because the long-range stress field
of the indenter can drive nucleated dislocations far into the
film. This makes the problem computationally expensive for
conventional fully-atomistic methods such as MD. We will
see below that the number of degrees of freedom needed to
accurately simulate this problem is significantly reduced by
applying the hot-QC methodology.

20Recall that both the static and dynamic variants of hot-QC involve the
assumption that the nodes in the continuum region occupy stationary posi-
tions corresponding to a minimum of the effective free energy of the system.
The vibrations of the nodes mean that they incorrectly carry kinetic energy
(see eqn. (66)) and leads to the spurious entropy contribution which the en-
tropy correction is attempting to remove. The fact that the vibrations of the
nodes are reduced by the mesh entropy correction supports this interpreta-
tion.
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explained in Section 2.5.1. Fig. 12 explicitly shows how the
situation improves with the mesh entropy correction. Not
only does the correction term move the mean of the x dis-
placement of the bottom left node close to the static solution
(as borne out in Fig. 11), but it also reduces the magnitude
of thermal fluctuation. The latter result is consistent with the
idea that the mesh entropy correction reduces the spurious
vibrations of the continuum nodes.20

Although the mesh entropy correction improves accu-
racy it does not completely resolve the mesh dependence as
seen in Fig. 11, especially with the fully-refined mesh. The
development of more effective schemes for addressing this
problem is an important topic for future research.
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explained in Section 2.5.1. Fig. 12 explicitly shows how the
situation improves with the mesh entropy correction. Not
only does the correction term move the mean of the x dis-
placement of the bottom left node close to the static solution
(as borne out in Fig. 11), but it also reduces the magnitude
of thermal fluctuation. The latter result is consistent with the
idea that the mesh entropy correction reduces the spurious
vibrations of the continuum nodes.20

Although the mesh entropy correction improves accu-
racy it does not completely resolve the mesh dependence as
seen in Fig. 11, especially with the fully-refined mesh. The
development of more effective schemes for addressing this
problem is an important topic for future research.
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The vibrations of the nodes mean that they incorrectly carry kinetic energy
(see eqn. (66)) and leads to the spurious entropy contribution which the en-
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