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FIG. 4. Simplified-model results. The Al and EuS layers are integrated out and their respective e↵ective induced pairing
amplitude and exchange field on the InAs wire are included within the streaked regions shown in the sketches of the overlapping
device (a) and the non-overlapping one (b). We take �(Al) = 0.23 meV and h(Al)

ex = 0.06 meV over a wide region of 45 nm near

the Al interface. h(Al)
ex is only present in (a) where the Al and the EuS are in contact. We include h(EuS)

ex over a thin region
of 1 nm close to the EuS layer. (c) Topological phase diagram of the overlapping device versus back-gate potential, Vbg, and

exchange field at the EuS-InAs interface, h(EuS)
ex , for V (L,R)

sg = 0. In the topological regions, we show with colors the expectation
value of the induced exchange field (left panel), the topological minigap (middle panel), and the wavefunction profile (right
panel), all of them for the transverse subband closer to the Fermi energy. The parameters for which the wavefunctions are

plotted are pointed with arrows. (d) Same as (c) but for the non-overlapping device and fixing V (R)
sg = 2 V and V (L)

sg = 0. The

values of V (L,R)
sg in (c) and (d) are taken to maximize the topological regions in each case. Other parameters can be found in

Table I of the SM.

louin zone borders [20]. We find Q = �1, which actually
corresponds to the non-trivial case.

Strikingly, the same analysis for the non-overlapping
geometry (Fig. 3) reveals that the magnetic proximity
e↵ect in this case is not strong enough to close and reopen
the superconducting gap in the wire. hence, there is no
topological phase in this case, at least for this choice of
gate voltages.

Simplified model and phase diagram.— We consider
now the Hamiltonian of Eq. (1) restricted to the InAs
wire, where we include an e↵ective pairing amplitude

�(Al) = 0.23 meV and an exchange field h
(EuS)
ex = 100

meV on the cross-section regions closer to the Al and
the EuS shells, respectively, as schematically depicted in
Figs. 4(a) and (b). We also include a smaller exchange

coupling h
(Al)
ex = 0.06 meV in the Al-proximitized region

of the overlapping device. The magnitude of these pa-
rameters and the extension of the corresponding regions
are extracted by adjusting to the behavior of the full
model results, as shown in the SM [20].

In Fig. 4(c) we present the topological phase diagram
of the overlapping device as a function of the back-gate
voltage and the exchange field of the EuS. Notice that

h
(EuS)
ex should be 100 meV according to our full model.

However, departures from the idealized model of Eq.

(1) might reduce the value of the induced magnetic ex-
change. Thus we allow this parameter to vary between
0 and 100 meV to evaluate the robustness of our results
with respect to this value. With colors, in the left panel
of Fig. 4(c) we show the induced exchange coupling,

h
(ind)
ex = hhex(~r)�zi [41], and in the middle panel the

induced minigap, �min = |E(kz = kF)|, for the lowest-
energy state in both cases. In these plots, white means
trivial (i.e., Q = 1), while the colored regions correspond
to the topological phase. There are several topological
regions against Vbg corresponding to di↵erent transverse

subbands. In those regions, the condition that h
(ind)
ex is

larger than the square root of the induced gap squared
plus the chemical potential squared is fulfilled, as ex-
pected [4, 5]. To the right of Fig. 4(c) we show the
probability density of the transverse subband closer to
the Fermi level at kz = 0 across the wire section for the
parameters indicated with arrows. In the three cases ex-
hibited, the wavefunction concentrates both around the
left-upper facet covered by Al, and the top facet where
the Al and EuS layers overlap. This is consistent with
the requirement of maximizing simultaneously the super-
conducting and magnetic proximity e↵ects.

The phase diagram for the non-overlapping device is
shown in Fig. 4(d). The extension of the topological
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FIG. 1. (a) Experimental results for differential tunneling con-
ductance dI/dV vs bias voltage V and magnetic flux ! (or equiva-
lently magnetic field B) into a solid-core full-shell superconductor-
semiconductor nanowire in the destructive Little-Parks regime, taken
from Ref. [46]. Zero-bias anomalies, revealing the presence of zero
modes in the LDOS, are observed in the first Little-Parks lobes
with n= ±1 fluxoid around the shell. (b),(c) Numerical simula-
tion of the local density of states (LDOS) (in arbitrary units) in
semi-infinite solid-core full-shell nanowires, both in the destructive
(b) and weak/moderate (c) Little-Parks regime, showing similar
phenomenology. Zero modes are absent around integer flux in sim-
pler hollow-core full-shell nanowires (d),(e). Simulation parameters:
" = 0.2 meV, α = 20 meV nm; (b),(c) λN = 38 nm, λS = 35 nm,
R = 80 nm, and R2/(dξ ) = 1.72 (b) and 4.35 (c); (d),(e) λN = λS =
61 nm, R = 43, d ≈ 0, and R/ξ = 0.47 (d) and 0.67 (e).

full-shell nanowire can also exhibit a topological phase. Its
parameter window, however, was found to be very small and
restricted to low densities, at least in the case of a pristine
nanowire with perfect circular symmetry, and would require
fine control of its density to be realized. Away from this
small window, it was shown that the system is gapless, due
to the presence of ungapped subbands with higher angular
momentum components. An open question thus remains as
to the nature of the experimental ZBAs, that, surprisingly,
required no fine tuning of gates or field.

In this work we address this question by studying the
spectral properties of more general full-shell nanowires with
a solid core, generalizing previous results to the realistic case
in which charge density is spread across nanowire section.
We find that unprotected but strong Majorana-like ZBAs
arise from the sector with lowest angular momentum mj =
0, embedded in a gapless mj ̸= 0 background. Their emer-
gence results from a nontrivial topology of the mj = 0 sector
when the occupation of the corresponding normal-state radial
subbands is odd. We compute the system’s phase diagram,
which clearly reveals this even-odd effect, with ZBAs present
throughout a substantial fraction of parameter space. We
further demonstrate that ZBAs persist across odd lobes. Our
spectroscopy simulations shows a marked similarity to the
experimental observations without the need of fine tuning.
The resulting Majorana states are however unprotected against
general subband-mixing perturbations (from, e.g., interface
disorder or a noncircular nanowire section or shell), since
they coexist with a gapless background, as also noted in
Ref. [54]. We explore here their fate in the presence of angular
mode mixing. Depending on the mixing details, we find a
variety of possible behaviors, including the development of
a trivial or a nontrivial gap, a splitting or a broadening of the
zero mode into a delocalized quasibound Majorana state. We
conclude by commenting on possible alternative scenarios for
the observations.

Model. We first develop the simplest description of a solid
semiconducting nanowire of radius R, oriented along the z
direction, and fully coated with a conventional superconductor
of thickness d . The Fermi energies of the two materials are de-
noted by µN and µS respectively, with µS ≫ µN . The associ-
ated Fermi wavelengths are denoted by λN,S = h̄/

√
2m∗µN,S,

with m∗ the effective mass (assumed uniform for simplicity).
When the nanowire core is contacted to the superconducting
shell, µ(r) will in general acquire self-consistent screening
corrections. We assume instead the simple approximation
µ(r < R) = µN , µ(r > R) = µS. While the chemical poten-
tial is piecewise contact, the resulting charge density is not,
acquiring a nontrivial radial profile that affects the local
density of states (LDOS) measured by a tunnel probe. Sim-
ilarly, we assume |"(|r| < R)| = 0, |"(r > R)| = |"|. The
dependence of |"| with flux ! is incorporated from the LP
Ginzburg-Landau theory results, see Appendix A, whose high
accuracy has been recently established [55]. The relevant spin-
orbit Rashba coupling inside the nanowire is radial, α(r) ∥ r̂,
and is much smaller in the superconductor than in the semi-
conductor. We approximate α(r < R) = α r

R r̂, α(r > R) = 0
[56– 58]. The section of the nanowire is assumed circular for
the moment, so that subbands have a well defined total angular
momentum mj . The three-dimensional Nambu Hamiltonian
for this model can be written in cylindrical coordinates as

H =
[

(p + eA)2

2m∗ − µ(r) + α(r) · σ × [p + eA(r)]
]
τz

+ σyτy|"(r)|einφ, (1)

where σi are Pauli matrices for spin, and τi for the electron-
hole sectors. The magnetic flux is incorporated through the
n-fluxoid in the pairing term and through the axial gauge field
A(r) ≈ r!

2πR2 φ̂, where φ̂ is the axial unit vector in cylindrical
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Building a 1D Topological Superconductor

5

Oreg-Lutchyn proposal

Y. Oreg et al. and R. Lutchyn et al. Phys. Rev. Lett. 105 (2010)

Majorana Nanowire
1D SM wire with strong Spin Orbit Coupling 

+ 
Zeeman field perpendicular to SO term → 

spinless helical liquid 
+ 

proximity to s-wave superconductor 
Topological p-wave Superconductor

�1 �2

B > Bc
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1D (idealised) model for the hybrid wire

Y. Oreg et al. and Lutchyn et al. Phys. Rev. Lett. 105 (2010)
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Fig. 6. – Electronic bands of a one-dimensional nanowire with Rashba spin-orbit coupling.
a) The Rashba coupling removes the spin degeneracy of the parabolic band with α = 0 (dashed
parabola). As a result, each spin projection along the Rasbha axis resides in a different parabolic
band. The minima of each parabola are shifted along k by an amount ±kSO, while the energy
is shifted by an amount −ESO. This spectrum resembles a one-dimensional Dirac cone at
low k but deviates from it at large k (band upturn for k ! kSO) owing to the kinetic energy
contribution. As a result, for any µ above the band bottom the system has two Fermi surfaces.
b) A Zeeman term perpendicular to the Rashba axis opens a gap at k = 0. When µ resides
within this gap there is only a Fermi surface with spin projection locked to momentum (this
regime is often defined as the helical regime). The degree of spin canting depends on k: spins at
low momenta are almost aligned with the Zeeman field while canting towards the Rashba axis
occurs for larger k.

Since the Rashba and Zeeman fields are orthogonal, they compete in fixing the spin
quantization axis: in the absence of Zeeman field, EZ = 0, the Rashba term removes the
spin degeneracy of the one-dimensional parabolic band and gives rise to two parabolas
shifted relative to each other along the momentum axis (each by an amount kSO =
mα/!2) and displaced down in energy by an amount ESO = mα2/2!2 (fig. 6a). These
parabolas correspond to spin-up and spin-down projections along the spin quantization
axis fixed by the Rashba coupling (here σy). On the other hand, a finite Zeeman EZ ̸= 0
perpendicular to the Rashba axis mixes both spins and hence removes the spin degeneracy
at k = 0 by opening up a gap of size 2EZ . As a result, the degree of spin canting
depends on k (spins at low momenta are almost aligned with the Zeeman field while
canting towards the Rashba axis occurs for larger k), see fig. 6b. This can be explicitly
seen by writing the relation between the helical spinors, namely the ones that appear
in the eigenstates that diagonalize the Hamiltonian density in eq. (89), and the spinors
along the Zeeman field:

(90) φ±(k) =
1√
2

(
±γk

1

)
.

with γk = (iαk+EZ)√
E2

Z+α2k2
. It turns out that this spin canting is crucial for obtaining p-wave

superconductivity: at EZ = 0 opposite momenta have opposite spins and thus can form
singlets along σy, but at EZ ̸= 0 these singlet components get reduced in favour of finite
triplet components along σx. As we did before for topological insulators, this physics is
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Fig. 8. – Top: Bogoliubov-de Gennes spectrum of a Rashba nanowire for increasing Zeeman
fields and phase diagram. a) EZ = 0: gaps at k = 0 and k = kF have equal size, ∆1 = ∆2 = ∆.
The spectrum is degenerate at k = 0 since interband pairing is zero. b) EZ = Ec

Z ≡
p

∆2 + µ2:
the low momentum gap ∆1 closes signalling a topological transition. The gap ∆2 remains
finite. c) For EZ > Ec

Z , a Zeeman-dominated ∆1 reopens again and the system is a topological
superconductor. The bands shown here correspond to µ = 0. For the more general case µ ̸= 0,
∆1 is at a small but finite k in the trivial regime EZ < Ec

Z , see footnote. d) Phase diagram, the
proximitized nanowire is a one-dimensional topological superconductor when EZ >

p
µ2 + ∆2.

Bottom: gaps ∆1 and ∆2 as a function of Zeeman field for weak spin-orbit coupling (solid line,
α = 0.2 eVÅ) and strong spin-orbit coupling (dashed line, α = 0.8 eVÅ). ∆1 closes at the
critical field and reopens again. For weak spin-orbit coupling, ∆2 slowly decreases for increasing
Zeeman while it remains roughly constant ∆2 ∼ ∆ for the strong spin-orbit coupling case. The
gaps depicted here correspond to a non-zero µ = 2∆ = 0.5 meV, which explains why ∆1 weakly
depends on spin-orbit in the trivial regime. Adapted from ref. [71]

lator case. Since time reversal invariance is already broken in the topological phase, the
system binds Majorana zero modes at boundaries with the topologically trivial vacuum
gap, namely at the wire ends, when EZ > Ec

Z , see fig. 9. The topological protection of
the Majorana modes is guaranteed inasmuch as the gap to other finite energy quasiparti-
cle excitations is well above the temperature. Right after the topological transition, this
gap is given by ∆1 but for large enough Zeeman field it is replaced by ∆2 (in general
its value is given by Min(∆1,∆2)). ∆2, in contrast to ∆1, never closes and, for strong
spin-orbit coupling, remains roughly constant ∆2 ∼ ∆. While its general form is too
cumbersome to be written here, its µ = 0 value reads

(95) ∆2 =
2∆ESO√

ESO(2ESO +
√

E2
Z + 4E2

SO)
.

Helical region
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Nanowires beyond the minimal model

7

3D wires with multiple transverse subbands 

Band bending and inhomogeneous charge density 
distribution across the wire section  

Effects of electrostatic environment  

Partial proximity effect 

Renormalized g-factors and SO couplings, 
metallization by the parent SC 

Orbital effects of B 

Smooth density/pairing inhomogeneities along the wire  

Disorder 

QD physics...
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Figure 1. Examples of systems allowing implementation of a Kitaev chain.
(a) A chain of QDs in a 2DEG. The QDs are connected to each other, and
to superconductors (labeled SC), by means of quantum point contacts (QPCs).
The first and the last dots are also coupled to external leads. The normal state
conductance of QPCs between adjacent dots or between the end dots and the
leads is Gk, and of the QPCs linking a dot to a superconductor is G?. The
confinement energy inside each QD can be controlled by varying the potential
Vgate. (b) Realization of the same setup using a nanowire, with the difference that
each dot is coupled to two superconductors in order to control the strength of the
superconducting proximity effect without the use of QPCs.

separated by gate-controlled tunnel barriers, and all the tuning can be done by gates, except
for the coupling to a superconductor. This coupling, in turn, can be controlled by coupling two
superconductors to each dot and applying a phase difference to these superconductors. The
layout of a nanowire implementation of our proposal is shown in figure 1(b).

This geometry has the advantage of eliminating many of the problems mentioned above.
By using single-level QDs, and also quantum point contacts (QPCs) in the tunneling regime,
we solve issues related to multiple transmitting modes. Additional problems, such as accidental
closings of the induced superconducting gap due to disorder, are solved because our setup allows
us to tune the system to a point where the topological phase is most robust, as we will show.

We present a step-by-step tuning procedure which follows the behavior of the system in
parallel to that expected for the Kitaev chain. As feedback required to control every step we
use the resonant Andreev conductance, which allows us to track the evolution of the system’s
energy levels. We expect that the step-by-step structure of the tuning algorithm should eliminate
the large number of non-Majorana explanations of the zero bias peaks.

New Journal of Physics 15 (2013) 045020 (http://www.njp.org/)
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throughout the gap region. Symmetric resonances likely originate from 
Andreev bound states (21, 22), whereas non-resonant current indicates 
that the proximity gap has not fully developed (23). 

Figure 2 summarizes our main result. Figure 2A shows a set of 
dI/dV versus V traces taken at increasing B-fields in 10 mT steps from 
zero (lowest trace) to 490 mT (top trace), offset for clarity. We again 
observe the gap edges at ±250 ȝeV. When we apply a B-field between 
~100 and ~400 mT along the nanowire axis we observe a peak at V = 0. 
The peak has an amplitude up to ~0.05·2e2/h and is clearly discernible 
from the background conductance. Above ~400 mT we observe a pair 
of peaks. The color panel in Fig. 2B provides an overview of states and 
gaps in the plane of energy and B-field from –0.5 to 1 T. The observed 
symmetry around B = 0 is typical for all our data sets, demonstrating 
reproducibility and the absence of hysteresis. We indicate the gap edges 
with horizontal dashed lines (highlighted only for B < 0). A pair of res-
onances crosses zero energy at ~0.65 T with a slope of order EZ (high-
lighted by dotted lines). We have followed these resonances up to high 
bias voltages in (20) and identified them as Andreev states bound within 
the gap of the bulk, NbTiN superconducting electrodes (~2 meV). By 
contrast, the zero-bias peak sticks to zero energy over a range of ǻB ~ 
300 mT centered around ~250 mT. Again at ~400 mT we observe two 
peaks located at symmetric, finite biases. 

In order to identify the origin of these zero-bias peaks (ZBP) we 
need to consider various options, including the Kondo effect, Andreev 
bound states, weak antilocalization and reflectionless tunneling, versus a 
conjecture of Majorana bound states. ZBPs due to the Kondo effect (24) 
or Andreev states bound to s-wave superconductors (25) can occur at 
finite B. However, when changing B these peaks then split and move to 
finite energy. A Kondo resonance moves with twice Ez (24), which is 
easy to dismiss as the origin for our zero-bias peak because of the large 
g-factor in InSb. (Note that even a Kondo effect from an impurity with g 
= 2 would be discernible.) Reflectionless tunneling is an enhancement of 
Andreev reflection by time-reversed paths in a diffusive normal region 
(26). As in the case of weak antilocalization, the resulting ZBP is maxi-
mal at B = 0 and disappears when B is increased, see also (20). We thus 
conclude that the above options for a ZBP do not provide natural expla-
nations for our observations. We are not aware of any mechanism that 

could explain our observations, besides the conjecture of a Majorana. 
To further investigate the zero-biasness of our peak, we measure 

gate voltage dependences. Figure 3A shows a color panel with voltage 
sweeps on gate 2. The main observation is the occurrence of two oppo-
site types of behavior. First, we observe peaks in the density of states 
that change with energy when changing gate voltage (e.g., highlighted 
with dotted lines), these are the same resonances as shown in Fig. 2B 
and analyzed in (20). The second observation is that the ZBP from Fig. 
2, which we take at 175 mT, remains stuck to zero bias while changing 
the gate voltage over a range of several volts. Clearly, our gates work 
since they change the Andreev bound states by ~0.2 meV per Volt on the 
gate. Panels (B) and (C) underscore this observation with voltage sweeps 
on a different gate, number 4. (B) shows that at zero magnetic field no 
ZBP is observed. At 200 mT the ZBP becomes again visible in (C). 
Comparing the effect of gates 2 and 4, we observe that neither moves the 
ZBP away from zero. 

Initially, Majorana fermions were predicted in single-subband, one-
dimensional wires (8, 9), but further work extended these predictions to 
multi-subband wires (27–30). In the nanowire section that is uncovered 
we can gate tune the number of occupied subbands from 0 to ~4 with 
subband separations of several meV. Gate tuning in the nanowire section 

Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual 
device layout with a semiconducting nanowire in proximity to an 
s-wave superconductor. An external B-field is aligned parallel to 
the wire. The Rashba spin-orbit interaction is indicated as an 
effective magnetic field, Bso, pointing perpendicular to the nan-
owire. The red stars indicate the expected locations of a 
Majorana pair. (Bottom) Energy, E, versus momentum, k, for a 
1D wire with Rashba spin-orbit interaction, which shifts the 
spin-down band (blue) to the left and spin-up band (red) to the 
right. Blue and red parabola are for B = 0. Black curves are for 
B � 0, illustrating the formation of a gap near k = 0 of size gȝBB. 
(ȝ is the Fermi energy with ȝ = 0 defined at crossing of parabo-
las at k = 0). The superconductor induces pairing between 
states of opposite momentum and opposite spin creating a gap 
of size ǻ. (B) Implemented version of theoretical proposals. 
Scanning electron microscope image of the device with normal 
(N) and superconducting (S) contacts. The S-contact only co-
vers the right part of the nanowire. The underlying gates, num-
bered 1 to 4, are covered with a dielectric. [Note that gate 1 
connects two gates and gate 4 connects four narrow gates; see 
(C).] (C) (Top) Schematic of our device. (Down) illustration of 
energy states. Green indicates the tunnel barrier separating the 
normal part of the nanowire on the left from the wire section 
with induced superconducting gap, ǻ. [In (B) the barrier gate is 
also marked green.] An external voltage, V, applied between N 
and S drops across the tunnel barrier. Red stars again indicate 
the idealized locations of the Majorana pair. Only the left 
Majorana is probed in this experiment. (D) Example of differen-
tial conductance, dI/dV, versus V at B = 0 and 65 mK, serving 
as a spectroscopic measurement on the density of states in the 
nanowire region below the superconductor. Data from device 1. 
The two large peaks, separated by 2ǻ, correspond to the quasi-
particle singularities above the induced gap. Two smaller 
subgap peaks, indicated by arrows, likely correspond to An-
dreev bound states located symmetrically around zero energy. 
Measurements are performed in dilution refrigerators using 
standard low-frequency lock-in technique (frequency 77 Hz, 
excitation 3 ȝV) in the four-terminal (devices 1 and 3) or two-
terminal (device 2) current-voltage geometry. 
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The broadening totG stems fromdecay and dephasing of the double dot.MBQ readout is nowpossible either by
observing a peak in the amplitude of the transmitted photon spectrum (I A Iout

2
0w = w( ) ∣ ∣ ) at frequency zw = W

determined byminimizing Re z0w w c- +∣( ) ( )∣ in equation (6),figure 2(e), or bymeasuring the z-dependent
phase shift of the transmitted signal ( Aargf wD = - w( ) ( )), figure 2(f).

