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Multifaceted ElectroWeak Interactions
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EW Radiation

We will observe the nearly-massless EW gauge theory

Large muon E > mW Small IR

collider energy cutoff scale

Scale separation entails enhancement of Radiation effect.

Like QCD (E > Agcp) and QED (£ > m, = 0), but:
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EW Radiation

We will observe the nearly-massless EW gauge theory

Large muon L > mW Small IR

collider energy cutoff scale

Scale separation entails enhancement of Radiation effect.

Like QCD (E > Agcp) and QED (£ > m, = 0), but:

EW symmetry is broken: Practical need of computing
EW color is observable (W # Z). i EW Radiation effects
KLN Theorem non-applicable. Enhanced by log(z) E?/ Méw

(inclusive observables not safe)

EW theory 18 Weakly-Coupled First-Principle predictions
The IR cutoff 1s physical =% must be possible

For arbitrary multiplicity final state



Opportunities I: low/medium energy
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Opportunities I: low/medium energy
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Opportunities I: low/medium energy
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Opportunities I: low/medium energy
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Opportunities II: high energy

Most simple 2 — 2 XS probe directly the 10 TeV scale
They probe indirectly 100 TeV if measured at %
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Opportunities II: high energy

Most simple 2 — 2 XS probe directly £ = 10 TeV scale
They probe indirectly £ = 100 TeV i1f measured at %

Which Cross-Section?

@ Can 1nclude or to exclude as much radiation we like in XS we define/compute/measure
Extremes are “Exclusive” or “Semi-Inclusive”

/~ Exclusive cross-sections 4 Semi-Inclusive XS )
Unexplored 4 —+
+ - options in
between
Two hard bodies with definite EW color. Two hard bodies of definite EW color.

Veto on EW bosons. _ J QEW bosons emission allowed. J
Soft photons and gluons incl. of course
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Opportunities II: high energy

Most simple 2 — 2 XS probe directly £ = 10 TeV scale
They probe indirectly £ = 100 TeV i1f measured at %

Which Cross-Section?

@ Can 1nclude or to exclude as much radiation we like in XS we define/compute/measure
Extremes are “Exclusive” or “Semi-Inclusive”

@ Amount of radiation modulates interference between different hard “processes”:
complementary BSM probes from different XS
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Opportunities II: high energy

Most simple 2 — 2 XS probe directly £ = 10 TeV scale
They probe indirectly £ = 100 TeV i1f measured at %

Which Cross-Section?

@ Can 1nclude or to exclude as much radiation we like in XS we define/compute/measure
Extremes are “Exclusive” or “Semi-Inclusive”

@ Amount of radiation modulates interference between different hard “processes”:
complementary BSM probes from different XS

@ Interesting corollaries:
= Charged current ~ as large as neutral. Useful for BSM resonance as well
= BSM and SM physics cannot just stay on their own!

Process | N (Ex) | N (S-I)
ete” 6794 9088 bb 4573 6273
eve — 2305 tt 9771 | 11891
pt T | 206402 | 254388 bt — 5713
1, — 93010 Zoh 680 858
T | 6794 9088 WiW, | 1200 1456
TV, — 2305 WiWs | 2775 5027
jj (Nt) | 19205 | 25725 W*h — 506
jj (Ch) | — 5653 Wit Z, — 399
ce 9656 | 12775 Wi Zr - 2345
cj — 5653 16




Challenges I: the accuracy of EVA

Effective Vector (or, W) Approximation 1s EW PDF at tree-level

Validity requires nearly on-shell V 1n hard process:
mi—ki; < §
No way can work if; e.g., \/E = my = 125 GeV

17



Challenges I: the accuracy of EVA

Effective Vector (or, W) Approximation 1s EW PDF at tree-level

Validity requires nearly on-shell V 1n hard process:
mi—ki; < §
No way can work if; e.g., \/§ = my = 125 GeV

Is this an obstruction to employ PDF
(and Altarelli-Parisi resummation)
in Higgs production?

do/dM [fb/50 GeV]

