EW Radiation Challenges and Opportunities

Andrea Wulzer

For references, and much more, see <u>here</u>

Towards a Muon Collider

Review submitted to EPJC

Multifaceted ElectroWeak Interactions

Multifaceted ElectroWeak Interactions

Multifaceted ElectroWeak Interactions

EW Radiation

We will observe the nearly-massless EW gauge theory

Scale separation entails enhancement of Radiation effect.

Like QCD ($E \gg \Lambda_{\text{QCD}}$) and QED ($E \gg m_{\gamma} = 0$), but:

EW Radiation

We will observe the nearly-massless EW gauge theory

Large muon $E \gg m_W$ Small IR cutoff scale

Scale separation entails enhancement of Radiation effect.

Like QCD ($E \gg \Lambda_{\text{OCD}}$) and QED ($E \gg m_{\gamma} = 0$), but:

EW symmetry is broken: EW color is observable ($W \neq Z$). \longrightarrow EW Radiation effects KLN Theorem non-applicable. (inclusive observables not safe)

Practical need of computing Enhanced by $\log^{(2)} E^2 / m_{\rm EW}^2$

EW Radiation

We will observe the nearly-massless EW gauge theory

Large muon $E \gg m_W$ Small IR cutoff scale

Scale separation entails enhancement of Radiation effect.

Like QCD ($E \gg \Lambda_{\text{QCD}}$) and QED ($E \gg m_{\gamma} = 0$), but:

EW symmetry is broken: EW color is observable ($W \neq Z$). KLN Theorem non-applicable. (inclusive observables not safe)

EW theory is Weakly-Coupled The IR cutoff is physical

Practical need of computing EW Radiation effects Enhanced by $\log^{(2)} E^2 / m_{EW}^2$

First-Principle predictions **must** be possible For arbitrary multiplicity final state

v/medium energy

Figure 1: Diagrammatic contributions to the $q\bar{q} \rightarrow q'\bar{q}'WW$ process. $\bigotimes \frac{1}{S} + \frac{1}{S} +$

the Splitting isopple solves from weak to up ling to mpen sated by suggests that simply does not make sense, even in an ideal experimental situation E^{2} is a model independent way the on-shell $\langle WWWW \rangle$ correlator from experimental data: the interesting VBF yield growth with E_{1} due to collider luminosity growth: physics of WW scattering would always be mixed up in an intricate way with SM effect We thus believe that studying the conditions for the applicability of EWA fs important⁸, a

Opportunity for high-precision (high-statistics) measurement of, e.g., H couplings FigOpportUnity for Higgs coupled BSN6 the $q\bar{q} \rightarrow q'\bar{q}'WW$ process. On the left, the scatter topOpportOnity (alightst uncerproted) for BSN1 Vion SN1SN1, at $\sqrt{\hat{s}} > 1$ TeV

on, to extract in a model on, to extract in a model ontal data: the interestic cate way with SM effects of EWA is important¹, a

Most simple $2 \rightarrow 2$ XS probe **directly** the 10 TeV scale They probe **indirectly** 100 TeV if measured at %

Most simple $2 \rightarrow 2$ XS probe **directly** E = 10 TeV scale They probe **indirectly** E = 100 TeV if measured at %

Which Cross-Section?

Or an include or to exclude as much radiation we like in XS we define/compute/measure Extremes are "Exclusive" or "Semi-Inclusive"

Most simple $2 \rightarrow 2$ XS probe **directly** E = 10 TeV scale They probe **indirectly** E = 100 TeV if measured at %

Which Cross-Section?

- Or an include or to exclude as much radiation we like in XS we define/compute/measure Extremes are "Exclusive" or "Semi-Inclusive"
- Amount of radiation modulates interference between different hard "processes":
 complementary BSM probes from different XS

Most simple $2 \rightarrow 2$ XS probe **directly** E = 10 TeV scale They probe **indirectly** E = 100 TeV if measured at %

Which Cross-Section?

- Or an include or to exclude as much radiation we like in XS we define/compute/measure Extremes are "Exclusive" or "Semi-Inclusive"
- Amount of radiation modulates interference between different hard "processes": complementary BSM probes from different XS
 [95%CL 30 TeV]

Most simple $2 \rightarrow 2$ XS probe **directly** E = 10 TeV scale They probe **indirectly** E = 100 TeV if measured at %

Which Cross-Section?

- Or an include or to exclude as much radiation we like in XS we define/compute/measure Extremes are "Exclusive" or "Semi-Inclusive"
- Amount of radiation modulates interference between different hard "processes":
 complementary BSM probes from different XS
- Interesting corollaries:
 - Charged current ~ as large as neutral. Useful for BSM resonance as well
 - ➡ BSM and SM physics cannot just stay on their own!