As a variant of the quantum-dot-based readout proposed here, wemention the possibility of using the
regimewhere the tunneling through the reference arm (t0) ismuch stronger than the (co-)tunneling through the
MBQ (t1). In this limit, the two dots are effectively hybridized into a single dot tunnel coupled to twoMajorana
operators, say 2g and 3g . The energy shift of theQDdepends on z i 2 3g g=ˆ which therefore can be read out by a
measurement of the dot charge [25] or the quantum capacitance [31].

At this point, it is worth stressing that all the above readout schemes are topologically protected in the sense
that imperfections thatmay reduce the readout fidelity (which can be compensated for by longer integration
times) do not change the projection caused by themeasurement. This is because themeasured operator is
uniquely defined by the dots or leads being addressed. The robustness of the projection is a consequence of the
non-local and fractionalized nature of theMBQquantum spin.

So farwe discussed readout and preparation of ẑ-eigenstates. Using the three-dot devicewith an interference
link infigure 3(a), the ẑ-measurement is readily generalized to readout of all three Pauli operators (x y z, ,ˆ ˆ ˆ).
Here, a phase-coherent reference arm connecting far ends of the box is needed, e.g., between 1g and 2g . For this
purpose, afloating TSwire (top) acts as a single fermion level stretched out over the entire wire length [26, 27].
Thereby, readout andmanipulations along the far side of theMBQbecome possible. Figure 3(b) lists the
corresponding dot pairs to access all Pauli operators. This simple geometry allows for non-trivial test
experiments, e.g., tofirst prepare an eigenstate in one basis, and thenmeasure a different Pauli operator.

Similar protocols allow tomanipulate arbitraryMBQ states yñ∣ . For instance, consider an electron transfer
fromdot 2 3 infigure 3(a), implemented by ramping the detuning parameter ε.With interference links
turned off (t 00 = ), the tunneling amplitude is t z1 ˆ, seeequation (4). The protocol begins with an electron on dot
2, 0 2dyY ñ = ñ Ä ñ∣ ( ) ∣ ∣ . Assuming that a latermeasurement detects an electron on dot 3, the final state is

z3 3 T e 0 3 . 7f d d t
Hdt

d
i

t

0ò yY ñ = ñá Y ñ = ñ Ä ñ- ¢⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟∣ ∣ ∣ ∣ ( ) ( ˆ∣ ) ∣ ( )

In effect, the Pauli- ẑ operator has thus been applied, zy yñ ñ∣ ˆ∣ . Equation (7) holds because all odd-in-t1 terms
are proportional to ẑ and because thefinalmeasurement has confirmed the transfer 2 3. This protocol works
beyond the adiabatic regime [15, 16] and allows for fast high-fidelity operations.Moreover, after a failed transfer
attempt, t2 2 0f d dY¢ ñ = ñá Y ñ = Y ñ∣ ∣ ∣(∣ ( ) ) ∣ ( ) , one can simply retry. Likewise, other Pauli operators are accessible,

Figure 3. Single- and two-qubit devices. (a)MBQwith three quantumdots and an interference link for readout of all Pauli operators
and full one-qubit control. Dark squares indicate either a charge sensor or a resonator system, seefigure 2. (b)Possible combinations
of active dot pairs addressing particular Pauli operators, see equation (1). (c)Device with twoMBQs a and b connected by dots 4 and 5,
allowing for readout of their joint parity via theMBQproduct operator z za bˆ ˆ . The other dots serve to read andmanipulate qubits
individually.
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covered with superconductor is much less effective due to efficient 
screening. The number of occupied subbands in this part is unknown, but 
it is most likely multi-subband. As shown in figs. S9 and S11 of (20) we 
do have to tune gate 1 and the tunnel barrier to the right regime in order 
to observe the ZBP. 

We have measured in total several hundred panels sweeping various 
gates on different devices. Our main observations (20) are (i) ZBP exists 
over a substantial voltage range for every gate starting from the barrier 
gate until gate 4, (ii) we can occasionally split the ZBP in two peaks 
located symmetrically around zero, and (iii) we can never move the peak 
away from zero to finite bias. Data sets such as those in Figs. 2 and 3 
demonstrate that the ZBP remains stuck to zero energy over considerable 
changes in B and gate voltage Vg. 

Figure 3D shows the temperature dependence of the ZBP. We find 

that the peak disappears at around ~300 mK, providing a thermal energy 
scale of kBT ~ 30 ȝeV. The full-width at half-maximum at the lowest 
temperature is ~20 ȝeV, which we believe is a consequence of thermal 
broadening as 3.5·kBT(60 mK) = 18 ȝeV. 

Next we verify explicitly that all the required ingredients in the theo-
retical Majorana proposals (Fig. 1A) are indeed essential for observing 
the ZBP. We have already verified that a nonzero B-field is needed. 
Now, we test if spin-orbit interaction is crucial for the absence or pres-
ence of the ZBP. Theory requires that the external B has a component 
perpendicular to Bso. We have measured a second device in a different 
setup containing a 3D vector magnet such that we can sweep the B field 
in arbitrary directions. In Fig. 4 we show dI/dV versus V while varying 
the angle for a constant field magnitude. In Fig. 4A the plane of rotation 
is approximately equal to the plane of the substrate. We clearly observe 
that the ZBP comes and goes with angle. The ZBP is completely absent 
around ʌ/2, which thereby we deduce as the direction of Bso. In Fig. 4B 
the plane of rotation is perpendicular to Bso. Indeed we observe that the 
ZBP is now present for all angles, because B is now always perpendicu-
lar to Bso. These observations are in full agreement with expectations for 
the spin-orbit direction in our samples (17, 31). We have further verified 
that this angle dependence is not a result of the specific magnitude of B 
or a variation in g-factor (20). 

As a last check we have fabricated and measured a device of identi-
cal design but with the superconductor replaced by a normal Au contact 
(i.e., a N-NW-N geometry). In this sample we have not found any signa-
ture of a peak that sticks to zero bias while changing both B and Vg (20). 

Fig. 3. Gate voltage dependence. (A) 2D color plot of dI/dV 
versus V and voltage on gate 2 at 175 mT and 60 mK. An-
dreev bound states cross through zero bias, for example 
near -5 V (dotted lines). The ZBP is visible from –10 to ~5 V 
(although in this color setting it is not equally visible every-
where). Split peaks are observed in the range of 7.5 to 10 V 
(20). In (B) and (C) we compare voltage sweeps on gate 4 
for 0 and 200 mT with the zero bias peak absent and pre-
sent, respectively. Temperature is 50 mK. [Note that in (C) 
the peak extends all the way to –10 V (19).] (D) Temperature 
dependence. dI/dV versus V at 150 mT. Traces have an off-
set for clarity (except for the lowest trace). Traces are taken 
at different temperatures (from bottom to top: 60, 100, 125, 
150, 175, 200, 225, 250, and 300 mK). dI/dV outside ZBP at 
V = 100 ȝeV is 0.12 ± 0.01·2e2/h for all temperatures. A full-
width at half-maximum of 20 ȝeV is measured between ar-
rows. All data in this figure are from device 1. 

Fig. 2. Magnetic field dependent spectroscopy. (A) dI/dV 
versus V at 70 mK taken at different B-fields (from 0 to 490 
mT in 10 mT steps; traces are offset for clarity, except for the 
lowest trace at B = 0). Data from device 1. (B) Color scale 
plot of dI/dV versus V and B. The zero-bias peak is highlight-
ed by a dashed oval. Dashed lines indicate the gap edges. At 
~0.6 T a non-Majorana state is crossing zero bias with a 
slope equal to ~3 meV/T (indicated by sloped dotted lines). 
Traces in (A) are extracted from (B). 
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FIG. 1. Andreev bound states (ABSs) in semiconducting nanowires. ABSs are at the heart of several physical
mechanisms (central row), experimental techniques (lower row) and applications (upper row) in condensed matter physics.
Central row: Andreev reflection at an NS junction, see central panel, is the retro-reflection of an electron into a hole (or
viceversa) of opposite spin and wavevector, with the addition (or removal) of a Cooper pair to the SC condensate. In contrast,
normal (specular) reflection leaves the particle and spin quantum numbers unchanged. The probability of each (RA vs. 1�RA

below the gap) depends on normal-state transparency TN and energy of the incident electron E. The central-right panel shows
the Andreev reflection probability versus E at an NS junction of TN in the high density limit (chemical potential µ much
larger than superconducting gap �). Multiple coherent Andreev reflections in a short SNS Josephson junction produce an ABS
confined to the N region with energy E(') below the gap. The energy depends on TN and the phase di↵erence ' between the
two SCs, see central-left panel. Lower row: Several experimental techniques have been developed to probe the ABS spectrum,
amongst which we highlight Josephson spectroscopy using the AC Josephson e↵ect of a capacitively coupled tunnel junction,
microwave spectroscopy through the dispersive shift of a planar resonator, and tunneling spectroscopy using the di↵erential
conductance into the nanowire through an opaque barrier. In the bottom-left panel, a nanowire Josephson junction (denoted by
yellow arrow) is embedded in a SQUID loop, which sets a phase bias of ' = 2⇡�/�0, where � is the applied flux and �0 = h/2e
the superconducting flux quantum. Below is the schematics of the device, where Vs = hf/2e is the spectrometer bias voltage
and Vg is the applied gate voltage to the junction. Nearby we show the measured excitation spectrum of a similar device in the
single channel regime, where the phase-dependent Andreev level (upper line) and the Josephson plasma oscillations (lower line)
contribute to the signal. Experimental data are reproduced from Ref. [46]. The bottom-central panel showcases experiments
using the dispersive shift �f of an inductively coupled planar superconducting microwave resonator. The data and device
image are reproduced from Ref. [47]. The bottom-right panel shows the setup and an experimental dataset for voltage bias
spectroscopy, where the di↵erential conductance dI/dV is measured as a function of the voltage bias V . The tunnel barrier is
created by depleting a section of the nanowire by the local gate voltage Vtunnel. The data and device images are reproduced
from Ref. [45]. Upper row: Potential application domains of ABSs in quantum technologies include single spin readout [104],
Andreev quantum bits [105], topological quantum electronics [106] and hybrid quantum simulators [107].
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Electronic excitations above the ground state must overcome an energy gap in superconductors
with spatially-homogeneous s-wave pairing. In contrast, inhomogeneous superconductors such as
those with magnetic impurities or weak links, or heterojunctions containing normal metals or quan-
tum dots, can host subgap electronic excitations that are generically known as Andreev bound states
(ABSs). With the advent of topological superconductivity, a new kind of ABS with exotic quali-
ties, known as Majorana bound state (MBS), has been discovered. We review the main properties
of ABSs and MBSs, and the state-of-the-art techniques for their detection. We focus on hybrid
superconductor-semiconductor nanowires, possibly coupled to quantum dots, as one of the most
flexible and promising experimental platforms. We discuss how the combined e↵ect of spin-orbit
coupling and Zeeman field in these wires triggers the transition from ABSs into MBSs. We show
theoretical progress beyond minimal models in understanding experiments, including the possibility
of di↵erent types of robust zero modes that may emerge without a band-topological transition. We
examine the role of spatial non-locality, a special property of MBS wavefunctions that, together
with non-Abelian braiding, is the key to realizing topological quantum computation.

I. INTRODUCTION

Ever since Kamerlingh Onnes discovered the “zero re-
sistance state” of metals at very low temperatures in 1911
[1, 2], the superconducting state of matter [3, 4] has fas-
cinated physicists. In the last century, the understand-
ing of superconductivity has evolved extraordinarily and
has garnered eight Nobel prizes, turning it into one of
the most iconic topics in condensed matter physics [5].
As described by the seminal Bardeen-Cooper-Schrie↵er
(BCS) theory of superconductivity [6], the characteristic
feature of superconductors (SCs) is the macroscopic oc-
cupation of bound pairs of electrons, known as Cooper
pairs [7], in the same quantum-coherent ground state.
The condensation of Cooper pairs into such ground state
is associated with a superconducting complex order pa-
rameter � = �e

i' [8, 9], where ' is the conjugate of the
number of Cooper pairs. In a homogeneous s-wave BCS
SC, the spectrum of single-particle excitations above the
ground state develops an energy gap �. These gapped
excitations are propagating superpositions of electrons
and holes with di↵erent energy-dependent weights. How-
ever, if the order parameter –also called the pair potential
[3]– varies in space, �(r), lower energy (‘subgap’) exci-
tations may develop. Such is the case of states trapped
in magnetic flux vortices (so-called Caroli-Matricon-De
Gennes states [10]), at magnetic domains or impurities
(Yu-Shiba-Rusinov states [11–13]), at weak links between

SCs or at normal metal-superconductor (NS) contacts
[14], to name a few. Collectively, these subgap states are
dubbed Andreev bound states (ABSs), and are the focus
of numerous theoretical and experimental works, as well
as the basis of promising emerging quantum technologies,
see Fig. 1.

The core physical mechanism behind the formation of
ABSs in inhomogeneous systems with �(r) is a remark-
able scattering process, predicted by Andreev [15, 16],
in which an incoming particle-like excitation can convert
into an outgoing hole-like one and viceversa, see central
row of Fig. 1. Many of such Andreev scattering events
coherently concatenated lead to the formation of subgap
ABSs [17, 18] that are localized near the region where the
pair potential has strong spatial variations (for a recent
review see [19]).

In the last decade, a new twist in the possibilities af-
forded by the superconducting pairing of electrons has
been possible with the advent of topological materials
[20, 21]. Inspired by notions of topology [22], several
authors have predicted the existence of new states of
matter known collectively as topological superconduct-
ing phases, see Refs. [23–28] for reviews. These arise
in particular in so-called p-wave SCs, which possess a
rare triplet-like pair potential (an exotic form of super-
conductivity involving only a single spin band [29–33]).
Topological SC phases are characterized by the emer-
gence of a rather special type of subgap bound state oc-
curring at topological defects such as vortices, bound-
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One of the problems of partial-shell nanowires is...
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The need to apply large magnetic fields to drive the wire 
into the topological regime
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Nygård, Krogstrup, and Marcus  
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dissect P (η,!s ) into partial probability densities for increas-
ing degree of Fermi energy inhomogeneity "µ. We find that
for inhomogeneities "µ < 1 meV, the estimator preserves a
high r = 0.95 correlation with !s (red subpanel), but increas-
ing "µ (green, blue subpanels) suppresses r , though the effect
is not drastic, with r ≈ 0.9 still. This remains true regardless
of the maximum nanowire density considered.

V. SMOOTH NS NANOWIRES

We now consider the second type of inhomogeneous
nanowire, wherein the pairing, like φ(x), is also position
dependent, "(x). We again consider a simple profile that
interpolates between a left side and a right side. The left side is
always normal in this case, with "N = 0, so that the nanowire
contains a smooth NS interface centered at x = LN ,

φ(x) = φN + (φS − φN )θζ (x − LN ),

"(x) = "Sθζ (x − LN ). (16)

This model is relevant to many devices explored in recent
experiments. Nanowires are often made superconducting by
growing an epitaxial superconductor on their surface. Often,
the epitaxial coverage of the nanowire is incomplete, so it
is natural to assume a suppressed pairing in the exposed

portions. Like in the S′S nanowire, a thorough microscopic
validation of this model would require a detailed characteri-
zation of the device in question.

The fundamental interest of the Lutchyn-Oreg model with
a smooth NS interface is particularly high because of the fact
that, perhaps surprisingly, it can also host near-zero modes
at finite Zeeman field B, much like the smooth S′S, despite
not developing a topological gap on the normal side. This
is shown in Fig. 4, which is the NS version of Fig. 3. The
suppressed pairing gives rise to Andreev levels in the normal
region. Depending on the normal length LN , their level spac-
ing δϵ can be much smaller than the induced gap ", which
results is many subgap levels (unlike the S′S case, where only
a lone level, detached from the quasicontinuum appears). A
finite B field Zeeman splits all these subgap levels that evolve,
avoiding each other due to spin-orbit coupling. This is true for
all except the lowest two excitations (blue), which converge
to zero energy with a finite slope at low B fields [48] (this
is unlike in the S′S case, where the lone detached level starts
off flat at B = 0) [69]. Despite the superficial resemblance
to Zeeman-induced parity crossings in quantum dots [6,69]
(see Fig. 6), near-perfect Andreev reflection of N electrons on
the smooth NS interface stabilises this low-lying subgap level
near zero energy for B > δϵ, but still well before BS

c .

(a)

(c) (d)

(b)

FIG. 4. Smooth NS nanowires. Equivalent to Figs. 2 and 3, with identical model and sampling parameters as in the latter, except for a
zero pairing "N = 0 on the left side and finite "S = 0.5 meV on the right side of the smooth junction. Note the similar wave functions of the
smooth junction Majoranas as compared to the S′S case of Fig. 3.
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nanowire axis by using a three-axis vectormagnet.
Transport measurements were performed by
using standard ac lock-in techniques in a di-
lution refrigerator, with a base temperature of
20 mK.
Differential conductance measured for device

1 is shown in Fig. 1C as a function of source-drain
voltage, Vsd, between the normal and super-
conducting leads, and the voltage, Vg1, on gate g1.
The height (in Vsd) of the Coulomb-blockade
diamond yields an end-dot charging energy Ec ~
6 meV. Because Ec is larger than the super-
conductor gap, single-electron cotunneling dom-
inates transport in Coulomb-blockade valleys. In
this regime, the dot acts effectively as a single
barrier and can be used as a tunneling spec-
trometer for the wire (Fig. 1E). On the other

hand, when the dot is tuned onto a Coulomb
peak (Fig. 1F), hybridization occurs between
the dot and wire states (36). We first discuss
cotunneling spectra away from resonance
then investigate dot-wire interaction when the
dot is on resonance with ABSs and MBSs in
the wire.

Weak dot-wire coupling

A hard proximity-induced superconducting gap,
marked by vanishing conductance below coher-
ence peaks, can be seen in cotunneling trans-
port through Coulomb blockade valleys of the
end dot (Fig. 1D). The width of the gap in bias
voltage is given by 2D*/e, where D* is the effec-
tive superconducting gap, defined phenome-
nologically by the bias voltage at which the

quasiparticle continuum appears. The value
of D* for device 1 is found to be 220 meV (for
devices 2, 3, and 4, D* ~ 250 to 270 meV), which
is somewhat larger than measured previously in
either epitaxial (33) or evaporated hybrid de-
vices (27, 37). The measured gap is consistent
with values for evaporated ultrathin Al films
in the literature (38).
Tunneling conductance (dI/dVsd) for device

1, as a function of Vg1 and Vsd, spanning three
Coulomb blockade valleys is shown in Fig. 2
for two values of back-gate voltage Vbg, which
is applied uniformly to the device by using a
conductive Si substrate separated by a 200-nm
oxide layer. To compensate the effect of Vbg on
the conductance of the end dot, the voltage Vg1,
on the gate near the end dot is simultaneously
swept by a small amount during the back-gate
sweep. Other gates are grounded. At less neg-
ative back-gate voltage (Vbg = –2.5 V), several
subgap conductance peaks are seen at B = 1 T,
including one at zero bias. We attribute these
peaks, which run through consecutive Coulomb
valleys, to ABSs in the finite-length wire. The
magnetic field dependence of the spectrum is
shown in Fig. 2, C and D: subgap states lie close
to the superconducting gap at zero field and
move to lower energies as B increases. Some of
the lower-energy subgap states merge at zero
energy, forming a narrow zero-bias peak span-
ning the range from 1 to 2 T. At more negative
back-gate voltage, Vbg = –7 V, dot-independent
subgap structure is absent (Fig. 2, E to H); only
a hard superconducting gap is seen throughout
the field range of 0 to 2 T. The back-gate de-
pendence on the number of ABSs in the gap
demonstrates that the chemical potential of the
wire can be controlled with the superconductor
shell present.
The zero-field effective gap D* in the regime

with high ABS density is ~200 meV, which is
distinctly smaller than the 220-meV gap seen
in the no-ABS regime. This is because the phe-
nomenological D* in the high-ABS density re-
gime is mainly determined by the energy of
the cluster of ABSs, yielding what is usually
referred to as the induced gap Dind. When there
are no states in the wire, D* is set by the gap of
the Al shell, denoted D.
Between the regimes of high ABS density

and zero ABS density, one can find, by adjust-
ing back and local gates, a low-density ABS re-
gime in which only one or a few subgap modes
are present. In this intermediate density regime,
ABSs can be readily probed with tunneling
spectroscopy, without softening the gap with
numerous quasicontinuous subgap states. To
prevent end-dot states from mixing with ABSs
in the wire, two gate voltages, one at the junc-
tion and one along the wire, were swept together
so as to compensate for capacitive cross-coupling
(Fig. 3A). In this way, either the end-dot chem-
ical potential mdot or the wire chemical potential
mwire could be swept, with the other held fixed. A
two-dimensional plot of zero-bias conductance as
a function of Vg1 and Vg2,g3 (fixing Vg2 = Vg3) in
Fig. 3B shows isopotential lines for the end dot
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Fig. 1. Epitaxial hybrid nanowire with end dot. (A) Scanning electron micrograph (SEM) of device
1, with false color representing different materials. The white brace indicates the location of a natively
formed quantum dot. (B) Schematic cross-sectional view of the nanowire.The epitaxial Al shell (dark
blue) was grown on two facets of the hexagonal InAs core (light blue), with a thickness of ~10 nm.
The applied magnetic field is parallel to the nanowire in most cases. (C) Differential conductance
measured for device 1 as a function of applied source-drain bias voltage, Vsd, and the voltage Vg1 on gate
g1. A Coulomb diamond pattern and a low-conductance gap through the valleys can be seen. (D) Line-
cuts of the conductance, taken from (C), indicated by red and black lines. (E and F) Schematic views of
two different dot-wire configurations of the device. (E) illustrates the elastic cotunneling process in the
Coulomb-blockade regime, whereas (F) shows how a quantum-dot level can hybridize with the subgap
states in the nanowire when it is tuned to resonance.
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dissect P (η,!s ) into partial probability densities for increas-
ing degree of Fermi energy inhomogeneity "µ. We find that
for inhomogeneities "µ < 1 meV, the estimator preserves a
high r = 0.95 correlation with !s (red subpanel), but increas-
ing "µ (green, blue subpanels) suppresses r , though the effect
is not drastic, with r ≈ 0.9 still. This remains true regardless
of the maximum nanowire density considered.