Need some type of matching with
full ME at fixed order?
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Challenges II: systematic accurate resummation
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Eem[TeV]
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| — DL _ N
- — DL +sL L 70
- —DL(1+8Ly) = —06;
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..... S-I(DL) |

S-1(DLy)

One-loop double logs range from large to huge
@ Estimate: g%/167°log*(EZ /mZ) x Casimir
® Resummation of DL needed

@ Precise resummation needed: goal 1s %-level meas./predictions
@ Single-logs resummation might be needed as well

30
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Challenges II: systematic accurate resummation

1 +

Resummation Strategies:

@ Asymptotic Dynamics:
= Fully inclusive, at double log
@ Infrared Evolution Equation:
= Exclusive and semi-inclusive (new), at double log
@ Soft-Collinear Effective Theory:
= From what I read, 1t might give everything(?), at all logs(?)
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@ Asymptotic Dynamics:
= Fully inclusive, at double log
@ Infrared Evolution Equation:
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@ Soft-Collinear Effective Theory:
= From what I read, 1t might give everything(?), at all logs(?)

Showering:

@ Surely needed by experimentalists ...
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Challenges II: systematic accurate resummation

e R

Resummation Strategies:

@ Asymptotic Dynamics:

= Fully inclusive, at double log
@ Infrared Evolution Equation:

= Exclusive and semi-inclusive (new),
@ Soft-Collinear Effective Theory:

= From what I read, 1t might give ever{sss

Showering: ATLAS .

EXPERIMENT E:i:-i oooooooo :57 cest

@ Surely needed by experimentalists ...
and by everybody else, to understand things like EW jets (e.g., v-jet)
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Challenges II: systematic accurate resummation

1 +

Resummation Strategies:

@ Asymptotic Dynamics:
= Fully inclusive, at double log
@ Infrared Evolution Equation:
= Exclusive and semi-inclusive (new), at double log
@ Soft-Collinear Effective Theory:
= From what I read, 1t might give everything(?), at all logs(?)

Showering:

@ Surely needed by experimentalists ...
and by everybody else, to understand things like EW jets (e.g., v-jet)

@ Could 1t just replace resummation?
@ Do current approaches contains (dominant) double log? How?
® See next talk
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Challenges I1I: Markus’ plot
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100

: Challenges III: Markus’ plot
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For sure, we will see this:
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EW Restoration?

@ We can definitely observe and 1llustrate consequences of linearly-realised
EW group. Corrections will be tiny power-like: my, /E ~ 1072,
But, 1s this the point?
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Challenges I1I: Markus’ plot

For sure, we will see this:
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EW Restoration?

@ We can definitely observe and 1llustrate consequences of linearly-realised
EW group. Corrections will be tiny power-like: my, /E ~ 1072,
But, 1s this the point?

EW Radiation

@ Just count as much real radiation emitted? Check that vy almost as large as uu?
® Sudakov 1s:
exp [— g?/167* log*(E> /m2) X Casimir] ~ exp[—1]

The 10 TeV MuC 1s right at the threshold for radiation being order one. o



Conclusions

EW radiation challenges are 1in fact additional opportunities

@ New theoretical understanding of QFT questions too long set aside
= [n fully calculable context with physical mass gap
= Questions ultimately related with nature and “composition” of particles

@ New phenomena provide guaranteed outcome
= BSM-only narrative has always been partial and inadequate
= Today, 1s proven inadequate as well

@ Connects MuC with “calculation” community
= EW radiation 1s “our QCD”
= We must encourage that
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Conclusions

EW radiation challenges are 1in fact additional opportunities

@ New theoretical understanding of QFT questions too long set aside
= [n fully calculable context with physical mass gap
= Questions ultimately related with nature and “composition” of particles

@ New phenomena provide guaranteed outcome
= BSM-only narrative has always been partial and inadequate
= Today, 1s proven inadequate as well

@ Connects MuC with “calculation” community
= EW radiation 1s “our QCD”
= We must encourage that

Thank You !
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