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Multiscale modeling and simulation:  

•Understanding systems from simulation data
(Date Mining) 

•coarse-graining

•enhance sampling and accelerating dynamics



Understand MD Simulation data  

•High dimension

•Large number of configurations

•Complicate structure



Project to low dimension:  states and transitions 

End-End distance, 

Radius of gyration,  

Root mean squared distance (RMSD) 

Principle Components (PC) 

……

(Biased) states and kinetics

Reaction coordinates are 
usually hard to know a priori 
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Cluster Analysis   

Not very stable, have some adjusted parameters

Hundred kinds of clustering algorithms

1. Get the distance matrix
2. clustering 
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F. Noe, S. Fischer, Cur. Opin. Struc. Biol. (2008); 
D. Gfeller, P. DeLosRios, A. Caflisch, PNAS (2007); 
D. Prada-Gracia et al, PLoS Comp. Biol. (2009); 
F. Noe et al. PNAS (2009)

Configuration Cluster Analysis
(Markov Chain Model)

•Divide MD configurations into lots of microstates

•Estimate transition rate matrix among these microstates

•Clustering these microstates to a few macro-states 
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Bottom-up



Trajectory Mapping

Clustering MD trajectories to form metastable states  
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•Decrease size of data set in clustering

•Depress intrastate fluctuations very much but 
keep the interstate fluctuations

•Take into account the similarity on  dynamics  

Top-down



Trajectory Mapping
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{Ai(q)} is a set of functions of configuration
(basis functions)  

•Mapping each MD trajectory to a high-dimensional vector to 
represent the configuration distribution in the trajectory   
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Trajectory Mapping

Shape and size of 
metastable region 
may be complicate

MD Trajectory reaches local 
equilibrium distribution 
inside metastable region

the trajectory-mapped vectors are almost same  
(the center limit theorem)  
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A tau-length trajectory 

locates inside a tau-scale 
meta-stable state and 
reach local equilibrium

or transition among a few 
states and reach local 
equilibrium in each of 
these meta-stable states 

All trajectories inside two 
states are mapped in a line

Trajectory-mapped vectors have much simpler geometry



 74 atoms,  charged terminals;

 Implicit solvent simulation: 
Generalized Born;

 172 basis functions from torsion 
angles  

Each 1ns-length MD 
trajectory is mapped to a 
172d vector 

Four nanosecond-order  
metastable states are found  

Alanine-dodeca-peptide

Trajectory Mapping  

Clustering

Principle component analyse
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Orthonormalized basis functions 
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A trajectory is mapped to a n-dimensional vector

Inner product between trajectories is related to their overlapping 



f(t) is state-indicator curve 
of trajectory 

Transition kinetics among states 
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Calculating inner product of single 
configuration with meta-stable states 



L. Gong and XZ, JPCB (2010)

Transition kinetics
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t
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Five 4-us trajectories overlap 
partially but not completely 
(microsecond-order simulation 
is not sufficient to reach 
equilibrium)

Alanine-dodeca-peptide
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Folding network of Ala12

Analysis

 Three levels: 200ns, 20ns, 2ns;

 28 states found, accounting for
more than 90% simulation data.

Get meta-stable states 
from long to short time 
scales



中间态（非平衡）

早期部分折叠态
（非平衡）

折叠态
（平衡）

Metastable state network  of Ala12



Transition trajectory





Reaction Detail Derived from Folding Network
(Main Chain Dihedral Angle Difference)





Trajectory mapping and clustering identify metastable
states in high-dimensional configuration space 
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Summary

Transition kinetics among metastable states may be 
achieved or be focused on (e.g. transition path 
sampling, string method, flux method, etc.) 

Metastable states are dependent on dynamics and time 
scale  
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Difference between samples  



P ( x )

P
ref
( x )

 1  ˆ A 

( x )

P ( x )

ˆ A 

( x )



  ...

ˆ A 

( x )

Pref ( x )
 0

ˆ A 

( x ) ˆ A 


( x )

Pref ( x )
 



x: Collective Variable
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Coarse-graining 



Coarse-graining

1. Map CG dof : x=X(r)

2. Select effective potential formula 
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3. Optimize parameters of U(x) by  minimizing  
difference between U(x) and F(x)
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Coarse-graining: Match probability density
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Correlation among of thermodynamics 
variables should be removed 



P
ref
( x ) 

P
cg
( x )  P

aa
( x )

2



a

 A




cg
  A




aa



A

( x )A


( x )

Pref ( x )
 g



Covariance matrix



Relationship of different CG Matching
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•In principle, m must be infinite

•In practice, m << M, the size of sample 
(the improvement using more basis functions is not 
helpful due to larger statistical error)

•The upper limit of relative deviation of any <A(x)> in 
the coarse-graining is d(U,F)  
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one-site CG water model
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Pressures in CG and AA are not the ensemble means of 
the same configuration function

Matching probability density 
in extended space:  
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The mean of any CG-configuration function A(x) can be 
reconstructed in probability density matching CG

The matching method is actually a reverse MC. Its 
transferability was not be guaranteed.      

Question: how to construct a more transferable coarse-
graining model?    

Matching probability density in an individual canonical 
ensemble is not sufficient for reconstruction of pressure 
(and some another physical variables, such as E, chemical 
potential)   

Summary



31

•Trajectory space sampling
•Weighted ensemble sampling
•Coarse-graining methods
•Free energy calculations
•Molecular simulation of self-assembly
•… …

Welcome  

http://kitpc.itp.ac.cn/program.jsp?id=PA20130610

http://kitpc.itp.ac.cn/program.jsp?id=PA20130610


Thank you for your Attention!

xzhou@gucas.ac.cn
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