V. SMOOTH NS NANOWIRES

We now consider the second type of inhomogeneous
nanowire, wherein the pairing, like φ(x), is also position
dependent, "(x). We again consider a simple profile that
interpolates between a left side and a right side. The left side is
always normal in this case, with "N = 0, so that the nanowire
contains a smooth NS interface centered at x = LN ,

φ(x) = φN + (φS − φN )θζ (x − LN ),

"(x) = "Sθζ (x − LN ). (16)

This model is relevant to many devices explored in recent
experiments. Nanowires are often made superconducting by
growing an epitaxial superconductor on their surface. Often,
the epitaxial coverage of the nanowire is incomplete, so it
is natural to assume a suppressed pairing in the exposed

portions. Like in the S′S nanowire, a thorough microscopic
validation of this model would require a detailed characteri-
zation of the device in question.

The fundamental interest of the Lutchyn-Oreg model with
a smooth NS interface is particularly high because of the fact
that, perhaps surprisingly, it can also host near-zero modes
at finite Zeeman field B, much like the smooth S′S, despite
not developing a topological gap on the normal side. This
is shown in Fig. 4, which is the NS version of Fig. 3. The
suppressed pairing gives rise to Andreev levels in the normal
region. Depending on the normal length LN , their level spac-
ing δϵ can be much smaller than the induced gap ", which
results is many subgap levels (unlike the S′S case, where only
a lone level, detached from the quasicontinuum appears). A
finite B field Zeeman splits all these subgap levels that evolve,
avoiding each other due to spin-orbit coupling. This is true for
all except the lowest two excitations (blue), which converge
to zero energy with a finite slope at low B fields [48] (this
is unlike in the S′S case, where the lone detached level starts
off flat at B = 0) [69]. Despite the superficial resemblance
to Zeeman-induced parity crossings in quantum dots [6,69]
(see Fig. 6), near-perfect Andreev reflection of N electrons on
the smooth NS interface stabilises this low-lying subgap level
near zero energy for B > δϵ, but still well before BS

c .

(a)

(c) (d)

(b)

FIG. 4. Smooth NS nanowires. Equivalent to Figs. 2 and 3, with identical model and sampling parameters as in the latter, except for a
zero pairing "N = 0 on the left side and finite "S = 0.5 meV on the right side of the smooth junction. Note the similar wave functions of the
smooth junction Majoranas as compared to the S′S case of Fig. 3.
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dissect P (η,!s ) into partial probability densities for increas-
ing degree of Fermi energy inhomogeneity "µ. We find that
for inhomogeneities "µ < 1 meV, the estimator preserves a
high r = 0.95 correlation with !s (red subpanel), but increas-
ing "µ (green, blue subpanels) suppresses r , though the effect
is not drastic, with r ≈ 0.9 still. This remains true regardless
of the maximum nanowire density considered.

V. SMOOTH NS NANOWIRES

We now consider the second type of inhomogeneous
nanowire, wherein the pairing, like φ(x), is also position
dependent, "(x). We again consider a simple profile that
interpolates between a left side and a right side. The left side is
always normal in this case, with "N = 0, so that the nanowire
contains a smooth NS interface centered at x = LN ,

φ(x) = φN + (φS − φN )θζ (x − LN ),

"(x) = "Sθζ (x − LN ). (16)

This model is relevant to many devices explored in recent
experiments. Nanowires are often made superconducting by
growing an epitaxial superconductor on their surface. Often,
the epitaxial coverage of the nanowire is incomplete, so it
is natural to assume a suppressed pairing in the exposed

portions. Like in the S′S nanowire, a thorough microscopic
validation of this model would require a detailed characteri-
zation of the device in question.

The fundamental interest of the Lutchyn-Oreg model with
a smooth NS interface is particularly high because of the fact
that, perhaps surprisingly, it can also host near-zero modes
at finite Zeeman field B, much like the smooth S′S, despite
not developing a topological gap on the normal side. This
is shown in Fig. 4, which is the NS version of Fig. 3. The
suppressed pairing gives rise to Andreev levels in the normal
region. Depending on the normal length LN , their level spac-
ing δϵ can be much smaller than the induced gap ", which
results is many subgap levels (unlike the S′S case, where only
a lone level, detached from the quasicontinuum appears). A
finite B field Zeeman splits all these subgap levels that evolve,
avoiding each other due to spin-orbit coupling. This is true for
all except the lowest two excitations (blue), which converge
to zero energy with a finite slope at low B fields [48] (this
is unlike in the S′S case, where the lone detached level starts
off flat at B = 0) [69]. Despite the superficial resemblance
to Zeeman-induced parity crossings in quantum dots [6,69]
(see Fig. 6), near-perfect Andreev reflection of N electrons on
the smooth NS interface stabilises this low-lying subgap level
near zero energy for B > δϵ, but still well before BS

c .

(a)

(c) (d)

(b)

FIG. 4. Smooth NS nanowires. Equivalent to Figs. 2 and 3, with identical model and sampling parameters as in the latter, except for a
zero pairing "N = 0 on the left side and finite "S = 0.5 meV on the right side of the smooth junction. Note the similar wave functions of the
smooth junction Majoranas as compared to the S′S case of Fig. 3.
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work arises in fully trivial nanowires (B < Bc) hosting a
sufficiently smooth normal-superconductor interface, wherein
modes of arbitrarily small energy localize.

All the experimental evidence so far of conventional topo-
logical MZMs can be mimicked by pseudo-MZMs. This real-
ization has given rise to an intense debate regarding possible
loopholes in the interpretation of the experimental observa-
tions, and on the protection, or lack thereof, of the observed
zero modes. Intriguingly, these states share most properties
with MZMs at the end of a uniform B > Bc topological
nanowire, except in one crucial aspect: Their wave functions
are not concentrated at opposite ends of the nanowire, so their
overlap is not controlled by extrinsic device parameters like
nanowire length L. Since spatial nonlocality is necessary to
achieve resilience of MZMs against generic error-inducing,
parity-conserving local perturbations, it is often argued that
pseudo-MZMs, unlike MZMs, would not be useful for topo-
logical quantum computation.

We here reassess this assumption by comparing the over-
laps of topological MZMs and pseudo-MZMs in realistic
finite nanowires. In such systems, topological MZMs can
exhibit sizable overlaps, not necessarily smaller than those
of pseudo-MZMs. Despite the fact that topological-MZM
overlaps are ideally an exponentially decreasing function of
length L, ! ∼ e−L/ξ , the coherence length ξ is not necessarily
small, and actually tends to grow with magnetic field. This
leads to an expected increase of overlaps as one enters deep
into the topological phase [29,36– 38]. In contrast, we find that
pseudo-MZM from sufficiently smooth potentials can develop
wave functions with small overlaps very quickly (they have a
different—Gaussian—profile than topological MZMs). Thus,
there is no fundamental reason that dictates which of the
two types of MZMs, topological or nontopological, is likely
to be better protected against local perturbations in realistic,
micron-length nanowire devices.

Motivated by this, we here characterise MZMs purely in
terms of their wave-function overlaps instead of classifying
states into trivial and nontrivial based on bulk topological
invariants. Specifically, we will focus on different measures
of Majorana wave-function nonlocality, which quantify the
susceptibility to arbitrary local perturbations that preserve
fermion parity. Formally, the associated susceptibilities will
be expressed as different spatial overlap integrals ! of the
Majorana Nambu-spinorial wave functions, depending on the
type of perturbation. Despite all of these integrals expressing
nonlocality, the way the internal spin degrees of freedom
combine in the overlap integral is different. This leads to
several definitions of the degree of nonlocality 0 ! 1 − ! !
1 that go beyond purely spatial separation and that are directly
connected to protection of MZMs against different, parity-
preserving, local perturbations [1,11]. The quantity 1 − !
thus takes the meaning of a figure-of-merit of a pair of
zero modes, irrespective of their topological origin, which
is applicable in isolated systems of arbitrary length, where
the distinction between pseudo-MZMs and proper topological
MZMs is ill defined.

As an aside, we note that an alternative theoretical frame-
work has been recently proposed that allows us to recover a
well-defined and unambiguous trivial or nontrivial classifica-
tion within this continuum of MZMs of isolated systems. It

FIG. 1. Inhomogeneous nanowires. Sketch of an inhomogeneous
nanowire, hosting Majorana zero modes of overlap !s . The overlap
may be estimated by a local quantity η measured by a local probe.
Five types of inhomogeneous profiles of the electrostatic potential
φ(x ) and pairing "(x ) are considered: uniform, S′S (superconductor-
superconductor), NS (normal-superconductor), barrier-S, and dot-S.
The latter two are subtypes of the general NS case.

defines the topological nature of these zero modes in more
general terms by considering the exceptional-point topology
of the non-Hermitian Hamiltonian that describes the system
when it is coupled to a reservoir [39– 41]. In essence, the
coupling to the reservoir makes the system infinite, so that it
is once more amenable to a rigorous topological classification.
This approach is related to band topology, but is more general,
and in it the degree of nonlocality of the isolated states studied
here plays a crucial role.

In this work, we further consider the practical problem
of quantifying and detecting the degree of nonlocality of a
given zero mode using purely local measurements by local
spectroscopic probes. These include, e.g., a tunnel contact or a
quantum dot coupled to a certain spot in a Majorana nanowire
[42– 47], a setup routinely used today in the laboratory to
perform tunneling spectroscopy [6,7,48,49]; see Fig. 1. This
challenge seems a priori hopeless since quantifying nonlo-
cality involves knowing the distribution of the zero mode
throughout an extended region in space, not just at one spot.
Thus, it seems necessary to resort to complex nonlocal cross-
correlation or interferometry detection schemes [31,50– 55].
We show, however, that the spatial distribution of subgap
states is not completely arbitrary in realistic systems, but
spans a finite volume in the space of all possible wave func-
tions. Because of this constraint, local measurements at one
end of the nanowire remain highly correlated with the actual
Majorana wave-function overlap throughout the system.

This work is organized as follows. Section II presents
the basic concepts and definitions of overlaps and local
estimators, and the five types of nanowire configurations
to be studied; see Fig. 1. Section III is devoted to uni-
form nanowires. The basic Lutchyn-Oreg model is pre-
sented, together with its phenomenology regarding spectrum,
zero-mode overlaps, and their correlation with local esti-
mators. Sections IV and V present the corresponding anal-
ysis in inhomogeneous superconductor-superconductor and
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The dot-wire interaction observed in Fig. 5D
can be understood in terms of leakage of the
MBS into the dot when the dot is on resonance
(41). The energy splitting of a pair of MBSs is
given by dEºjsinðkFLÞe−L=xj (where kF is the
effective Fermi wave vector). In Fig. 5D, this
splitting is initially small, when the dot is off reso-
nance and coupling of the MBSs to the dot states
is suppressed by Coulomb blockade. For a finite-
size wire, this implies that sin(kFL) ~ 0 at that
particular tuning. As the dot level comes closer
to the resonant point, the nearby MBS partially
leaks into the dot, which changes the details of
the MBSs wave function [the numerical study
on the wave-function distribution is provided in
(35)]. This can change the effective kFL in dE,
which causes the zero-bias peak to split at reso-
nance. Numerical simulations of the conduct-
ance spectrum of the coupled dot-MBS (Fig. 5,
E and F) show good qualitative agreement with
the experimental data, both in the trivial super-
conducting regime (Fig. 5, C and E) and in the
topological superconducting phase (Fig. 5, D
and F). Similar zero-bias peak splitting in anoth-
er coupled dot-MBS device (device 4) is shown
in Fig. 5H. To enhance image visibility, conduct-
ance values in Fig. 5H are normalized by the
conductance at Vsd = 0.2 mV at the correspond-
ing gate voltage.
Last, we examined the magnetic field evo-

lution of the subgap states in the strong dot-
wire coupling regime, in which dot and wire
states cannot be separated. Shown in Fig. 6 is
the evolution with field of the spectral features
of the dot-wire system measured for device 1,
with two ABSs merging at B = 0.75 T into a
stable zero-bias peak that remains up to B = 2 T.
The effective g*-factor that can be deduced from
the inward ABS branches is ~6. The conduct-
ance at the base of the zero-bias peak is almost
zero even at B = 1 T, indicating a hard super-
conducting gap also after the topological phase

transition. Related measurements are shown
in (35).
The long field range and intensity of the zero-

bias peak in Fig. 6 can be understood as arising
from the hybridization of the MBS with the end-
dot state. In the strong coupling regime, MBS
can partially reside at the end dot, making the
effective length of the wire longer than in
Fig. 3I. The MBS wave function has larger
amplitude at the wire end, where the dot couples,
than either finite-energy ABSs or states in the
Al shell. This leads to a relatively higher con-
ductance peak at zero energy and makes the
excited states and the Al shell superconduct-
ing coherence peaks almost invisible (13). The
long field range of the zero-bias peak in Fig. 6
(also Fig. 3I) may also be enhanced by elec-
trostatic effects that depend on magnetic field
(14, 19).
Our measurements have revealed how the

ABSs in a hybrid superconductor-semiconductor
nanowire evolve into MBSs as a function of field
and gate voltage.
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Fig. 6. Tunneling spectrum for resonant dot-wire coupling. (A) B-Vsd sweep at Vbg = –8.5 V, Vg1 =
22 V, and Vg2 = Vg3 = –10 V. (B) Differential conductance line-cut plots taken from (A) at various B
values. At this gate configuration, a pronounced zero-bias conductance peak emerges around B =
0.75 Tand persists above B = 2 T, without splitting. The intensity of the zero-bias peak is higher than
other finite-energy ABSs and even higher than the Al superconducting coherence peaks. The back-
ground conductance is almost zero even at B = 1 T, indicating that the induced gap is still a hard gap
after the phase transition.
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In this talk...

11

Alternative hybrid nanowire designs 
with no or small applied magnetic field

Ferromagnetic hybrid nanowires

Full-shell hybrid nanowires

measurement techniques, see the Materials
and methods section.
Differential resistance of the shell, RS =

dVS/dIS, measured for device 1 as a function
of bias current, IS, and axial magnetic field,
B, showed a lobe pattern characteristic of the
destructive regime (Fig. 1C) with a maximum
switching current of 70 mA at B = 0, the center
of the zeroth lobe. Between the zeroth and first
lobes, supercurrent vanished at |B| = 45 mT,
reemerged at 70 mT, and had a maximum
near the center of the first lobe, at |B| = 110mT.
A second lobe with smaller critical current
was also observed, but a third lobe was not
observed.
Temperature dependence of RS around zero

bias yielded a reentrant phase diagramwith
superconducting regions separated by destruc-
tive regions with temperature-independent
normal-state resistance RS

(N) = 1.3 ohms (Fig.
1D). RS

(N) and shell dimensions from Fig. 1A
yield a Drudemean free path of l = 19 nm. The
dirty-limit shell coherence length (33, 40)

xS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pℏvFl
24kBTC

s

ð1Þ

can then be found using the zero-field critical
temperature TC = 1.2 K from Fig. 1D and Fermi
velocity of Al, vF = 2 × 106 m/s (41), with re-
duced Planck constant ħ and Boltzmann con-
stant kB, yielding xS = 180 nm. The same values

for xS are found using the onset of the first
destructive regime (42).

Tunneling spectroscopy

Differential conductance, dI/dV, as a func-
tion of source-drain voltage, V, measured in
the tunneling regime as a probe of the local
density of states at the end of the nanowire is
shown in Fig. 2. The Al shell was removed at
the end of thewire, and the tunnel barrier was
controlled by the global back-gate at voltage
VBG. At zero field, a hard superconducting gap
was observed throughout the zeroth super-
conducting lobe (Fig. 2, B and D). Similar to
the supercurrent measurements presented
above, the superconducting gap in the core
closed at |B| = 45 mT and reopened at 70 mT,
separated by a gapless destructive regime. Upon
reopening, a narrow zero-bias conductance peak
was observed throughout the first gapped lobe
(Fig. 2, B and F). Several flux-dependent sub-
gap states are also visible, separated from the
zero-bias peak in the first lobe. These nonzero
subgap states are analogs of Caroli–de Gennes–
Matricon bound states (43), in this case con-
fined at the metal-semiconductor interface
rather than around a vortex core.
The first lobe persists to 150 mT, above

which a second gapless destructive regime
was observed. A second gapped lobe centered
around |B| = 220 mT then appeared, contain-
ing several subgap states away from zero en-
ergy, as shown in greater detail in (39). The

second lobe closes at 250 mT, above which
only normal-state behavior was observed.
The dependence of tunneling spectra on

back-gate voltage in the zeroth lobe is shown
in Fig. 2C. In a weak tunneling regime, for
VBG < −1 V, a hard gap was observed, with D =
180 meV (Fig. 2, C and D). For VBG ~ −0.8 V, as
the tunneling barrier is decreased, the subgap
conductance is enhanced owing to Andreev
processes. The increase in conductance at
VBG ~ −1.2 V is likely caused by a resonance
in the barrier. In the first lobe, at B = 110 mT,
the sweep of VBG showed a zero-energy state
throughout the tunneling regime (Fig. 2E).
The cut displayed in Fig. 2F shows a discrete
zero-bias peak separated from other states
by a softened gap, presumably owing to finite
temperature and level broadening in the junc-
tion. As the tunnel barrier is opened, the zero-
bias peak gradually evolves into a zero-bias dip.
The increase of finite-bias conductance com-
pared with zero-bias conductance as tunnel
barrier decreases is in qualitative agreement
with theory supporting MZMs (44), although
the crossover from a peak to a dip occurs at
lower conductance than expected. Additional
line-cuts and the tunneling spectroscopy for
the second lobe are shown in figs. S3 and S4
(39). Several discontinuities in spectra occurred
as VBG was swept at the same gate voltages in
Fig. 2, C and E, presumably because of gate-
dependent charge motion in the barrier.

Modeling of topological phases

To better understand the origin of the zero-
energymodes in the first lobe, we analyze the-
oretically a semiconducting nanowire covered
by a superconducting shell. First, we present
a toy model of a cylindrically symmetric full-
shell wire (Fig. 3), highlighting the underlying
mechanism of the topological phase appear-
ance. Thereafter, wemove on to simulations of
realistic geometries (Figs. 4 and 5).
We assume that the semiconductor (InAs)

has a large Rashba spin-orbit coupling owing
to the local inversion symmetry breaking in
the radial direction at the semiconductor-
superconductor interface (corresponding to an
electric field pointing along the radial direction
at the superconductor-semiconductor inter-
face). The system is subject to a magnetic field
along the direction of the nanowire, B

→
¼ Bẑ .

Using cylindrical coordinates and the symmet-
ric gauge for the electromagnetic vector poten-
tial, A

→
¼ 1

2 ðB
→
$ r

→Þ, the effective Hamiltonian
for the semiconducting core can be written as

H0 ¼ ðp→ þ eAϕϕ̂Þ2

2m& ' m

þ ar̂ ( ½s→ $ ðp→ þ eAϕϕ̂Þ* ð2Þ

Here, we use natural units (ħ = 1), p
→
is the elec-

tron momentum operator, e > 0 the electric
charge,m* the effective mass, m is the chemical
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Fig. 1. Destructive Little-
Parks regime in full-
shell nanowire device.
(A) Colorized material-
sensitive electron
micrograph of InAs-Al
hybrid nanowire. Hexago-
nal InAs core (maximum
diameter: 130 nm)
with 30-nm full-shell epi-
taxial Al. (B) Micrograph
of device 1, colorized
to highlight four-probe
measurement setup.
(C) Differential resistance
of the Al shell, RS, as
a function of current bias,
IS, and axial magnetic
field, B, measured
at 20 mK. Top axis shows
flux, BAwire, in units of the
flux quantum F0 = h/2e,
with Planck constant
h and electric charge e.
Superconducting lobes are
separated by destructive
regions near odd half-
integer flux quanta. (D) Temperature evolution of RS as a function of B measured around IS = 0. RS equals the
normal-state resistance in all destructive regimes.
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nanowire axis by using a three-axis vectormagnet.
Transport measurements were performed by
using standard ac lock-in techniques in a di-
lution refrigerator, with a base temperature of
20 mK.
Differential conductance measured for device

1 is shown in Fig. 1C as a function of source-drain
voltage, Vsd, between the normal and super-
conducting leads, and the voltage, Vg1, on gate g1.
The height (in Vsd) of the Coulomb-blockade
diamond yields an end-dot charging energy Ec ~
6 meV. Because Ec is larger than the super-
conductor gap, single-electron cotunneling dom-
inates transport in Coulomb-blockade valleys. In
this regime, the dot acts effectively as a single
barrier and can be used as a tunneling spec-
trometer for the wire (Fig. 1E). On the other

hand, when the dot is tuned onto a Coulomb
peak (Fig. 1F), hybridization occurs between
the dot and wire states (36). We first discuss
cotunneling spectra away from resonance
then investigate dot-wire interaction when the
dot is on resonance with ABSs and MBSs in
the wire.