Process	N (Ex)	N (S-I)]			
$e^+ e^-$	6794	9088		$b\overline{b}$	4573	6273
$e\nu_e$		2305		$tar{t}$	9771	11891
$\mu^+\mu^-$	206402	254388		b t		5713
μu_{μ}		93010		Z_0h	680	858
$\tau^+ \tau^-$	6794	9088		$W_{0}^{+}W_{0}^{-}$	1200	1456
$ au u_{ au}$		2305		$W_{\rm T}^+ W_{\rm T}^-$	2775	5027
jj (Nt)	19205	25725		$W^{\pm}h$		506
jj (Ch)		5653		$W_0^{\pm}Z_0$		399
$car{c}$	9656	12775		$W_{\rm T}^{\pm} Z_{\rm T}$		2345
cj		5653				

One-loop double logs range from large to huge

- Estimate: $g^2/16\pi^2 \log^2(E_{\rm cm}^2/m_{\rm w}^2) \times {\rm Casimir}$
- Resummation of DL needed
- Precise resummation needed: goal is %-level meas./predictions
- Single-logs resummation might be needed as well

Resummation Strategies:

- Asymptotic Dynamics:
 - → Fully inclusive, at double log

Infrared Evolution Equation:

➡ Exclusive and semi-inclusive (new), at double log

• Soft-Collinear Effective Theory:

→ From what I read, it might give everything(?), at all logs(?)

Resummation Strategies:

• Asymptotic Dynamics:

➡ Fully inclusive, at double log

Infrared Evolution Equation:

- ➡ Exclusive and semi-inclusive (new), at double log
- Soft-Collinear Effective Theory:
 - → From what I read, it might give everything(?), at all logs(?)

Showering:

• Surely needed by experimentalists ...

Resummation Strategies:

• Asymptotic Dynamics:

➡ Fully inclusive, at double log

Infrared Evolution Equation:

- ➡ Exclusive and semi-inclusive (new),
- Soft-Collinear Effective Theory:
 - ➡ From what I read, it might give every

Showering:

• Surely needed by experimentalists ...

and by everybody else, to understand things like **EW jets** (e.g., ν -jet)

Resummation Strategies:

- Asymptotic Dynamics:
 - ➡ Fully inclusive, at double log

Infrared Evolution Equation:

- ➡ Exclusive and semi-inclusive (new), at double log
- Soft-Collinear Effective Theory:
 - → From what I read, it might give everything(?), at all logs(?)

Showering:

- Surely needed by experimentalists ...
- and by everybody else, to understand things like **EW jets** (e.g., ν -jet)
- Could it just replace resummation?
- Do current approaches contains (dominant) double log? How?
- See next talk

Challenges III: Markus' plot

EW Restoration?

• We can definitely observe and illustrate consequences of linearly-realised EW group. Corrections will be tiny power-like: $m_W/E \sim 10^{-2}$. But, is this the point?

EW Restoration?

• We can definitely observe and illustrate consequences of linearly-realised EW group. Corrections will be tiny power-like: $m_W/E \sim 10^{-2}$. But, is this the point?

EW Radiation

• Just count as much real radiation emitted? Check that $\nu\mu$ almost as large as $\mu\mu$? • Sudakov is:

$\exp\left[-g^2/16\pi^2\log^2(E_{\rm cm}^2/m_{\rm w}^2) \times \text{Casimir}\right] \approx \exp[-1]$

The 10 TeV MuC is right at the threshold for radiation being order one.

Conclusions

EW radiation challenges are in fact additional opportunities

• New theoretical understanding of QFT questions too long set aside

- ➡ In fully calculable context with physical mass gap
- → Questions ultimately related with nature and "composition" of particles
- New phenomena provide guaranteed outcome
 - ➡ BSM-only narrative has always been partial and inadequate
 - ➡ Today, is proven **inadequate** as well
- Onnects MuC with "calculation" community
 - → EW radiation is "our QCD"
 - → We must encourage that

Conclusions

EW radiation challenges are in fact additional opportunities

• New theoretical understanding of QFT questions too long set aside

- ➡ In fully calculable context with physical mass gap
- → Questions ultimately related with nature and "composition" of particles
- New phenomena provide guaranteed outcome
 - ➡ BSM-only narrative has always been partial and inadequate
 - ➡ Today, is proven **inadequate** as well
- Onnects MuC with "calculation" community
 - → EW radiation is "our QCD"
 - → We must encourage that

Thank You !