Weak dot-wire coupling

A hard proximity-induced superconducting gap,
marked by vanishing conductance below coher-
ence peaks, can be seen in cotunneling trans-
port through Coulomb blockade valleys of the
end dot (Fig. 1D). The width of the gap in bias
voltage is given by 2D*/e, where D* is the effec-
tive superconducting gap, defined phenome-
nologically by the bias voltage at which the

quasiparticle continuum appears. The value
of D* for device 1 is found to be 220 meV (for
devices 2, 3, and 4, D* ~ 250 to 270 meV), which
is somewhat larger than measured previously in
either epitaxial (33) or evaporated hybrid de-
vices (27, 37). The measured gap is consistent
with values for evaporated ultrathin Al films
in the literature (38).
Tunneling conductance (dI/dVsd) for device

1, as a function of Vg1 and Vsd, spanning three
Coulomb blockade valleys is shown in Fig. 2
for two values of back-gate voltage Vbg, which
is applied uniformly to the device by using a
conductive Si substrate separated by a 200-nm
oxide layer. To compensate the effect of Vbg on
the conductance of the end dot, the voltage Vg1,
on the gate near the end dot is simultaneously
swept by a small amount during the back-gate
sweep. Other gates are grounded. At less neg-
ative back-gate voltage (Vbg = –2.5 V), several
subgap conductance peaks are seen at B = 1 T,
including one at zero bias. We attribute these
peaks, which run through consecutive Coulomb
valleys, to ABSs in the finite-length wire. The
magnetic field dependence of the spectrum is
shown in Fig. 2, C and D: subgap states lie close
to the superconducting gap at zero field and
move to lower energies as B increases. Some of
the lower-energy subgap states merge at zero
energy, forming a narrow zero-bias peak span-
ning the range from 1 to 2 T. At more negative
back-gate voltage, Vbg = –7 V, dot-independent
subgap structure is absent (Fig. 2, E to H); only
a hard superconducting gap is seen throughout
the field range of 0 to 2 T. The back-gate de-
pendence on the number of ABSs in the gap
demonstrates that the chemical potential of the
wire can be controlled with the superconductor
shell present.
The zero-field effective gap D* in the regime

with high ABS density is ~200 meV, which is
distinctly smaller than the 220-meV gap seen
in the no-ABS regime. This is because the phe-
nomenological D* in the high-ABS density re-
gime is mainly determined by the energy of
the cluster of ABSs, yielding what is usually
referred to as the induced gap Dind. When there
are no states in the wire, D* is set by the gap of
the Al shell, denoted D.
Between the regimes of high ABS density

and zero ABS density, one can find, by adjust-
ing back and local gates, a low-density ABS re-
gime in which only one or a few subgap modes
are present. In this intermediate density regime,
ABSs can be readily probed with tunneling
spectroscopy, without softening the gap with
numerous quasicontinuous subgap states. To
prevent end-dot states from mixing with ABSs
in the wire, two gate voltages, one at the junc-
tion and one along the wire, were swept together
so as to compensate for capacitive cross-coupling
(Fig. 3A). In this way, either the end-dot chem-
ical potential mdot or the wire chemical potential
mwire could be swept, with the other held fixed. A
two-dimensional plot of zero-bias conductance as
a function of Vg1 and Vg2,g3 (fixing Vg2 = Vg3) in
Fig. 3B shows isopotential lines for the end dot
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Fig. 1. Epitaxial hybrid nanowire with end dot. (A) Scanning electron micrograph (SEM) of device
1, with false color representing different materials. The white brace indicates the location of a natively
formed quantum dot. (B) Schematic cross-sectional view of the nanowire.The epitaxial Al shell (dark
blue) was grown on two facets of the hexagonal InAs core (light blue), with a thickness of ~10 nm.
The applied magnetic field is parallel to the nanowire in most cases. (C) Differential conductance
measured for device 1 as a function of applied source-drain bias voltage, Vsd, and the voltage Vg1 on gate
g1. A Coulomb diamond pattern and a low-conductance gap through the valleys can be seen. (D) Line-
cuts of the conductance, taken from (C), indicated by red and black lines. (E and F) Schematic views of
two different dot-wire configurations of the device. (E) illustrates the elastic cotunneling process in the
Coulomb-blockade regime, whereas (F) shows how a quantum-dot level can hybridize with the subgap
states in the nanowire when it is tuned to resonance.
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Spin-polarized bound states in
semiconductor-superconductor-ferromagnetic insulator islands
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We report Coulomb blockade transport studies of InAs nanowires grown with epitaxial super-
conducting Al and ferromagnetic insulator EuS on overlapping facets. By comparing experimental
results to a theoretical model, we associate cotunneling features in even-odd bias spectra with spin-
polarized Andreev levels, indicating that spin splitting exceeding the induced superconducting gap
at zero applied magnetic field. Energies of the polarized subgap states can be tuned on either side
of zero by electrostatic gates.

In hybrid quantum devices with both ferromag-
netic and superconducting components, competition
to align electron spins or pair them into singlets
can result in complex ground states and correspond-
ing electrical properties [1–9]. Recently, coexistence
of proximity-induced superconductivity and ferromag-
netism have been demonstrated in hybrid semiconducting
nanowires [10]. Coulomb-blockade spectroscopy of super-
conducting quantum dots provides a window into subgap
spectra [11] and their spin structure [12].

Multiple Andreev scatterings at superconducting
boundaries of a small normal conductor give rise to An-
dreev bound states (ABSs) [12]. The states can carry
supercurrent through the normal region and appear in
spectroscopy as discrete levels below the superconduct-
ing gap [13, 14]. Coulomb e↵ects modify transport via
ABSs [15, 16], for instance resulting in supercurrent re-
versal [17, 18]. When magnetic fields [19, 20] or mag-
netic materials [21] are involved, spin-degenerate ABSs
split and becomes spin selective, as seen in tunneling
spectroscopy [22] and circuit quantum electrodynamics
measurements [23]. The spin-active interface between a
superconductor and, for example, a ferromagnetic insu-
lator [24] can also lead to spin-split ABSs [25] or, in some
cases, triplet superconductivity [26].

Recently, a new class of triple-hybrid materials was
realized based on semiconducting InAs nanowires with
strong spin-orbit coupling and large g factor, coated with
epitaxial superconducting Al, and ferromagnetic insula-
tor EuS shells [27, 28]. We investigate nanowires with
hexagonal cross-sections and partly overlapping two-facet
shells, as shown schematically in Fig. 1(a). Tunnel-
ing spectroscopy into the ends of long grounded hybrid
wires [10] showed signatures consistent with topologi-
cal superconductivity, as recently investigated theoreti-
cally [29–34].

Here, we report transport through Coulomb islands,
400 and 800 nm in length, made from the same batch of
wires with normal metal leads and several top- and side-

gate electrodes that independently control tunnel-barrier
conductances and charge occupancy [Fig. 1(b)]. We ob-
serve characteristic features in Coulomb blockade that in-
dicate gate-dependent, discrete subgap states whose en-
ergy can be tuned to zero. Comparison of cotunneling
spectra to theoretical models indicate that the subgap
states are in all cases spin polarized at zero magnetic
field, as discussed in detail below. Spectroscopy of four
Coulomb island devices fabricated on two wires (denoted
wire 1 and wire 2) showed similar results. Measurements
were carried out using standard low-noise lock-in tech-
niques in a dilution refrigerator with a base temperature
of 20 mK, equipped with a three-axis vector magnet (see
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zero, IC continued increasing, peaking around +11 mT, then rapidly 
decreasing and smoothly vanishing at around +50 mT (Fig. 1b). The 
reverse evolution of IC was observed when sweeping H∥ from posi-
tive to negative, with the sharp peak at μ0H∥ = − 11 mT (Fig. 1c). The 
spurs at ±5 mT presumably reflect reduced critical current under the 
voltage probes and are not seen in other devices (see Supplementary 
Information). The reduced TC and hysteretic behaviour are consis-
tent with an exchange coupling between the Al and the EuS, which 
becomes magnetized along the wire axis then switches direction 
with a switching (coercive) field of ±11 mT. The distance over 
which the ferromagnetic proximity effect penetrates the supercon-
ductor is expected to be roughly the coherence length14, in this case 
ξ ≈  100 nm based on the reduced TC0 (ref. 24). As this is greater than 
the facet separation (60 nm), we expect the superconducting shell to 
be ferromagnetically proximitized on both facets.

As a control, similar measurements on a nanowire with Al and 
EuS on non-overlapping facets showed unsuppressed TC = 1.5 K 
(enhanced compared with bulk due to the thinness of Al24) and very 
little hysteresis ([IC(HC) −  IC(− HC)]/IC0 < 5%, where HC is the coer-
cive field and IC0 is the zero-field critical current; Extended Data 
Fig. 1). Farther than 100 nm from the ends of the EuS, stray mag-
netic fields are estimated to be smaller than 1 mT (ref. 18). The strik-
ing contrast between overlapping versus adjacent shells is unlikely 
to arise from fringing fields. Instead, it suggests that the relevant 
exchange coupling is directly between the EuS and the Al, and that 
the overlap is necessary for sizable exchange coupling.

From the dependence of IC on H∥ in Fig. 1 and knowing TC0, we 
infer a related evolution of TC with H∥ using the relation TC(H∥) =  
TC0[IC(H∥)/IC0]2/3 (Methods). The extracted TC(H∥) for device 1 
(Extended Data Fig. 3) yields TC0 = 0.8 K, which increases to roughly 
1.4 K around the coercive magnetic fields, ±11 mT. The suppression 
of TC by magnetic interaction can be described within mean-field 
theory by a pair-breaking parameter, α (ref. 24). Taking the primary 
effect of the magnetized EuS to be spin polarization in the super-
conductor, we introduce an effective Zeeman field, Beff, in the super-
conductor, and take pair breaking to be proportional to the effective 
field, α = μBBeff, which together with the Abrikosov–Gorkov expres-
sion for TC(α) yields the magnetization curve, Beff as a function of 
H∥, shown in Fig. 1d (see Methods for details). The remanent effec-
tive field after returning to zero applied field, ∣Beff(H∥ = 0)∣ ≈  1.3 T, 
is consistent with previously measured values25. Zeeman fields of 
around 1 T were previously found sufficient to induce topologi-
cal superconductivity in hybrid InAs wires without EuS26. We note 
that there is considerable device-to-device variance in the critical  
field. For instance, the critical field for device 5 was 70 mT (for 
details see Supplementary Information) compared with 50 mT for 
device 1 in Fig. 1.

Turning to bias spectroscopy, we measured differential conduc-
tance, G = dI/dV, across the gate-controlled tunnel barrier at the 
end of the hybrid nanowire into a normal contact as a function of 
source–drain bias, V (Fig. 2a). As above, the devices were zero-field 
cooled and ramped above 150 mT then returned to zero to start 
measurements. For weak tunnelling, G is proportional to the den-
sity of states at the end of the wire convolved with temperature26–29. 
The tunnel barrier was tuned using gate voltage VC. Carrier den-
sity and spatial distribution of carriers in the nanowire were tuned 
with a combination of upper (VU), lower (VL) and back-gate (VBG) 
voltages. Because the back gate extends under the barrier, changes 
in VBG had to be compensated by small changes in VC to maintain 
tunnelling rate and the occupancy of any resonances in the tunnel 
barrier. Such a resonance can be seen in Fig. 2b for device 2 close to 
the pinch-off ridge. Compensation of VU and VL was not necessary. 
Conductance in device 2 measured along the dashed blue line in 
Fig. 2b as a function of VC ranges from weak tunnelling, G ≪ e2/h, to 
the open regime, G > e2/h (Fig. 2c). Similar sweeps at different VBG 
are shown in Extended Data Fig. 4 and Supplementary Information. 
Bias spectra show a characteristic superconducting gap Δ ≈  50 μeV 
with a single peak at zero bias extending from VC = − 1.2 V to − 1.1 V. 
The induced gap is considerably smaller than the corresponding 
gap, Δ ≈  230 μeV, measured in wires with non-overlapping Al and 
EuS shells (Extended Data Fig. 2). For increased tunnelling, the 
ZBP evolved into a zero-bias dip that saturates near G ≈  2e2/h after 
splitting (Extended Data Fig. 5), consistent with topological super-
conductivity30. As shown in Extended Data Fig. 4, the peak-to-dip 
crossover occurs for conductance values ranging from 0.2e2/h to 
above e2/h over a range of back-gate voltages. In a topological wire, 
this variation may result from disorder or multiple channels in the 
junction. Trivial subgap states at zero energy typically do not show 
such a crossover30.

Bias spectra measured along a compensated cut of VBG (white 
dashed line in Fig. 2b) at zero applied field are shown in Fig. 2d. 
Spectra show subgap Andreev states that coalesce to zero bias 
at VBG = − 3.1 V and remain at zero bias until VBG = − 2.6 V before 
splitting again. Several sharp resonances—features descending 
from the gap and crossing zero energy—are visible in the sweep. 
These resonances depend only on VC (horizontal peaks in Fig. 2b), 
indicating that they arise from states in or near the tunnel barrier. 
Importantly, as these end-state resonances cross (VBG = − 3.05 V) or 
anticross (VBG = − 2.85 V) at zero bias, the extended ZBP itself does 
not split. More examples of the non-splitting of the ZBP across reso-
nances are shown in Extended Data Fig. 6. While stable ZBPs can 
be regarded as a signature of topological superconductivity, they 
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Hybrid quantum materials allow for quantum phases that oth-
erwise do not exist in nature1,2. For example, a one-dimensional 
topological superconductor with Majorana states bound to 
its ends can be realized by coupling a semiconductor nanow-
ire to a superconductor in the presence of a strong magnetic 
field3–5. However, the applied magnetic fields are detrimen-
tal to superconductivity, and constrain device layout, com-
ponents, materials, fabrication and operation6. Early on, an 
alternative source of Zeeman coupling that circumvents these 
constraints—using a ferromagnetic insulator instead of an 
applied field—was proposed theoretically7. Here, we report 
transport measurements in hybrid nanowires using epitaxial 
layers of superconducting Al and the ferromagnetic insula-
tor EuS on semiconducting InAs nanowires. We infer a rema-
nent effective Zeeman field exceeding 1!T and observe stable 
zero-bias conductance peaks in bias spectroscopy at zero 
applied field, consistent with topological superconductivity. 
Hysteretic spectral features in applied magnetic field support 
this picture.

Planar superconductor–ferromagnetic insulator hybrids exhibit 
spin splitting of the superconducting density of states in zero applied 
field, reflecting ferromagnetic exchange coupling8, reminiscent of 
the spin splitting generated by large in-plane magnetic fields9 (see 
refs. 10–12 for recent reviews). The ferromagnetic exchange coupling 
that results from spin-dependent scattering at the superconductor–
ferromagnetic insulator interface13 extends into the superconductor 
for a coherence length, while thinner superconductors become uni-
formly magnetized14. The superconducting coherence length also 
averages over the domain structure of the ferromagnetic insulator 
film, modifying spin splitting depending on the domain size com-
pared with the coherence length15. Relaxation of exchange-induced 
spin splitting has been investigated using spin-polarized injection 
and detection in superconductor–ferromagnetic insulator hybrids16.

While ferromagnetic exchange coupling in the Al occurs via 
spin-dependent scattering at the Al–EuS interface, in most contexts 
exchange coupling can be thought of as arising from an effective 
Zeeman field within the superconductor, oriented along the mag-
netization direction of the EuS17. This effect dominates over the 
fringing field outside the ferromagnetic insulator18. The proxim-
ity effect from the exchange-coupled superconductor to the spin–
orbit-coupled nanowire can induce a topological state in the hybrid 
system, depending on the arrangement of the interfaces7. This mech-
anism contrasts, for example, with recent work that uses spatially 
varying fringing fields from a nearby ferromagnet to synthesize a 
real-space spin–orbit field19. Recently, zero-bias peaks (ZBPs)—sig-
natures of Majorana modes—were observed in an applied magnetic 
field in Au nanowires with a superconductor-proximitized sur-
face state, using the same ferromagnetic insulator, EuS, to tune the 

energy of the surface state closer to the Fermi energy20. In a related 
metallic material system of Al/EuS/Ag, ZBPs arising from triplet 
superconductivity were characterized21. The relation between these 
features and those described in this work remains to be elucidated. 
Materials studies of epitaxial EuS on InAs without Al22, or with EuS 
and Al on adjacent (non-overlapping) wire facets18, showed weak 
ferromagnetic exchange coupling transferred to the InAs. Epitaxial 
growth of hybrid semiconductors with ferromagnetic insulator and 
superconducting layers18 opens a new venue for topological super-
conductivity without the need for an applied magnetic field.

InAs nanowires were grown using molecular beam epitaxy23 with 
epitaxial EuSon two facets and Al on two either partly overlapping 
or adjacent facets. Because Al requires low-temperature deposition, 
it was necessary to grow the EuS first18,23. Material, fabrication and 
measurement details are given in the Methods section.

We present measurements on eight devices from two growth 
batches. Devices 1–6 had two-facet EuS and Al shells overlapping 
on one facet (Fig. 1a, inset); devices 7 and 8 had Al and EuS on 
adjacent non-overlapping pairs of facets (Extended Data Fig. 1a, 
inset). Devices 1 and 5 were used for four-terminal measurement 
of the shell (Fig. 1a). Devices 2, 3, 4 and 6, used for tunnelling spec-
troscopy (Fig. 2a), were lithographically equivalent, and showed 
similar behaviour. Roughly half of device batches showed subgap 
features in bias spectroscopy as reported here. Others showed no 
subgap features or a soft superconducting gap. At present, we do 
not know what accounts for devices that do not show subgap states, 
or how they differ from those that do. Devices 7 and 8, with adja-
cent but non-overlapping Al and EuS shells, showed unsuppressed 
superconductivity in the Al shell, little dependence on field and no 
subgap features (Extended Data Figs. 1 and 2). Wires with EuS and 
Al on opposite, non-adjacent pairs of facets (not shown) display no 
measurable hysteresis. We draw attention to the observation that 
non-overlapping shells of EuS and Al do not produce the subgap 
features seen when the shells overlap. This is an important differ-
ence from an earlier proposal along these lines7.

We begin by investigating the superconducting properties of the 
coupled Al/EuS shell. Differential resistance, RS = dVS/dIS, measured 
in a four-terminal configuration for device 1 as a function of temper-
ature, T, yielded a zero-field critical temperature TC0 = 0.8 K (Fig. 1a),  
lower than the bulk value of 1.2 K. These data were taken around 
zero d.c. current bias after zero-field cooling then ramping the 
external magnetic field applied along the wire axis to μ0H∥ = 150 mT, 
where μ0 is vacuum permeability, and back to zero. In addition 
to the reduced TC, the base-temperature critical current, IC, mea-
sured for device 1 displayed a characteristic evolution with H∥ that 
depended on sweep direction (Fig. 1b,c). Moving from negative  
to positive field, a finite IC first appeared around − 50 mT,  
increasing rapidly toward zero field. As the field passed through 
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magnetize the EuS, which is important for initializing non-collinear 
wires using a single-axis magnet.

Despite strong hysteretic effects in the EuS/Al shell (Fig. 1), 
the field-dependent quasiparticle gaps in Fig. 4 appear symmetric 
around Hφ = 0 for all field angles. This does not reflect a lack of vis-
ibility of subgap hysteresis, but reflects a real difference between 
the field dependence of the shell and the subgap states, consistently 
observed in all samples. We attribute this symmetry to spin mix-
ing due to spin–orbit coupling in the wire36. We emphasize that the 
mechanism by which the exchange field is induced in the semicon-
ductor is not fully resolved.

Finally, we note that the subgap states that are already split at 
zero applied field can move either toward or away from zero energy 
with applied field (Supplementary Information). The slopes of these 
subgap states are typically much less than the slope of the gap clo-
sure, consistent with the picture of rapid suppression of supercon-
ductivity due to the field-dependent EuS magnetization.
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Hybrid quantum materials allow for quantum phases that oth-
erwise do not exist in nature1,2. For example, a one-dimensional 
topological superconductor with Majorana states bound to 
its ends can be realized by coupling a semiconductor nanow-
ire to a superconductor in the presence of a strong magnetic 
field3–5. However, the applied magnetic fields are detrimen-
tal to superconductivity, and constrain device layout, com-
ponents, materials, fabrication and operation6. Early on, an 
alternative source of Zeeman coupling that circumvents these 
constraints—using a ferromagnetic insulator instead of an 
applied field—was proposed theoretically7. Here, we report 
transport measurements in hybrid nanowires using epitaxial 
layers of superconducting Al and the ferromagnetic insula-
tor EuS on semiconducting InAs nanowires. We infer a rema-
nent effective Zeeman field exceeding 1!T and observe stable 
zero-bias conductance peaks in bias spectroscopy at zero 
applied field, consistent with topological superconductivity. 
Hysteretic spectral features in applied magnetic field support 
this picture.

Planar superconductor–ferromagnetic insulator hybrids exhibit 
spin splitting of the superconducting density of states in zero applied 
field, reflecting ferromagnetic exchange coupling8, reminiscent of 
the spin splitting generated by large in-plane magnetic fields9 (see 
refs. 10–12 for recent reviews). The ferromagnetic exchange coupling 
that results from spin-dependent scattering at the superconductor–
ferromagnetic insulator interface13 extends into the superconductor 
for a coherence length, while thinner superconductors become uni-
formly magnetized14. The superconducting coherence length also 
averages over the domain structure of the ferromagnetic insulator 
film, modifying spin splitting depending on the domain size com-
pared with the coherence length15. Relaxation of exchange-induced 
spin splitting has been investigated using spin-polarized injection 
and detection in superconductor–ferromagnetic insulator hybrids16.

While ferromagnetic exchange coupling in the Al occurs via 
spin-dependent scattering at the Al–EuS interface, in most contexts 
exchange coupling can be thought of as arising from an effective 
Zeeman field within the superconductor, oriented along the mag-
netization direction of the EuS17. This effect dominates over the 
fringing field outside the ferromagnetic insulator18. The proxim-
ity effect from the exchange-coupled superconductor to the spin–
orbit-coupled nanowire can induce a topological state in the hybrid 
system, depending on the arrangement of the interfaces7. This mech-
anism contrasts, for example, with recent work that uses spatially 
varying fringing fields from a nearby ferromagnet to synthesize a 
real-space spin–orbit field19. Recently, zero-bias peaks (ZBPs)—sig-
natures of Majorana modes—were observed in an applied magnetic 
field in Au nanowires with a superconductor-proximitized sur-
face state, using the same ferromagnetic insulator, EuS, to tune the 

energy of the surface state closer to the Fermi energy20. In a related 
metallic material system of Al/EuS/Ag, ZBPs arising from triplet 
superconductivity were characterized21. The relation between these 
features and those described in this work remains to be elucidated. 
Materials studies of epitaxial EuS on InAs without Al22, or with EuS 
and Al on adjacent (non-overlapping) wire facets18, showed weak 
ferromagnetic exchange coupling transferred to the InAs. Epitaxial 
growth of hybrid semiconductors with ferromagnetic insulator and 
superconducting layers18 opens a new venue for topological super-
conductivity without the need for an applied magnetic field.

InAs nanowires were grown using molecular beam epitaxy23 with 
epitaxial EuSon two facets and Al on two either partly overlapping 
or adjacent facets. Because Al requires low-temperature deposition, 
it was necessary to grow the EuS first18,23. Material, fabrication and 
measurement details are given in the Methods section.

We present measurements on eight devices from two growth 
batches. Devices 1–6 had two-facet EuS and Al shells overlapping 
on one facet (Fig. 1a, inset); devices 7 and 8 had Al and EuS on 
adjacent non-overlapping pairs of facets (Extended Data Fig. 1a, 
inset). Devices 1 and 5 were used for four-terminal measurement 
of the shell (Fig. 1a). Devices 2, 3, 4 and 6, used for tunnelling spec-
troscopy (Fig. 2a), were lithographically equivalent, and showed 
similar behaviour. Roughly half of device batches showed subgap 
features in bias spectroscopy as reported here. Others showed no 
subgap features or a soft superconducting gap. At present, we do 
not know what accounts for devices that do not show subgap states, 
or how they differ from those that do. Devices 7 and 8, with adja-
cent but non-overlapping Al and EuS shells, showed unsuppressed 
superconductivity in the Al shell, little dependence on field and no 
subgap features (Extended Data Figs. 1 and 2). Wires with EuS and 
Al on opposite, non-adjacent pairs of facets (not shown) display no 
measurable hysteresis. We draw attention to the observation that 
non-overlapping shells of EuS and Al do not produce the subgap 
features seen when the shells overlap. This is an important differ-
ence from an earlier proposal along these lines7.

We begin by investigating the superconducting properties of the 
coupled Al/EuS shell. Differential resistance, RS = dVS/dIS, measured 
in a four-terminal configuration for device 1 as a function of temper-
ature, T, yielded a zero-field critical temperature TC0 = 0.8 K (Fig. 1a),  
lower than the bulk value of 1.2 K. These data were taken around 
zero d.c. current bias after zero-field cooling then ramping the 
external magnetic field applied along the wire axis to μ0H∥ = 150 mT, 
where μ0 is vacuum permeability, and back to zero. In addition 
to the reduced TC, the base-temperature critical current, IC, mea-
sured for device 1 displayed a characteristic evolution with H∥ that 
depended on sweep direction (Fig. 1b,c). Moving from negative  
to positive field, a finite IC first appeared around − 50 mT,  
increasing rapidly toward zero field. As the field passed through 
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zero, IC continued increasing, peaking around +11 mT, then rapidly 
decreasing and smoothly vanishing at around +50 mT (Fig. 1b). The 
reverse evolution of IC was observed when sweeping H∥ from posi-
tive to negative, with the sharp peak at μ0H∥ = − 11 mT (Fig. 1c). The 
spurs at ±5 mT presumably reflect reduced critical current under the 
voltage probes and are not seen in other devices (see Supplementary 
Information). The reduced TC and hysteretic behaviour are consis-
tent with an exchange coupling between the Al and the EuS, which 
becomes magnetized along the wire axis then switches direction 
with a switching (coercive) field of ±11 mT. The distance over 
which the ferromagnetic proximity effect penetrates the supercon-
ductor is expected to be roughly the coherence length14, in this case 
ξ ≈  100 nm based on the reduced TC0 (ref. 24). As this is greater than 
the facet separation (60 nm), we expect the superconducting shell to 
be ferromagnetically proximitized on both facets.

As a control, similar measurements on a nanowire with Al and 
EuS on non-overlapping facets showed unsuppressed TC = 1.5 K 
(enhanced compared with bulk due to the thinness of Al24) and very 
little hysteresis ([IC(HC) −  IC(− HC)]/IC0 < 5%, where HC is the coer-
cive field and IC0 is the zero-field critical current; Extended Data 
Fig. 1). Farther than 100 nm from the ends of the EuS, stray mag-
netic fields are estimated to be smaller than 1 mT (ref. 18). The strik-
ing contrast between overlapping versus adjacent shells is unlikely 
to arise from fringing fields. Instead, it suggests that the relevant 
exchange coupling is directly between the EuS and the Al, and that 
the overlap is necessary for sizable exchange coupling.

From the dependence of IC on H∥ in Fig. 1 and knowing TC0, we 
infer a related evolution of TC with H∥ using the relation TC(H∥) =  
TC0[IC(H∥)/IC0]2/3 (Methods). The extracted TC(H∥) for device 1 
(Extended Data Fig. 3) yields TC0 = 0.8 K, which increases to roughly 
1.4 K around the coercive magnetic fields, ±11 mT. The suppression 
of TC by magnetic interaction can be described within mean-field 
theory by a pair-breaking parameter, α (ref. 24). Taking the primary 
effect of the magnetized EuS to be spin polarization in the super-
conductor, we introduce an effective Zeeman field, Beff, in the super-
conductor, and take pair breaking to be proportional to the effective 
field, α = μBBeff, which together with the Abrikosov–Gorkov expres-
sion for TC(α) yields the magnetization curve, Beff as a function of 
H∥, shown in Fig. 1d (see Methods for details). The remanent effec-
tive field after returning to zero applied field, ∣Beff(H∥ = 0)∣ ≈  1.3 T, 
is consistent with previously measured values25. Zeeman fields of 
around 1 T were previously found sufficient to induce topologi-
cal superconductivity in hybrid InAs wires without EuS26. We note 
that there is considerable device-to-device variance in the critical  
field. For instance, the critical field for device 5 was 70 mT (for 
details see Supplementary Information) compared with 50 mT for 
device 1 in Fig. 1.

Turning to bias spectroscopy, we measured differential conduc-
tance, G = dI/dV, across the gate-controlled tunnel barrier at the 
end of the hybrid nanowire into a normal contact as a function of 
source–drain bias, V (Fig. 2a). As above, the devices were zero-field 
cooled and ramped above 150 mT then returned to zero to start 
measurements. For weak tunnelling, G is proportional to the den-
sity of states at the end of the wire convolved with temperature26–29. 
The tunnel barrier was tuned using gate voltage VC. Carrier den-
sity and spatial distribution of carriers in the nanowire were tuned 
with a combination of upper (VU), lower (VL) and back-gate (VBG) 
voltages. Because the back gate extends under the barrier, changes 
in VBG had to be compensated by small changes in VC to maintain 
tunnelling rate and the occupancy of any resonances in the tunnel 
barrier. Such a resonance can be seen in Fig. 2b for device 2 close to 
the pinch-off ridge. Compensation of VU and VL was not necessary. 
Conductance in device 2 measured along the dashed blue line in 
Fig. 2b as a function of VC ranges from weak tunnelling, G ≪ e2/h, to 
the open regime, G > e2/h (Fig. 2c). Similar sweeps at different VBG 
are shown in Extended Data Fig. 4 and Supplementary Information. 
Bias spectra show a characteristic superconducting gap Δ ≈  50 μeV 
with a single peak at zero bias extending from VC = − 1.2 V to − 1.1 V. 
The induced gap is considerably smaller than the corresponding 
gap, Δ ≈  230 μeV, measured in wires with non-overlapping Al and 
EuS shells (Extended Data Fig. 2). For increased tunnelling, the 
ZBP evolved into a zero-bias dip that saturates near G ≈  2e2/h after 
splitting (Extended Data Fig. 5), consistent with topological super-
conductivity30. As shown in Extended Data Fig. 4, the peak-to-dip 
crossover occurs for conductance values ranging from 0.2e2/h to 
above e2/h over a range of back-gate voltages. In a topological wire, 
this variation may result from disorder or multiple channels in the 
junction. Trivial subgap states at zero energy typically do not show 
such a crossover30.

Bias spectra measured along a compensated cut of VBG (white 
dashed line in Fig. 2b) at zero applied field are shown in Fig. 2d. 
Spectra show subgap Andreev states that coalesce to zero bias 
at VBG = − 3.1 V and remain at zero bias until VBG = − 2.6 V before 
splitting again. Several sharp resonances—features descending 
from the gap and crossing zero energy—are visible in the sweep. 
These resonances depend only on VC (horizontal peaks in Fig. 2b), 
indicating that they arise from states in or near the tunnel barrier. 
Importantly, as these end-state resonances cross (VBG = − 3.05 V) or 
anticross (VBG = − 2.85 V) at zero bias, the extended ZBP itself does 
not split. More examples of the non-splitting of the ZBP across reso-
nances are shown in Extended Data Fig. 6. While stable ZBPs can 
be regarded as a signature of topological superconductivity, they 
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do not rule out quasi-Majorana modes30. In either case, the unsplit 
ZBP places a bound on coupling of quasi- or spatially separated 
Majorana modes31,32, as investigated previously33.

Figure 2e,f shows bias spectra for other devices, measured as a 
function of uncompensated side-gate voltages VU (device 3) and VL 
(device 4). Both devices display stable ZBPs, with occasional split-
tings in the absence of end resonances, over a range of chemical 
potential of around 0.4 meV, estimated from the lever arms of the 
subgap states before merging at zero energy33. Line-cuts of data in 
Fig. 2c–f as well as the stability of the ZBP with VU and VL are shown 
in Extended Data Figs. 4–7.

The occasional splittings of the ZBP were seen in most of the 
sweeps, suggesting that the effective field does not greatly exceed 
the field needed to drive subgap states to zero energy. The gate 
dependence of splitting presumably reflects merging of the sub-
gap states that have barely made it to zero, and are sensitive to 
the smooth disorder potential, which affects both Majorana 
separation and overlap of residual spin character if not widely 
separated30. Gate-dependent splitting and rejoining argues for a 
discrete subgap state rather than a so-called class D peak, which is 
composed of many overlapping subgap states in disordered super-
conductors34 and so is not expected to readily split and remerge 
at zero.

Sweep-direction-dependent splitting near the coercive fields, 
±25 mT for this device, is shown in Fig. 3. This occurred on the 
negative-voltage side of a gate-induced splitting at VL = −0.6 V  
(Fig. 2f). On the positive side of a gate-induced splitting 
(VL = −0.32 V), sweeping through the coercive field did not split the 
peak, as shown in Extended Data Fig 8. Considering a positively 

sloped topological phase boundary, for instance in ref. 35, we expect 
that splitting of the ZBP when lowering the effective exchange field 
(averaged over ξ) by passing through the coercive field should occur 
specifically near the low-voltage edge of a gate-voltage splitting, as 
observed. A positive slope of the phase boundary implies that leav-
ing the topological phase by increasing density corresponds to leav-
ing by lowering the effective field.

An applied axial field rapidly decreases the superconducting 
gap but typically does not affect the ZBP, as illustrated in Fig. 4a. 
However, the same ZBP can be split by an applied off-axis field, 
as shown in the other panels of Fig. 4. For in-plane angles φ = 30 
(60)° (see Fig. 2a for orientation), the ZBP is clearly split beyond 
an angle-dependent field, μ0∣H30 (60)∣ > 20 (10) mT. The large effective 
g factor, exceeding 20, measured from the slopes of the gap edge 
(dashed line in Fig. 4a) is presumably dominated by the suppres-
sion of superconductivity by the EuS magnetization, which is field 
dependent around zero applied field (Fig. 1d). Depending on tun-
ing, the ZBP can remain stable for all angles of a sizable applied field 
(30 mT), as illustrated in Extended Data Fig. 9.

Splitting of ZBPs from an off-axis field suggests that the spin–
orbit field is oriented transverse to the wire axis35, as expected for 
Rashba-type spin–orbit coupling. Measurements over a range of φ 
show that the coercive field increases as 1/cos(φ) (Extended Data 
Fig. 10), indicating that the EuS magnetization is predominantly 
along the wire axis, and that the component of applied field along 
the wire controls axial magnetization, as expected for this highly 
anisotropic geometry with easy magnetization axis along the wire. 
Upon returning to zero field, the ZBP is recovered for all investi-
gated φ, from 0° to 60°. This allows an off-axis field to be used to 
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do not rule out quasi-Majorana modes30. In either case, the unsplit 
ZBP places a bound on coupling of quasi- or spatially separated 
Majorana modes31,32, as investigated previously33.

Figure 2e,f shows bias spectra for other devices, measured as a 
function of uncompensated side-gate voltages VU (device 3) and VL 
(device 4). Both devices display stable ZBPs, with occasional split-
tings in the absence of end resonances, over a range of chemical 
potential of around 0.4 meV, estimated from the lever arms of the 
subgap states before merging at zero energy33. Line-cuts of data in 
Fig. 2c–f as well as the stability of the ZBP with VU and VL are shown 
in Extended Data Figs. 4–7.

The occasional splittings of the ZBP were seen in most of the 
sweeps, suggesting that the effective field does not greatly exceed 
the field needed to drive subgap states to zero energy. The gate 
dependence of splitting presumably reflects merging of the sub-
gap states that have barely made it to zero, and are sensitive to 
the smooth disorder potential, which affects both Majorana 
separation and overlap of residual spin character if not widely 
separated30. Gate-dependent splitting and rejoining argues for a 
discrete subgap state rather than a so-called class D peak, which is 
composed of many overlapping subgap states in disordered super-
conductors34 and so is not expected to readily split and remerge 
at zero.

Sweep-direction-dependent splitting near the coercive fields, 
±25 mT for this device, is shown in Fig. 3. This occurred on the 
negative-voltage side of a gate-induced splitting at VL = −0.6 V  
(Fig. 2f). On the positive side of a gate-induced splitting 
(VL = −0.32 V), sweeping through the coercive field did not split the 
peak, as shown in Extended Data Fig 8. Considering a positively 

sloped topological phase boundary, for instance in ref. 35, we expect 
that splitting of the ZBP when lowering the effective exchange field 
(averaged over ξ) by passing through the coercive field should occur 
specifically near the low-voltage edge of a gate-voltage splitting, as 
observed. A positive slope of the phase boundary implies that leav-
ing the topological phase by increasing density corresponds to leav-
ing by lowering the effective field.

An applied axial field rapidly decreases the superconducting 
gap but typically does not affect the ZBP, as illustrated in Fig. 4a. 
However, the same ZBP can be split by an applied off-axis field, 
as shown in the other panels of Fig. 4. For in-plane angles φ = 30 
(60)° (see Fig. 2a for orientation), the ZBP is clearly split beyond 
an angle-dependent field, μ0∣H30 (60)∣ > 20 (10) mT. The large effective 
g factor, exceeding 20, measured from the slopes of the gap edge 
(dashed line in Fig. 4a) is presumably dominated by the suppres-
sion of superconductivity by the EuS magnetization, which is field 
dependent around zero applied field (Fig. 1d). Depending on tun-
ing, the ZBP can remain stable for all angles of a sizable applied field 
(30 mT), as illustrated in Extended Data Fig. 9.

Splitting of ZBPs from an off-axis field suggests that the spin–
orbit field is oriented transverse to the wire axis35, as expected for 
Rashba-type spin–orbit coupling. Measurements over a range of φ 
show that the coercive field increases as 1/cos(φ) (Extended Data 
Fig. 10), indicating that the EuS magnetization is predominantly 
along the wire axis, and that the component of applied field along 
the wire controls axial magnetization, as expected for this highly 
anisotropic geometry with easy magnetization axis along the wire. 
Upon returning to zero field, the ZBP is recovered for all investi-
gated φ, from 0° to 60°. This allows an off-axis field to be used to 

Fig. 2 | Bias spectroscopy at zero magnetic field. a, Colourized micrograph of device 2 with measurement set-up. φ indicates the external magnetic field 
direction. b, G at zero bias as a function of VC and VBG for device 2. c, G as a function of V and VC from the weak-tunnelling to the open regime, measured 
along the blue dashed line in b. d, G as a function of V and compensated VBG measured along the white dashed line in b. The top axis shows compensation 
gate voltages. The dependence of the spectrum on VU and VL for device 2 is shown in Extended Data Fig. 6. e,f, Similar to d for devices 3 and 4 as a 
function of uncompensated gate voltages VU and VL, respectively.
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Extended Data Fig. 3 | Critical temperature and pair-breaking parameter. a, Critical temperature, TC, for device 1 as a function of applied axial magnetic 
field, H∥, deduced from the critical current fits shown in Fig. 1b,c using Eq. (2). b, Pair-breaking parameter, α, estimated using Eq. (1) as described in 
Methods.
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Extended Data Fig. 3 | Critical temperature and pair-breaking parameter. a, Critical temperature, TC, for device 1 as a function of applied axial magnetic 
field, H∥, deduced from the critical current fits shown in Fig. 1b,c using Eq. (2). b, Pair-breaking parameter, α, estimated using Eq. (1) as described in 
Methods.
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Extended Data Fig. 1 | Non-overlapping Al/EuS shell characteristics. a, Four-probe differential resistance of the Al shell adjacent to EuS, RS, measured for 
device 7 around zero bias as a function of temperature, T, shows a critical temperature TC0 ~ 1.5 K. Inset: Schematic wire cross section showing orientation 
of Al and EuS shells on adjacent pairs of facets. b,c, RS as a function of applied magnetic field along wire axis, H∥, and current bias, IS, sweeping H∥ from (b) 
negative to positive and (c) positive to negative.
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Hybrid semiconducting nanowire devices combining epitaxial superconductor and ferromagnetic
insulator layers have been recently explored experimentally as an alternative platform for topological
superconductivity at zero applied magnetic field. In this proof-of-principle work we show that the
topological regime can be reached in actual devices depending on some geometrical constraints. To
this end, we perform numerical simulations of InAs wires in which we explicitly include the super-
conducting Al and magnetic EuS shells, as well as the interaction with the electrostatic environment
at a self-consistent mean-field level. Our calculations show that both the magnetic and the super-
conducting proximity e↵ects on the nanowire can be tuned by nearby gates thanks to their ability
to move the wavefunction across the wire section. We find that the topological phase is achieved in
significant portions of the phase diagram only in configurations where the Al and EuS layers overlap
on some wire facet, due to the rather local direct induced spin polarization and the appearance of
an extra indirect exchange field through the superconductor. While of obvious relevance for the
explanation of recent experiments, tunable proximity e↵ects are of interest in the broader field of
superconducting spintronics.

Introduction.— Engineering topological superconduc-
tivity in hybrid superconductor/semiconductor nanos-
tructures where Majorana zero modes may be generated
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condensed matter physics in the last decade [1–3]. While
Rashba-coupled proximitized semiconducting nanowires
appears as one of the most successful platforms [4, 5],
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poses some constraints in the design of quantum infor-
mation processing devices [6, 7].
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ternative route in which an epitaxial layer of a ferro-
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tor/semiconductor nanowire system. While the idea of
replacing the external magnetic field by the ferromag-
netic layer appears as rather straightforward in simplified
models [11], there are open questions when applied to re-
alistic systems. Microscopic calculations are required to
demonstrate whether or not the topological regime could
be reached for the actual geometrical and material pa-
rameters, as well as gating conditions. Moreover, under-
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proximity e↵ects in such devices is of relevance in the
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quantum thermo-devices [14, 15].

To address this problem we perform comprehensive nu-
merical simulations of the ferromagnetic hybrid nanowire
devices, see Fig. 1. Related studies have been performed
concurrently [16–19]. We include the interaction with

the electrostatic environment that typically surrounds
the hybrid nanostructures by solving the Schrödinger-
Poisson equations self-consistently in the Thomas-Fermi
approximation.

We show that topological superconductivity can indeed
arise in these systems provided that certain geometrical
and electrostatic conditions are met. We find that, for
realistic values of the external gates, device layouts where
the Al and EuS layers that partially cover the wire over-
lap on one facet, develop extended topological regions in
parameter space with significant topological gaps. This
is in contrast to devices where the superconducting and
magnetic layers are grown on adjacent facets. This could
explain why recent experiments find zero bias peaks in
bias spectroscopy experiments –compatible in principle
with the existence of a Majorana zero mode at the wire’s
end– only in the former geometry but not in the latter.

Concerning the magnetization process, an open issue is
whether the spin polarization is directly induced by the
ferromagnet in the semiconducting nanowire electrons, or
indirectly through a more elaborate process where it is
first induced in the superconducting layer (at the regions
where the Al and EuS shells overlap) and then in the
wire. For instance, Ref. 8 suggested that the hysteretic
behavior found in some devices could be in agreement
with the indirect mechanism. We find that there is in-
deed an indirect induced magnetization through the Al
layer, but this cannot drive a topological phase transition
by itself. Conversely, there is strong direct magnetization
from the EuS into the InAs, but only over a very thin re-
gion close to the ferromagnet. Interestingly, both mecha-

Overlapping device(a)

InAs Side
gate

120 nm

Non-overlapping
device

(b)

Al EuS

Back
gatex

y

z
58 52 0 60 65

-11.0

-10.6

x (nm) y (nm)

-1.2

-0.8

-0.2

0.2

0.6

1.0

Al InAs EuS

B
an
d
bo
tt
om

(e
V
)

2hex

EF

(c)

Escribano et al., arXiv:2011.06566

Microscopic numerical 
simulations of 3D realistic 
devices. 

Interaction with the 
electrostatic environment 
by solving the Schrödinger- 
Poisson equations self-
consistently. 

hex ∼ ±100meV



36

Superconductor-ferromagnet-semiconductor nanowires

16

Escribano et al., arXiv:2011.06566

Continuous full model Hamiltonian:

2

FIG. 1. Hybrid nanowire geometries. (a,b) Sketches of
the devices studied in this work: a hexagonal cross section
InAs nanowire (green) is simultaneously proximitized by an
Al superconductor layer (light grey) and an EuS magnetic in-
sulator layer (blue). Two side gates and one back gate (dark
grey) allow to tune the chemical potential and control the
position of the wavefunction inside the heterostructure. Dif-
ferent dielectrics are used in the experiments [8] to allow gat-
ing (SiO2, in purple) and to avoid the oxidation of the EuS
layer (HfO2 and AlO2, in orange and yellow, respectively). In
the overlapping device (a) the Al and EuS layers overlap on
one facet, while in the non-overlapping device (b) they are
grown on di↵erent facets. (c) Diagram of the conduction and
valence-band edge positions (in red and blue, respectively)
across the heterostructure, spanning the three di↵erent mate-
rials. In the Al and InAs, the Fermi energy is located in the
conduction band (close to the band bottom in InAs), whereas
in the EuS it is inside its insulating gap. The EuS conduction
band is spin splitted (being hex the exchange coupling). For
this simulation we fix all gate voltages to zero.

nisms –direct and indirect– contribute to achieve robust
and sizeable topological regions in the phase diagram.

Device geometries and model.— Following closely the
experiments of Ref. 8, we consider the two types of de-
vice geometries depicted in Fig. 1(a) and (b). In both
cases, a hexagonal cross-section InAs nanowire is par-
tially covered by epitaxial Al and EuS layers. The main
di↵erence between them is that, in the overlapping device
[Fig. 1(a)], the Al and EuS layers partially overlap on one
facet, while in the non-overlapping one [Fig. 1(b)] they
lie on adjacent facets. Various dielectrics surrounding the
hybrid wires are included in our electrostatic simulations
although we find that they play a minor role. Lastly,
there are three gate electrodes used in the experiments
to tune the electrostatic potential inside the devices: one
back-gate and two side-gates. We analyze other geome-
tries in the Supplemental Material (SM), see Ref. 20.

In this work we address the bulk electronic properties
of these hybrid nanowires, which we assume translational
invariant along the z direction. A schematic band dia-
gram of the three di↵erent materials in the transverse
directions, x, y, can be seen in Fig. 1(c). The Al layer is

a metal whose conduction band lies at �11.7 eV below
the Fermi level [21]. Despite the fact that the conduction
band of the InAs is typically at the Fermi level, experi-
mental ARPES [22] and STM [23] measurements on epi-
taxial Al/InAs structures show that there is a band o↵set
of ⇠ 0.2 eV between the Al and the InAs. This imposes
an electron doping of the InAs conduction band close to
the Al/InAs interface. On the other hand, SX-ARPES
experiments on the EuS/InAs interface [9] indicate that
the InAs conduction band lies well within the EuS band
gap, which is of the order of 1.7 eV [24]. Particularly, the
EuS conduction band is located 0.7 eV above the Fermi
level and the 4f valence bands 1 eV below [9, 24]. The
EuS conduction band is characterized by an exchange
field hex that shifts the spin-up and spin-down energies
by roughly ±100 meV [25–27]. SX-ARPES experiments
[9] also revealed a band bending of the order of 0.1 eV at
the InAs/EuS interface, what imposes a smaller charge
accumulation at this junction as well. All these band
alignments are further distorted by the electric fields de-
fined by the gate electrodes. However, for su�ciently
small fields one can assume that only the InAs conduc-
tion band moves and neglect its hybridization with the
EuS valence bands (see SM [20] for further details).
Under these assumptions, we describe the wires using

the following continuous model Hamiltonian
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where ~r = (x, y), ~k = (�i~rr, kz), and �↵ and ⌧↵ denote
Pauli matrices in spin and Nambu spaces, respectively.
The parameters me↵ , EF, hex and �, corresponding to
the e↵ective mass, Fermi energy, exchange field and su-
perconducting pairing amplitude, are taken di↵erently
for each region according to estimations from the litera-
ture, as summarized in Table I of the SM [20]. To sim-
ulate the disordered outer surface of the Al layer and
the irregular EuS/Al interface we introduce a random
Gaussian noise in EF (~r) [20]. The other parameters,
i.e., the electrostatic potential �(~r) and the spin-orbit
coupling (SOC) inside the wire ↵(~r), are determined in
a self-consistent way. For this purpose, we obtain �(~r)
by solving the Schrödinger-Poisson equations within the
Thomas-Fermi approximation [28, 29]. The SOC ↵(~r)
varies locally with the electric field and is accurately cal-
culated using the procedure described in Ref. 30, see also
20. Notice that the exchange field does not give rise to a
magnetic orbital term in the Hamiltonian, as opposed to
what happens in wires under an external magnetic field
[31–34].
To obtain the electronic properties we diagonalize

Eq. (1). To this end, we discretize it into a tight-binding
Hamiltonian using an appropriate mesh, which is dic-
tated by the Al Fermi wavelength [20]. Notice that a
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grey) allow to tune the chemical potential and control the
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ing (SiO2, in purple) and to avoid the oxidation of the EuS
layer (HfO2 and AlO2, in orange and yellow, respectively). In
the overlapping device (a) the Al and EuS layers overlap on
one facet, while in the non-overlapping device (b) they are
grown on di↵erent facets. (c) Diagram of the conduction and
valence-band edge positions (in red and blue, respectively)
across the heterostructure, spanning the three di↵erent mate-
rials. In the Al and InAs, the Fermi energy is located in the
conduction band (close to the band bottom in InAs), whereas
in the EuS it is inside its insulating gap. The EuS conduction
band is spin splitted (being hex the exchange coupling). For
this simulation we fix all gate voltages to zero.
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Device geometries and model.— Following closely the
experiments of Ref. 8, we consider the two types of de-
vice geometries depicted in Fig. 1(a) and (b). In both
cases, a hexagonal cross-section InAs nanowire is par-
tially covered by epitaxial Al and EuS layers. The main
di↵erence between them is that, in the overlapping device
[Fig. 1(a)], the Al and EuS layers partially overlap on one
facet, while in the non-overlapping one [Fig. 1(b)] they
lie on adjacent facets. Various dielectrics surrounding the
hybrid wires are included in our electrostatic simulations
although we find that they play a minor role. Lastly,
there are three gate electrodes used in the experiments
to tune the electrostatic potential inside the devices: one
back-gate and two side-gates. We analyze other geome-
tries in the Supplemental Material (SM), see Ref. 20.

In this work we address the bulk electronic properties
of these hybrid nanowires, which we assume translational
invariant along the z direction. A schematic band dia-
gram of the three di↵erent materials in the transverse
directions, x, y, can be seen in Fig. 1(c). The Al layer is

a metal whose conduction band lies at �11.7 eV below
the Fermi level [21]. Despite the fact that the conduction
band of the InAs is typically at the Fermi level, experi-
mental ARPES [22] and STM [23] measurements on epi-
taxial Al/InAs structures show that there is a band o↵set
of ⇠ 0.2 eV between the Al and the InAs. This imposes
an electron doping of the InAs conduction band close to
the Al/InAs interface. On the other hand, SX-ARPES
experiments on the EuS/InAs interface [9] indicate that
the InAs conduction band lies well within the EuS band
gap, which is of the order of 1.7 eV [24]. Particularly, the
EuS conduction band is located 0.7 eV above the Fermi
level and the 4f valence bands 1 eV below [9, 24]. The
EuS conduction band is characterized by an exchange
field hex that shifts the spin-up and spin-down energies
by roughly ±100 meV [25–27]. SX-ARPES experiments
[9] also revealed a band bending of the order of 0.1 eV at
the InAs/EuS interface, what imposes a smaller charge
accumulation at this junction as well. All these band
alignments are further distorted by the electric fields de-
fined by the gate electrodes. However, for su�ciently
small fields one can assume that only the InAs conduc-
tion band moves and neglect its hybridization with the
EuS valence bands (see SM [20] for further details).
Under these assumptions, we describe the wires using
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cases, a hexagonal cross-section InAs nanowire is par-
tially covered by epitaxial Al and EuS layers. The main
di↵erence between them is that, in the overlapping device
[Fig. 1(a)], the Al and EuS layers partially overlap on one
facet, while in the non-overlapping one [Fig. 1(b)] they
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although we find that they play a minor role. Lastly,
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where �
(max) is the maximum value that we allow the

Anderson coe�cient to take in order to ensure converge.
We set this value to 0.1 in all our simulations.

To solve the Poisson equation, we also need to impose
boundary conditions. We fix di↵erent potentials at the
boundaries of the gates for the di↵erent simulations per-
formed in this work. In addition to this, we fix a constant
potential of VAl = 0.2 eV at the boundaries with the Al
shell. The electrostatic potential resulting from this last
condition will create a band bending of the same magni-
tude at the InAs/Al interface [see Fig. 1(c)]. This band
bending, reported in experiments [6, 11, 12], has been
previously described in other theoretical works [20, 32–
36] on similar InAs/Al heterostructures.

To solve the Poisson equation with the above ingre-
dients we use Fenics [37, 38], a finite element solver for
Python. We use a mesh discretization of 1 nm.

As we show in the main text, the precise geometries of
the devices, the position of the Al and EuS shells on the
InAs facets and the gates, play a key role in the appear-
ance of a topological phase. To better illustrate this fact,
we show in Fig. 1 the electrostatic potential in the over-
lapping (a) and the non-overlapping (b) devices. In these
simulations, the back-gate voltage is set to a negative
value, particularly Vbg = �1 V. This is a typical situation
in our simulations and in the experiments, as one needs
to deplete the wire in order to populate it with just a few
bands. Hence, the electrostatic potential is negative at
the bottom of the wire, while it is positive and maximum
close to the Al/InAs interface due to the Al/InAs band
bending. This is translated into an accumulation of (mo-
bile) charges ⇢mobile in this interface, quantity that we
show in Fig. 1(c) and (d) for the same devices. Despite
the similarity between the electrostatic profiles of both
devices, we show in the main text that they give rise to a
very di↵erent energy spectrum. This can be understood
by noticing the position of the the charge density with
respect to the EuS. The better part of the charge density
is located at the Al/InAs interface. In the overlapping
device [Fig. 1(c)], this charge is thus also close to the left
part of the EuS layer (the top facet). On the contrary,
the EuS layer in the non-overlapping device [Fig. 1(d)]
is far apart from the charge density. This apparently mi-
nor di↵erence is what enhances the hybridization with
the EuS in the overlapping device, and what suppresses
the same hybridization in the non-overlapping one. We
remark that this hybridization is necessary to induce a
strong enough exchange field in the wire, and therefore,
to create a topological phase.

4. Spin-orbit coupling

The SO interaction included in the Hamiltonian of Eq.
(1) arises whenever an spatial symmetry is broken. In
this Hamiltonian, only linear terms with k are included
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FIG. 2. Rashba SO coupling across the wire section for a (111)
zinc-blende InAs nanowire (top) and a (0001) wurtzite InAs
nanowire (bottom), in the overlapping device, (a) and (c), and
in the non-overlapping one, (b) and (d). Same parameters as
in Fig. 1.

as they are known to be the dominant ones. The strength
of the SO interaction is given by the SO coupling ~↵(~r)
and its value depends on the precise material. For Al,
the SO coupling is negligible [10], while for the EuS we
have found no information about its value in the litera-
ture. We thus set to zero the SO coupling of both mate-
rials in our simulations. By contrast, the SO coupling in
InAs nanowires can take large values [30, 39]. Because
the topological protection of the Majorana nanowires de-
pends strongly on the precise value of this interaction, a
proper description is crucial to reach a good qualitative
agreement with the experiments.

The SO coupling has, in general, two components [40],

~↵(~r) = ~↵D + ~↵R(~r), (18)

where ↵D is the Dresselhaus term and ↵R the Rashba one.
The Dresselhaus SO coupling arises when the crystal unit
cell itself is not symmetric, leading to a bulk inversion
asymmetry. Hence, it is a spatial independent value that
only depends on the material and its precise crystallo-
graphic structure. For InAs nanowires, it is known to be
negligible in (111) zinc-blende crystals, while its value is
roughly ~↵D = (0, 0, 30)(meV·nm) in (0001) wurtzite ones
[41, 42]. On the other hand, the Rashba SO coupling
emerges when the mesoscopic system is not symmetric in
some direction, as it happens when there are interfaces or
potential gates. It can be accurately described for III-V
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Semiconductor Rashba nanowires are quasi-one-dimensional systems that have large spin-orbit (SO) coupling
arising from a broken inversion symmetry due to an external electric field. There exist parametrized multiband
models that can describe accurately this effect. However, simplified single band models are highly desirable
to study geometries of recent experimental interest, since they may allow to incorporate the effects of the
low dimensionality and the nanowire electrostatic environment at a reduced computational cost. Commonly
used conduction band approximations, valid for bulk materials, greatly underestimate the SO coupling in
zinc-blende crystal structures and overestimate it for wurtzite ones when applied to finite cross-section wires,
where confinement effects turn out to play an important role. We demonstrate here that an effective equation
for the linear Rashba SO coupling of the semiconductor conduction band can reproduce the behavior of more
sophisticated eight-band k · p model calculations. This is achieved by adjusting a single effective parameter that
depends on the nanowire crystal structure and its chemical composition. We further compare our results to the
Rashba coupling extracted from magnetoconductance measurements in several experiments on InAs and InSb
nanowires, finding excellent agreement. This approach may be relevant in systems where Rashba coupling is
known to play a major role, such as in spintronic devices or Majorana nanowires.
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I. INTRODUCTION

The spin-orbit (SO) interaction is a relativistic effect that
couples the electron’s spin and momentum in the presence
of an electric field. Among crystalline solids it is particularly
strong in some semiconductors [1] and, although it is typically
small compared to other characteristic energies, it produces
a splitting of otherwise degenerate energy bands around the
Fermi level [2]. This can have tremendous consequences in
the transport of electrons, as is manifested in the field of
spintronics [3] and, more recently, in spin-orbitronics [4]. In
particular, the SO interaction is the driving mechanism behind
the existence of topological insulators [5,6] through the so-
called quantum spin Hall effect [7]. It is also essential in the
search of Majorana zero modes in topological superconduc-
tors [8– 13], such as the ones based on hybrid superconductor-
semiconductor nanowires [14,15]. In these wires, the SO
term contributes to create nondegenerate bands with spin-
momentum locking, a key ingredient behind the topological
phase transition. Moreover, in the topological phase of the
wire, the minigap that protects the Majorana modes from
decoherence increases with the SO coupling [16].

For their connection to Majorana physics as well as
for other spin-related mechanisms, semiconductor nanowires
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with strong SO coupling have come to the forefront of
condensed-matter research [17– 19]. There are several good
reasons for their choice. They can be grown to a high de-
gree of perfection, almost at the atomic scale [20– 22]. They
can be proximitized [23] both by depositing superconduc-
tors on top of them as well as by growing them epitaxially
on the nanowire, forming well controlled and sophisticated
heterostructures [24]. They can also be easily contacted with
metallic leads to an external circuit, and their properties are
highly tunable through gate electrodes and external fields.
In particular, this permits to tune them to enhance their SO
coupling [25– 27].

Inside these nanowires, electrons are subject to nonuniform
electrostatic potentials. When a charged particle moves in an
electric field, it experiences an effective magnetic field that
couples to the particle’s spin through the Zeeman effect [2].
The corresponding Hamiltonian is usually written as

HSO = α⃗ · (σ⃗ × k⃗), (1)

where k⃗ is the electron’s wave vector, σ⃗ is the vector of Pauli
matrices in spin space and α⃗ is the so-called SO coupling. This
coefficient determines the strength of the coupling between
the spin and the momentum of the electron and is related to the
effective electric field felt by the electrons inside the wire [1].
Because the phenomena and applications mentioned before
are very sensitive to the precise value of this coupling [4], a
proper description of this mechanism is crucial to predict the
actual properties of these nanowires.

There are two ways in which an electric field can arise in
semiconductor nanowires [1]. On the one hand, the crystal
itself creates an intrinsic electric field when there is a lack
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Semiconductor Rashba nanowires are quasi-one-dimensional systems that have large spin-orbit (SO) coupling
arising from a broken inversion symmetry due to an external electric field. There exist parametrized multiband
models that can describe accurately this effect. However, simplified single band models are highly desirable
to study geometries of recent experimental interest, since they may allow to incorporate the effects of the
low dimensionality and the nanowire electrostatic environment at a reduced computational cost. Commonly
used conduction band approximations, valid for bulk materials, greatly underestimate the SO coupling in
zinc-blende crystal structures and overestimate it for wurtzite ones when applied to finite cross-section wires,
where confinement effects turn out to play an important role. We demonstrate here that an effective equation
for the linear Rashba SO coupling of the semiconductor conduction band can reproduce the behavior of more
sophisticated eight-band k · p model calculations. This is achieved by adjusting a single effective parameter that
depends on the nanowire crystal structure and its chemical composition. We further compare our results to the
Rashba coupling extracted from magnetoconductance measurements in several experiments on InAs and InSb
nanowires, finding excellent agreement. This approach may be relevant in systems where Rashba coupling is
known to play a major role, such as in spintronic devices or Majorana nanowires.
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I. INTRODUCTION

The spin-orbit (SO) interaction is a relativistic effect that
couples the electron’s spin and momentum in the presence
of an electric field. Among crystalline solids it is particularly
strong in some semiconductors [1] and, although it is typically
small compared to other characteristic energies, it produces
a splitting of otherwise degenerate energy bands around the
Fermi level [2]. This can have tremendous consequences in
the transport of electrons, as is manifested in the field of
spintronics [3] and, more recently, in spin-orbitronics [4]. In
particular, the SO interaction is the driving mechanism behind
the existence of topological insulators [5,6] through the so-
called quantum spin Hall effect [7]. It is also essential in the
search of Majorana zero modes in topological superconduc-
tors [8– 13], such as the ones based on hybrid superconductor-
semiconductor nanowires [14,15]. In these wires, the SO
term contributes to create nondegenerate bands with spin-
momentum locking, a key ingredient behind the topological
phase transition. Moreover, in the topological phase of the
wire, the minigap that protects the Majorana modes from
decoherence increases with the SO coupling [16].

For their connection to Majorana physics as well as
for other spin-related mechanisms, semiconductor nanowires
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reasons for their choice. They can be grown to a high de-
gree of perfection, almost at the atomic scale [20– 22]. They
can be proximitized [23] both by depositing superconduc-
tors on top of them as well as by growing them epitaxially
on the nanowire, forming well controlled and sophisticated
heterostructures [24]. They can also be easily contacted with
metallic leads to an external circuit, and their properties are
highly tunable through gate electrodes and external fields.
In particular, this permits to tune them to enhance their SO
coupling [25– 27].

Inside these nanowires, electrons are subject to nonuniform
electrostatic potentials. When a charged particle moves in an
electric field, it experiences an effective magnetic field that
couples to the particle’s spin through the Zeeman effect [2].
The corresponding Hamiltonian is usually written as

HSO = α⃗ · (σ⃗ × k⃗), (1)

where k⃗ is the electron’s wave vector, σ⃗ is the vector of Pauli
matrices in spin space and α⃗ is the so-called SO coupling. This
coefficient determines the strength of the coupling between
the spin and the momentum of the electron and is related to the
effective electric field felt by the electrons inside the wire [1].
Because the phenomena and applications mentioned before
are very sensitive to the precise value of this coupling [4], a
proper description of this mechanism is crucial to predict the
actual properties of these nanowires.

There are two ways in which an electric field can arise in
semiconductor nanowires [1]. On the one hand, the crystal
itself creates an intrinsic electric field when there is a lack
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FIG. 1. (a) Sketch of the type of systems studied in this work:
an infinite semiconductor nanowire with hexagonal cross section
of width Wwire (green) is placed over a dielectric substrate (purple)
and may be covered by a metal (grey) on one or several of its
facets. A back gate (black) allows to tune the chemical potential
inside the wire. At its facets, the nanowire may develop a charge
accumulation layer that we simulate with a surface charge density
ρsurf . This charge layer may be present or absent at the interfaces with
metals, depending on the chemical details of the heterojunction. All
these elements contribute to create an electrostatic profile inside the
wire that in turn influences the Rashba spin-orbit (SO) coupling of its
energy bands. (b) Schematics of the eight lowest-energy bands of III-
V semiconductors around the " point where these compounds exhibit
a direct gap. These are grouped into four quasidegenerate pairs
that comprise the conduction band, the light-hole, heavy-hole, and
split-off valence bands. Their corresponding states, |C↑,↓⟩, |HH↑,↓⟩,
|LH↑,↓⟩, |SO↑,↓⟩, serve as a truncated basis for the k · p Kane model.
#gis the semiconductor gap between conduction and valence bands,
#soff is the gap between valence and split-off bands, P is the coupling
between conduction and valence bands, and γi are the intravalence
band couplings, see Appendix A.

GaAs, or GaSb, which typically exhibit a large Rashba SO
coupling [38]. We consider semiconductor nanowires with
crystal structures of zinc-blende (111) or wurtzite (0001),
since they are the most commonly used in experiments due to
their fabrication with low impurity concentrations [20,21,39].
We assume that the nanowires are infinite in the specific
growth direction but with a finite hexagonal cross-section
[24,40] of width Wwire as depicted in Fig. 1.

A. Eight-band k · p Kane model

Multiband k · p models are known to successfully repro-
duce the energy-band structure of III-V compound semicon-
ductors [1,32– 37]. The SO coupling can then be directly
extracted from the shape of the energy spectrum [37,41– 43].
We summarize here this procedure. These effective mod-
els, broadly explained and used in the literature (see, e.g.,
Refs. [1,44]), assume that the electron movement through
the crystal is well described by a single-particle Hamilto-
nian. This Hamiltonian includes relativistic SO effects as
well as an effective potential, which arises due to electron-
nuclei interactions and thus has the same periodicity than
the Bravais lattice. This allows to use the Bloch theorem
and to expand the periodic (Bloch) part of the wavefunction
around a reciprocal-space point of interest. For the case of
III-V semiconductors, the natural expansion is around the
" point where these compounds exhibit a direct gap [38].
The resulting Hamiltonian is then projected over a truncated
basis set that includes explicitly the main bands of interest,
while their couplings to the remaining bands are included
perturbatively using Löwdin perturbation theory [45]. Some
of the transition matrix elements are forbidden by crystal

symmetries. Using group theory arguments, the remaining
couplings are substituted by effective parameters. These pa-
rameters are called Kane or Luttinger parameters and can
be extracted from ab initiocalculations or experimental data
for a particular material with a specific crystal structure. In
the 8B model that concerns us, only the four (doubly quasi-
degenerate) energy bands closer to the semiconductor gap are
included in the basis set: the lowest-energy conduction band,
and the heavy-hole, light-hole and split-off valence bands, see
Fig. 1(b). These eight bands are typically sufficient to account
for the Rashba SO effects of these materials [44,46,47]. For
a detailed derivation of this multiband k · p Kane theory and
the resulting 8B Hamiltonians for zinc-blende and wurtzite
crystals, we refer the reader to Appendix A and references
therein [1,48,49]. We note that these Hamiltonians are only
accurate for the reciprocal space range in which they are fitted
to ab initiocalculations. For the particular Kane parameters
provided in Appendix A, this implies k ∈ [− 1, 1] (nm)− 1.
Hence, when the Fermi wavevector is outside this range, the
assumptions made for the k · p approximation break down and
this model is no longer reliable.

For finite cross-section nanowires that are infinite along
the z direction, the band structure is then calculated by di-
agonalizing the k · p Hamiltonian for different kz values. To
do so, we first replace the momentum operator components
across the wire’s section by their corresponding derivatives,
i.e., kx → − i∂x and ky → − i∂y, while considering kz as a good
quantum number due to the translational invariance along this
direction. Then, the operators are discretized using the finite
difference method in a rectangular mesh for the nanowire
section. Special treatment is required in this step in order to
avoid spurious solutions in the energy spectrum [50,51]. For
an extended explanation of the numerical methods used in this
work, see Appendix C.

Once the band structure is obtained, the SO coupling can be
extracted by fitting each subband j by the following effective
dispersion relation:

E ( j)
± (kz ) =

h̄2k2
z

2m( j)
eff

+ E ( j)
T ±

√(
α

( j)
eff kz

)2 +
(
β

( j)
eff k2

z

)2
, (2)

where j and ± are the subband and spin indexes, m( j)
eff is

the effective mass and E ( j)
T is the transverse subband energy

at kz = 0. The other two parameters, α
( j)
eff and β

( j)
eff , take

into account possible Rashba and/or Dresselhaus SO effects.
While the Rashba contribution to the SO coupling is known to
be mainly linear in kz irrespective of the crystal structure, the
Dresselhaus one can be both linear and quadratic for wurtzite
crystals, and only linear for zinc-blende (111) crystals [37].
Hence, it is not possible, in principle, to separate the contribu-
tions of the Rashba and Dresselhaus coefficients in the linear
term of the SO coupling. In practice, the linear Dresselhaus
contribution turns out to be zero for zinc-blende (111) crystals
and negligible or zero for wurtzite (0001) ones [31,44].1 Thus

1Notice that zinc-blende (111) crystals are almost symmetric in
the three directions and wurtzite (0001) ones are almost symmetric
around the z axis. Therefore, since there is no bulk inversion asym-
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Full model 
results:
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Efective model 
results: Phase diagrams and wave function distribution
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From calculations of the DOS, band structure, topological invariant and the phase 
diagram, we conclude that the hybrid InAs/Al/EuS nanowires can exhibit topological 
superconductivity under certain geometrical and gating conditions.  

For a topological phase to exist, the nanowire wavefunction must acquire both 
superconducting and magnetic correlations such that the induced exchange field 
exceeds the induced pairing.  

Since the proximity effects occur only in wire cross-section regions close to the Al and 
EuS layers, the wavefunction needs to be pushed simultaneously close to both materials 
by means of nearby gates.  

Our numerical simulations demonstrate that this is electrostatically favorable in device 
geometries where the Al and EuS shells overlap over some wire facet.  

Apart from a direct magnetization from the EuS layer in contact to the wire, there is an 
indirect one through the Al layer, which favors reaching the topological condition. 

Conclusions
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Advantages of this new design:

No need to apply external magnetic field; magnetic fields are detrimental 
for superconductivity, constrain device materials and operation 

No detrimental orbital effects (just Zeeman-type exchange coupling) 

Facilitates device layout in multiwire setups, e.g. not constrained to 
parallel wires

TORSTEN KARZIG et al. PHYSICAL REVIEW B 95, 235305 (2017)

FIG. 1. An example of a scalable hexon architecture. The minimal building block defining a qubit and an ancilla are one-sided hexons,
which are topological Cooper pair boxes containing six MZMs (magnified in the left panel). Note: the illustration is not drawn to scale; in
practice, the length L of 1DTS wires is much larger than the coherence length ξ and vertical separation distances between wires are much
smaller than ξ . The measurement of joint parities of MZMs becomes possible by selective coupling to quantum dots. The latter are defined and
controlled by gates as depicted in the magnification in the right panel. Two-MZM measurements within a hexon and four-MZM measurements
involving two hexons (with two MZMs from a given hexon) enable Clifford-complete operations on the array of qubits.

B. Entangling operations and full quantum computation

We must entangle different hexons in order to implement
quantum operations corresponding to the full set of Clifford
gates. Such entangling operations between hexons can be
achieved by performing four-MZM measurements, involving
two MZMs from each hexon. The latter can also be realized
using quantum dots (see Sec. III for details). The main idea
is to use an interference effect [22,23] in the hybridization
of two quantum dots arranged as in the magnified panel of
Fig. 1. The pinch-off gates are tuned so that there is no direct
connection between the two quantum dots. However, the two
dots can hybridize via tunneling in and out of the MZM states
of the nearby hexons. Coherently summing amplitudes along
the paths through each nearby hexon leads to a detectable
dependence of the hybridization energy on the overall parity
of the four involved MZMs.

In order to achieve a fully connected two-dimensional
graph for the entangling operations, some of the four-
MZM measurements must involve MZMs that are separated
by distances of approximately 2L. Measurements involv-
ing these longer distances require additional structure to
actualize. For this purpose, additional floating topological
superconductors of length 2L can act as links to bridge
these distances by MZM-mediated coherent electron tun-
neling [27,28]. Two such coherent links are placed above
and below any superconducting backbone (see Fig. 1). The
resulting (trivalent) connectivity graph of the hexon qubits is
hexagonal.

Due to the freedom of arbitrary MZM exchanges within
each hexon, a single entangling operation between adjacent
hexon pairs is enough to realize CNOT operations between
qubits and therefore make the hexons Clifford complete. The
latter can be augmented to full quantum universality if we can
also generate approximate magic states. The designs presented
here naturally allow us to prepare very precise magic states,
which lowers the overhead for magic state distillation (see
Sec. V).

We further note that error correction may be imple-
mented at the software level on the array of hexons,
as Clifford-complete physical qubits support all stabilizer
codes [56].

III. MAJORANA MEASUREMENTS

A key feature of our approach to scalable topological
quantum computing is the ability to perform projective
measurements of the combined fermionic parity of multiple
MZMs. Such measurements are initiated by appropriately
tuning gates to couple MZMs to quantum dots, as seen in
the magnified right panel of Fig. 1. This realizes the devices
depicted in Fig. 2 with one quantum dot (left panel) or two
quantum dots (right panel). The gates control the amplitudes
tj for electrons to tunnel between the MZMs (red) and a
quantum dot (light gray). At low temperature T ≪ EC , the
probability of an excited state with an electron on the island is
exponentially small, as it is proportional to exp(−EC/T ). The
virtual transitions of electrons to the island are state dependent
and, therefore, shift the energy levels in a parity-dependent
manner. Suitable spectroscopy on the quantum dot system
allows measurements of the two-MZM parity (left panel) or of
the four-MZM parity (right panel) parity [24,26].

The amplitude tj is exponentially suppressed in the tunnel
barrier separating γj from the quantum dot, and as such may
be accurately tuned to zero. Before and after the measurement,
all couplings are turned off, leaving the MZM island and

FIG. 2. Appropriately tuning the gates shown in the magnification
of the right of Fig. 1 creates the scenarios depicted in the left and
right panels here. Left panel: a device configuration for measuring
the two-MZM parity p12 (eigenvalue of iγ1γ2). MZMs γ1 and γ2 are
coupled to a single quantum dot with tunneling amplitudes t1 and t2,
respectively. Right panel: a device configuration for measuring the
four-MZM parity p = p12p34, where pjk is the eigenvalue of iγjγk .
MZMs γ1,γ3 are tunnel coupled to the upper quantum dot, while
MZMs γ2 and γ4 are tunnel coupled to the lower quantum dot. Both
geometries can be modified to measure nonadjacent pairs of MZMs,
as demonstrated in Fig. 9.
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Drawbacks

Need to grow tripartite wires; only some configurations of the epitaxial 
layers give topology 

Induced Zeeman field is not tunable (topological phase transition only 
tunable through gates) 

The ferromagnetic insulator may suffer from magnetic domains 

This hybrid system should display similar problems as conventional 
partial-shell superconductor-semiconductor wires: inhomogeneous 
potentials → quasi-Majoranas, disorder, QD formation...

23
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Flux-induced topological superconductivity in
full-shell nanowires
S. Vaitiekėnas, G. W. Winkler, B. van Heck, T. Karzig, M.-T. Deng, K. Flensberg, L. I. Glazman, C. Nayak,
P. Krogstrup, R. M. Lutchyn*, C. M. Marcus*

INTRODUCTION:Majorana zero modes (MZMs)
localized at the ends of one-dimensional topo-
logical superconductors are promising candi-
dates for fault-tolerant quantum computing.
One approach among the proposals to realize
MZMs—based on semiconducting nanowires
with strong spin-orbit coupling subject to a
Zeeman field and superconducting proxim-
ity effect—has received considerable attention,
yielding increasingly compelling experimen-
tal results over the past few years. An alter-
native route to MZMs aims to create vortices
in topological superconductors, for instance,
by coupling a vortex in a conventional super-
conductor to a topological insulator.

RATIONALE:We intoduce a conceptually dis-
tinct approach to generatingMZMs by thread-
ingmagnetic flux through a superconducting
shell fully surrounding a spin-orbit–coupled
semiconducting nanowire core; this approach
contains elements of both the proximitized-
wire and vortex schemes. We show experi-
mentally and theoretically that thewinding of

the superconducting phase around the shell
induced by the applied flux gives rise toMZMs
at the ends of the wire. The topological phase
sets in at relatively low magnetic fields, is
controlled by moving from zero to one phase
twist around the superconducting shell, and
does not require a large g factor in the semi-
conductor, which broadens the landscape of
candidate materials.

RESULTS: In the destructive Little-Parks re-
gime, the modulation of critical temperature
with flux applied along the hybrid nanowire
results in a sequence of lobes with reentrant
superconductivity. Each lobe is associated with
a quantized number of twists of the super-
conducting phase in the shell, determined
by the external field. The result is a series of
topologically locked boundary conditions for
the proximity effect in the semiconducting
core, with a dramatic effect on the subgap den-
sity of states.
Tunneling into the core in the zeroth super-

conducting lobe, around zero flux, we mea-

sure a hard proximity-induced gap with no
subgap features. In the superconducting re-
gions around one quantum of applied flux,F0 =
h/2e, corresponding to phase twists of ±2p in
the shell, tunneling spectra into the core show
stable zero-bias peaks, indicating a discrete
subgap state fixed at zero energy.
Theoretically, we find that a Rashba field

arising from the breaking of local radial
inversion symmetry at the semiconductor-
superconductor interface, along with 2p-
phase twists in the boundary condition, can

induce a topological state
supporting MZMs. We
calculate the topological
phase diagram of the
system as a function of
Rashba spin-orbit cou-
pling, radius of the semi-
conducting core, and band

bending at the superconductor-semiconductor
interface. Our analysis shows that topolog-
ical superconductivity extends in a reason-
ably large portion of the parameter space.
Transport simulations of the tunneling con-
ductance in the presence of MZMs qualita-
tively reproduce the experimental data in
the entire voltage-bias range.
We obtain further experimental evidence

that the zero-energy states are delocalized
at wire ends by investigating Coulomb block-
ade conductance peaks in full-shell wire
islands of various lengths. In the zeroth lobe,
Coulomb blockade peaks show 2e spacing;
in the first lobe, peak spacings are roughly
1e-periodic, with slight even-odd alterna-
tion that vanishes exponentially with island
length, consistent with overlapping Majo-
rana modes at the two ends of the Coulomb
island. The exponential dependence on length,
as well as incompatibility with a power-law
dependence, provides compelling evidence
that MZMs reside at the ends of the hybrid
islands.

CONCLUSION: While being of similar sim-
plicity and practical feasibility as the orig-
inal nanowire proposals with a partial shell
coverage, full-shell nanowires provide sev-
eral key advantages. The modest magnetic
field requirements, protection of the semi-
conducting core from surface defects, and
locked phase winding in discrete lobes to-
gether suggest a relatively easy route to creat-
ing and controlling MZMs in hybrid materials.
Our findings open the possibility of studying
an interplay of mesoscopic and topological
physics in this system.▪
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Majorana fingerprints in full-shell nanowires. (A) Colorized electron micrograph of a tunneling device
composed of a hybrid nanowire with hexagonal semiconducting core and full superconducting shell.
(B) Tunneling conductance (color) into the core as a function of applied flux (horizontal axis) and
source-drain voltage (vertical axis) reveals a hard induced superconducting gap near zero applied flux
and a gapped region with a discrete zero-energy state around one applied flux quantum, F0. (C) Realistic
transport simulations in the presence of MZMs reproduce key features of the experimental data.
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Majorana fingerprints in full-shell nanowires. (A) Colorized electron micrograph of a tunneling device
composed of a hybrid nanowire with hexagonal semiconducting core and full superconducting shell.
(B) Tunneling conductance (color) into the core as a function of applied flux (horizontal axis) and
source-drain voltage (vertical axis) reveals a hard induced superconducting gap near zero applied flux
and a gapped region with a discrete zero-energy state around one applied flux quantum, F0. (C) Realistic
transport simulations in the presence of MZMs reproduce key features of the experimental data.
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Majorana fingerprints in full-shell nanowires. (A) Colorized electron micrograph of a tunneling device
composed of a hybrid nanowire with hexagonal semiconducting core and full superconducting shell.
(B) Tunneling conductance (color) into the core as a function of applied flux (horizontal axis) and
source-drain voltage (vertical axis) reveals a hard induced superconducting gap near zero applied flux
and a gapped region with a discrete zero-energy state around one applied flux quantum, F0. (C) Realistic
transport simulations in the presence of MZMs reproduce key features of the experimental data.
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measurement techniques, see the Materials
and methods section.
Differential resistance of the shell, RS =

dVS/dIS, measured for device 1 as a function
of bias current, IS, and axial magnetic field,
B, showed a lobe pattern characteristic of the
destructive regime (Fig. 1C) with a maximum
switching current of 70 mA at B = 0, the center
of the zeroth lobe. Between the zeroth and first
lobes, supercurrent vanished at |B| = 45 mT,
reemerged at 70 mT, and had a maximum
near the center of the first lobe, at |B| = 110mT.
A second lobe with smaller critical current
was also observed, but a third lobe was not
observed.
Temperature dependence of RS around zero

bias yielded a reentrant phase diagramwith
superconducting regions separated by destruc-
tive regions with temperature-independent
normal-state resistance RS

(N) = 1.3 ohms (Fig.
1D). RS

(N) and shell dimensions from Fig. 1A
yield a Drudemean free path of l = 19 nm. The
dirty-limit shell coherence length (33, 40)

xS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pℏvFl
24kBTC

s

ð1Þ

can then be found using the zero-field critical
temperature TC = 1.2 K from Fig. 1D and Fermi
velocity of Al, vF = 2 × 106 m/s (41), with re-
duced Planck constant ħ and Boltzmann con-
stant kB, yielding xS = 180 nm. The same values

for xS are found using the onset of the first
destructive regime (42).

Tunneling spectroscopy

Differential conductance, dI/dV, as a func-
tion of source-drain voltage, V, measured in
the tunneling regime as a probe of the local
density of states at the end of the nanowire is
shown in Fig. 2. The Al shell was removed at
the end of thewire, and the tunnel barrier was
controlled by the global back-gate at voltage
VBG. At zero field, a hard superconducting gap
was observed throughout the zeroth super-
conducting lobe (Fig. 2, B and D). Similar to
the supercurrent measurements presented
above, the superconducting gap in the core
closed at |B| = 45 mT and reopened at 70 mT,
separated by a gapless destructive regime. Upon
reopening, a narrow zero-bias conductance peak
was observed throughout the first gapped lobe
(Fig. 2, B and F). Several flux-dependent sub-
gap states are also visible, separated from the
zero-bias peak in the first lobe. These nonzero
subgap states are analogs of Caroli–de Gennes–
Matricon bound states (43), in this case con-
fined at the metal-semiconductor interface
rather than around a vortex core.
The first lobe persists to 150 mT, above

which a second gapless destructive regime
was observed. A second gapped lobe centered
around |B| = 220 mT then appeared, contain-
ing several subgap states away from zero en-
ergy, as shown in greater detail in (39). The

second lobe closes at 250 mT, above which
only normal-state behavior was observed.
The dependence of tunneling spectra on

back-gate voltage in the zeroth lobe is shown
in Fig. 2C. In a weak tunneling regime, for
VBG < −1 V, a hard gap was observed, with D =
180 meV (Fig. 2, C and D). For VBG ~ −0.8 V, as
the tunneling barrier is decreased, the subgap
conductance is enhanced owing to Andreev
processes. The increase in conductance at
VBG ~ −1.2 V is likely caused by a resonance
in the barrier. In the first lobe, at B = 110 mT,
the sweep of VBG showed a zero-energy state
throughout the tunneling regime (Fig. 2E).
The cut displayed in Fig. 2F shows a discrete
zero-bias peak separated from other states
by a softened gap, presumably owing to finite
temperature and level broadening in the junc-
tion. As the tunnel barrier is opened, the zero-
bias peak gradually evolves into a zero-bias dip.
The increase of finite-bias conductance com-
pared with zero-bias conductance as tunnel
barrier decreases is in qualitative agreement
with theory supporting MZMs (44), although
the crossover from a peak to a dip occurs at
lower conductance than expected. Additional
line-cuts and the tunneling spectroscopy for
the second lobe are shown in figs. S3 and S4
(39). Several discontinuities in spectra occurred
as VBG was swept at the same gate voltages in
Fig. 2, C and E, presumably because of gate-
dependent charge motion in the barrier.

Modeling of topological phases

To better understand the origin of the zero-
energymodes in the first lobe, we analyze the-
oretically a semiconducting nanowire covered
by a superconducting shell. First, we present
a toy model of a cylindrically symmetric full-
shell wire (Fig. 3), highlighting the underlying
mechanism of the topological phase appear-
ance. Thereafter, wemove on to simulations of
realistic geometries (Figs. 4 and 5).
We assume that the semiconductor (InAs)

has a large Rashba spin-orbit coupling owing
to the local inversion symmetry breaking in
the radial direction at the semiconductor-
superconductor interface (corresponding to an
electric field pointing along the radial direction
at the superconductor-semiconductor inter-
face). The system is subject to a magnetic field
along the direction of the nanowire, B

→
¼ Bẑ .

Using cylindrical coordinates and the symmet-
ric gauge for the electromagnetic vector poten-
tial, A

→
¼ 1

2 ðB
→
$ r

→Þ, the effective Hamiltonian
for the semiconducting core can be written as

H0 ¼ ðp→ þ eAϕϕ̂Þ2

2m& ' m

þ ar̂ ( ½s→ $ ðp→ þ eAϕϕ̂Þ* ð2Þ

Here, we use natural units (ħ = 1), p
→
is the elec-

tron momentum operator, e > 0 the electric
charge,m* the effective mass, m is the chemical
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Fig. 1. Destructive Little-
Parks regime in full-
shell nanowire device.
(A) Colorized material-
sensitive electron
micrograph of InAs-Al
hybrid nanowire. Hexago-
nal InAs core (maximum
diameter: 130 nm)
with 30-nm full-shell epi-
taxial Al. (B) Micrograph
of device 1, colorized
to highlight four-probe
measurement setup.
(C) Differential resistance
of the Al shell, RS, as
a function of current bias,
IS, and axial magnetic
field, B, measured
at 20 mK. Top axis shows
flux, BAwire, in units of the
flux quantum F0 = h/2e,
with Planck constant
h and electric charge e.
Superconducting lobes are
separated by destructive
regions near odd half-
integer flux quanta. (D) Temperature evolution of RS as a function of B measured around IS = 0. RS equals the
normal-state resistance in all destructive regimes.
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz

" #
ϕ

$ %
, namelyH~BdG ¼

UHBdGU † where

H~BdG ¼ p2
z

2m% þ
p2
r

2m% $ m
& '

tz

þ 1
2m%r2

mJ $
1
2
sz $

1
2
ntz þ eAϕrtz

& '2

tz

$ a
r
sztz mJ $

1
2
sz $

1
2
ntz þ eAϕrtz

& '

þ apzsy tz þ DðrÞtx ð5Þ

Here, p2
r ¼ $ 1

r
@
@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ

VZ ¼ f
1

4m%R2
2
þ a
2R2

& '
ð8Þ

AmJ ¼ $ fmJ

2m%R2
2

ð9Þ

CmJ ¼ $mJ
1

2m%R2
2
þ a
R2

& '
ð10Þ

with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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The magnetic field induces a winding of the superconducting phase of the order parameter:

The Little-Parks (LP) effect arises, whereby the superconducting gap Δ(r) becomes 
suppressed (even completely in the “destructive” regime) around half-integer flux.

Schwiete, Oreg, PRB 82, 214514 (2010)

address this issue in this manuscript by discussing the possi-
bility that a combination of different pair-breaking mecha-
nisms can lead to progress in this direction. More specifi-
cally, we consider the combined effects of the magnetic flux
through the ring’s center on the one hand and of magnetic
impurities and/or the magnetic field passing through the bulk
material of the ring on the other hand. By direct calculation,
we further explore how the presence of the quantum-critical
point influences the persistent current away from the quan-
tum critical point, e.g., for temperatures on the order of Tc

0

!Tc"!=0#.
The literature on superconductivity in systems with dou-

bly connected geometry is extensive. We would like to point
out a number of works, where related phenomena have been
discussed. The possibility of finding complete suppression of
superconductivity near half-integer flux in small supercon-
ducting rings was pointed out by de Gennes.11,12 The phase
diagram of superconducting cylinders was considered in Ref.
13 taking into account the interplay of pair-breaking effects
caused by the flux on the one hand and the magnetic field
penetrating the walls "of finite width# on the other hand. We
will use their results when we discuss the influence of finite-
width effects on the phase diagram.

A detailed study of the fluctuation persistent current in
rings for which Tc is reduced to zero by magnetic impurities
"at any value of the flux# can be found in Refs. 14 and 15.
These works address a long standing puzzle related to the
observation of an unexpectedly large persistent current in
copper rings.16 It is suggested that these rings contain a finite
amount of magnetic impurities, which suppress superconduc-

tivity and cause the rings to remain in the normal state even
at low temperatures. Denoting the scattering rate on the mag-
netic impurities by 1 /"s, there is a critical rate 1 /"sc and an
associated quantum-critical point that separates the super-
conducting from the normal phase. If the measurements are
performed on rings with a scattering rate that is larger but
close to 1 /"sc, the corresponding fluctuations can lead to
large currents in the rings. In contrast, in the parallel work of
Ref. 6 and in the present manuscript we consider the oppo-
site case, in which the phase transition is primarily tuned by
the magnetic flux so that for vanishing flux and low tempera-
tures the ring is in the superconducting state. We examine the
influence of additional weak pair-breaking effects on the
phase diagram and how they can help to experimentally ob-
serve the flux-tuned quantum phase transition.

In the experiment of Ref. 10 on cylinders it was observed
that near half-integer flux the resistance R along the cylinder
drops as T decreases and then saturates for the lowest tem-
peratures. In a later experiment,17 regular steplike features
where additionally observed in the R-T diagram and inter-
preted as being due to a separation into normal and super-
conducting regions along the cylinder. A number of theoret-
ical works addresses the issue of transport in small
superconducting cylinders. In Refs. 18 and 19 the perturba-
tive fluctuation contribution to the conductivity of long su-
perconducting cylinders near a flux-tuned quantum-critical
point was discussed as a particular example for transport
near a pair-breaking transition. In a broad sense, the general
approach is similar to ours but the considered system has a
different dimensionality and the work discusses transport
while we study a thermodynamic property. It has been sug-
gested in Ref. 18 that the observable regime in the
experiment10 is dominated by thermal fluctuations and that at
even lower T an upturn of R could be expected. So far no
detailed comparison between theory and experiment is avail-
able. The observed saturation in the experiment10 corre-
sponds to a strong reduction in the normal resistance and as
such lies outside the region of validity of the perturbative
approach. The role of inhomogeneities along the cylinder
axis has been further emphasized in Ref. 20. In Ref. 21 a
mean-field model was proposed that takes into account inho-
mogeneities caused by a variation in parameters such as the
mean-free path or the width along the cylinder axis and a
specific profile was found that would quantitatively fit the
experimental phase diagram both as far as the saturation and
the steplike features are concerned. Fluctuation effects, on
the other hand, where neglected. It seems likely that a com-
plete description would have to include both inhomogene-
ities and fluctuations, which is very demanding. In this re-
spect, the situation with rings is more advantageous. Since
the typical size of inhomogeneities is larger or on the order
of the coherence length, they are unlikely to play a role for
the superconducting rings under study here and we may fo-
cus on fluctuation effects only. We make detailed predictions
for flux and temperature dependence of the resulting fluctua-
tion persistent current. As mentioned before, due to experi-
mental difficulties, no measurements of the destructive re-
gime are available for rings yet.

Fluctuation effects in moderately small superconducting
rings "r# 1# were studied in Refs. 9 and 22 with particular
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FIG. 1. Mean-field phase diagram. Tc! separates the metallic
"high T# and the superconducting "low T# phase as a function of the
flux !=$ /$0 through the ring. The transition line is determined by
the condition L00

−1=0, cf. Eq. "3.2#. The superconducting phase for
small rings with effective radius r=R /%& 0.6 is shown in dark gray.
Mean-field theory predicts a full reduction of Tc for fluxes between
!c0$0.83r and 1−!c0 near !=1 /2. In this paper we focus on fluc-
tuations in the normal phase for these small rings. The supercon-
ducting phase for larger rings with r# 1 is shown in light gray. Tc is
periodically reduced as a function of the flux !, but superconduc-
tivity prevails at low temperatures. The dotted lines gives Tn! de-
fined below Eq. "2.4# for n! %0,1 ,2&. For r# 1 it is well approxi-
mated by the formula Tc!$Tc0"1−!2 /r2#. The phase diagram is
periodic in ! with period 1 for vanishing ring thickness.
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Conditions for the existence of
Majoranabound states in full-shell nanowires
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In light of the recently reported zero bias measurements in full-shell nanowires pierced by a magnetic flux [1], we theoretically study the conditions

under which such zero bias signatures may stem from a topologically non-trivial phase. By means of an effective model based on [2] that captures the

SM-SC contact characteristics, we find that the emergence of a Majorana zero mode extended along the odd superconducting lobe is controlled by the

Fermi lengths in the normal (�N) and superconducting (�S) regions. Our results are in excellent agreement with those found in the experiment [1].

1. Topologically protected phases in 1D

Majorana Bound States (MBSs) in 1D:

• Self-conjugate quasiparticles (�† = �)
• Two MBSs form a non-local fermion

• At boundaries between regions with distinct topological phases

• Intrinsically protected from any local perturbation

Kitaev Spinless p-wave regime. Experimentally feasible?

2. Full-shell nanowires.A new platform for MBSs

SC doubly connected geometry:

• Fluxoid quantization

• Little Parks oscillations (�(�))
• Destructive Regime

(persistent current fluctuations[3])

Since R/⇠ < 1

Model:

H0 =

✓
~⇡
2

2m⇤ � µ(r)

◆
�0 + ↵r̂ · [~� ⇥ ~⇡]

HBdG =


H0( ~A) �(�)e�in�

�(�)ein� ��yH0(� ~A)⇤�y

�

-2 -1 0 1 2
0

1

Φ/Φ0

Δ
Δ0

Weak LP (d → 0)
Destructive LP (d → 0)
Destructive LP (d ≠ 0)

~⇡ ⌘ ~p+ eA��̂

↵(r) = ↵0✓(r �R)
n flux-induced winding of �

µ(r) = ✓(r �R)µN + ✓(R� r)µS

• [HBdG, Jz] = 0 ! mj , mj 2 Z (Z+ 1/2)if n is odd (even)

• Under HBdG ! U
†
HBdGU :

 mj(r,�, z) = exp [�i(mj � 1/2�z � 1/2n⌧z)] mj(r, z)

Because P E,mj =  �E,�mj Majorana reality condition can only be satisfied at

odd superconducting lobes, provided mj = 0 is allowed.

3. First experiments

Zero bias signatures in these

systems have been reported [1]:

4. Hollow cylinders

• Exact mapping to the Lutchyn-Oreg

minimal model [4,5] for the mj = 0 sector

• Although hollow cylinders support a non

trivial state, it cannot live at �/�0 2 Z
since bands are degenerate at kz = 0 (TR

protected)

• The closest normalized flux to an (odd)

integer that supports a MBS in hollow

cylinders is given by:

(n0 � �C/�0)min
=

4R�

2↵+ ~2/(m⇤R)

> 0

Where n
0 = ±1,±3,±5, ...

5. Core shell NWs: tight-binding calculations

Destructive LPWeak LP Destructive LPWeak LP

Role of the chemical potential radial inhomogeneity in the formation of an extended

zero mode:

Lack of protection due to higher mj modes

Underlying mechanism: Filling of an even (odd) number of zero angular

momentum transversal modes yields a (non-)trivial phase. (Class D TS)

6. Analytical derivation of the Z2 phase diagram

Wave matching analytical derivation for the emergence of a non trivial phase.

Up to zero order in �S/�N and in the limit of �S << R and LSO >> R:

Trascendental equation:

J0(x)J1(
p
x2 + c) cot(x0(1� ⌘)) = 0

x = R

�N
, x

0 = R

�S
, and c = �

�0

7. Conclusions

• The hollow cylinder model cannot explain the emergence of a pinned-to-zero

energy state for all flux values contained in an odd superconducting lobe.

• Even-odd transitions induced by the chemical potential radial inhomogeneity

trigger the formation of a zero mode that may remain pinned to zero energy

for all fluxes within an odd lobe.

• Core shell results are in excellent agreement with those found in [1].
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corresponde con el número de vórtices superconductores que atraviesan el hilo o también

llamados “fluxoides”. Por otro lado, � es la fase superconductora, que se define como el

conjugado del número de part́ıculas en el SC. Además, surge el denominado efecto LP por el

cual el gap superconductor |�| se modula. Usando el formalismo de Bogoliubov-de Gennes

(BdG) [22] para la descripción de un sistema SC, el hamiltoniano se puede escribir como[13]

H0 =
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expresado en la base de Nambu de operadores de part́ıcula y hueco  = ( ", #, 
†
", 

†
#),

donde {", #} distinguen el esṕın y { , †} los cuasi-electrones y sus cuasi-huecos asociados.

Aqúı p es el vector momento lineal, r el vector de posición, m⇤ la masa efectiva, µ(r) el

potencial qúımico, ↵(r) = ↵(r)r̂ el acoplo SO de tipo Rashba (ambos dependen solo de la

coordenada radial r), � el vector de matrices de Pauli para el grado de libertad del esṕın

y �(r) el potencial de apareamiento SC inducido en el hilo por la corteza superconductora

que lo envuelve. A es el potencial vector; en coordenadas ciĺındricas y en el gauge simétrico

vale A = �(r)/2⇡r'̂, donde �(r) = ⇡Br
2. Nótese que se desprecia el campo Zeeman en H0

ya que éste da una contribución pequeña para los campos magnéticos explorados.

Como anticipamos, este sistema presenta el llamado efecto LP [23, 24] que modula la

temperatura cŕıtica superconductora Tc y, por lo tanto, el potencial de apareamiento, en

función de � con periodicidad �0, de forma que el gap es máximo para �
�0

entero y mı́nimo

si es semientero, pudiendo llegar a cerrarlo si nos encontramos en el denominado régimen

destructivo. Para la geometŕıa que nos interesa, Schwiete y Oreg [14] demostraron que el

efecto se puede estudiar de forma análoga a la introducción de impurezas paramagnéticas,

por lo que la modulación de la temperatura cŕıtica viene dada por
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siendo d,R el grosor y radio del cilindro SC hueco, respectivamente, y ⇠ la longitud de

coherencia superconductora. Estas relaciones solo son válidas en el régimen R/⇠ < 0,6,
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8que respetamos en nuestro modelo. Además, al estar en la aproximación del cilindro hueco,

d ⌧ R, por lo que Ic / T
3/2
c , y aśı podemos tomar [26]:
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B. Simulación de la LDOS

Una vez establecido el modelo teórico, nuestro objetivo es el cálculo de la LDOS en el

borde del nanohilo semi-infinito, donde se liga el estado de Majorana. Para ello, suponemos

que el hilo está compuesto por una sucesión de anillos, todos idénticos entre śı, formando un

cilindro hueco. El borde es por lo tanto el último anillo, los demás componen el denominado

contacto. En el marco de la teoŕıa de transporte cuántico [27], podemos calcular la función

de Green de este sistema de scattering (anillo + contacto), G = (! �H)�1, a partir del

hamiltoniano (1). Tenemos entonces que LDOS = � 1
⇡ Im[Tr(G)].

Para resolver numéricamente la LDOS, discretizamos espacialmente cada anillo para ob-

tener un sistema tipo tight-binding (TB) con el que poder trabajar computacionalmente

mediante el paquete de cálculo MathQ [28]. En el hamiltoniano discretizado podemos dis-

tinguir dos tipos de términos: de salto (hopping) y de sitio (on-site). Los hoppings establecen

la relación entre sitios de la cadena TB, y por tanto vienen dados por el término cinético

4t y el de Rashba de H, ambos multiplicados por la fase de Peierls (proveniente de la dis-

cretización de A) y situados en las posiciones no diagonales. Los on-site, en la diagonal y

antidiagonal, vienen dados por el término cinético, el potencial qúımico y el potencial de

apareamiento con su fase. El término cinético adopta la forma habitual del método TB

t =
~2

2m⇤a2
, (5)

con a el parámetro de discretización, que tomamos a ⇠ 0,1R. Al trabajar en un sistema

bidimensional, aparece un factor 4 sobre este término. Por otra parte, el efecto LP lo intro-

ducimos implementando las ecuaciones (2) y (4) a la hora de calcular �(r).

Para calcular la LDOS en la unión Josephson, utilizamos un sistema de scattering unido

a dos contactos (las dos zonas proximizadas del hilo semi-infinitas, a izquierda y a derecha).

En el caso del hilo aislado el sistema era semi-infinito y la zona de scattering era un anillo;

en la unión Josephson el sistema es infinito y la zona de scattering son los dos anillos

centrales. El hamiltoniano a cada lado es el descrito en la sección IIA, con los parámetros
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cilindro hueco. El borde es por lo tanto el último anillo, los demás componen el denominado
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tinguir dos tipos de términos: de salto (hopping) y de sitio (on-site). Los hoppings establecen

la relación entre sitios de la cadena TB, y por tanto vienen dados por el término cinético
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coordenada radial r), � el vector de matrices de Pauli para el grado de libertad del esṕın

y �(r) el potencial de apareamiento SC inducido en el hilo por la corteza superconductora

que lo envuelve. A es el potencial vector; en coordenadas ciĺındricas y en el gauge simétrico

vale A = �(r)/2⇡r'̂, donde �(r) = ⇡Br
2. Nótese que se desprecia el campo Zeeman en H0

ya que éste da una contribución pequeña para los campos magnéticos explorados.

Como anticipamos, este sistema presenta el llamado efecto LP [23, 24] que modula la

temperatura cŕıtica superconductora Tc y, por lo tanto, el potencial de apareamiento, en

función de � con periodicidad �0, de forma que el gap es máximo para �
�0

entero y mı́nimo

si es semientero, pudiendo llegar a cerrarlo si nos encontramos en el denominado régimen

destructivo. Para la geometŕıa que nos interesa, Schwiete y Oreg [14] demostraron que el

efecto se puede estudiar de forma análoga a la introducción de impurezas paramagnéticas,

por lo que la modulación de la temperatura cŕıtica viene dada por
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siendo d,R el grosor y radio del cilindro SC hueco, respectivamente, y ⇠ la longitud de

coherencia superconductora. Estas relaciones solo son válidas en el régimen R/⇠ < 0,6,
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Digamma function

Pair-breaking term derived from the Ginzburg-
Landau equations in the presence of impurities 
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first lobe where n = 1. In this case, A0 = 0 and
C0 = 0, and Eq. 6 can be mapped to the
Majorana nanowire model in (6, 7). Note that
the effective Zeeman term has an orbital
origin here and is present even when the g
factor in the semiconductor is zero. Both m0
and VZ can be tuned by the magnetic flux
F(R2), which may induce a topological phase
transition. In the hollow-cylinder approxima-
tion, VZ = 0 when the core is penetrated by
one flux quantum [F(R2) = F0]. This regime
corresponds to the trivial (s-wave) supercon-
ducting phase. However, a small deviation of
the magnetic flux can drive the system into
the topological superconducting phase (45).
Indeed, the Zeeman and spin-orbit terms in
Eq. 6 do not commute, and thus VZ opens a
gap in the spectrum at pz = 0. At the topo-
logical quantum phase transition between the
two phases, the gap in the mJ = 0 sector

Eð0Þ
gap ¼

!!!jVZj$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m20 þ D2

q !!! ð11Þ

closes. The resulting phase diagram is shown
in Fig. 3, where the gap closing at the topo-
logical transition is indicated by black dashed

lines. Close to the transition, the quasipar-
ticle spectrum in the mJ = 0 sector is giv-

en by EðpzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#
Eð0Þ
gap

$2
þ ðvpzÞ2

r
with v ¼

aD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ m20

q
and the corresponding topo-

logical coherence length xT ∼ v=Eð0Þ
gap.

A well-defined topological phase requires
the quasiparticle bulk gap to be finite for all
values ofmJ. Owing to the angular symmetry
of Eq. 6, differentmJ sectors do not mix and,
as a result, the condition for a finite gap in
the mJ ≠ 0 sectors is D2 þ ðCmJ $ mmJ

Þ2 >
ðAmJ þ VZÞ2 (39). In general, the topological
phase diagram can be obtained by calculating
the topological index Q (2)

Q ¼ sign P
mJ∈Z

h
D2 þ ðCmJ $ mmJ

Þ2

$ ðAmJ þ VZÞ2
i

ð12Þ

where Q = 1 and Q = −1 correspond to trivial
and topological phases, respectively. Thus, the
topological phase supporting MZMs appears
as a result of the change of Q in the mJ = 0
sector. Figure 3 shows the topological phase
diagramand energy gap of the hollow-cylinder

model determined by taking into account all
mJ sectors.
The hollow-cylinder model provides con-

ceptual understanding for the existence of
the topological phase in full-shell nano-
wires. Themodel, however, is limited to small
chemical potentials and a conserved angular
momentum. For a direct comparison with the
experiment,more realistic simulations extend-
ing to the regime with multiple radial modes
are needed.

Realistic simulations

Recent advances in the modeling of semi-
conductor-superconductor hybrid structures
have led to more accurate simulations of prox-
imitized nanowires (34, 35, 46, 47). Here,
the essence of our approach is to integrate out
the superconductor into self-energy boundary
conditions, as discussed in (39). This approx-
imation allows for three-dimensional (3D) sim-
ulations of proximitized nanowires, including
important effects such as self-consistent elec-
trostatics and orbital magnetic field contri-
bution (48).
We model a hexagonal InAs wire with

130 nm corner-to-corner diameter coated by
a 30-nm-thick Al shell (Fig. 4A). The work
function difference between InAs and Al leads
to a band offset between the conduction band
of InAs and the Fermi level of Al, resulting
in an electron accumulation layer close to the
interface (Fig. 4, A and B). This band offset is
on the order of 100 meV (34, 35, 47, 49). The
accumulation layer causes an intrinsic electric
field for the electrons, resulting in Rashba
spin-orbit coupling with the symmetry axis
in an approximately radial direction (50, 51).
The magnitude of a has been experimental-
ly determined to be in the range of 0.02 to
0.08 eV·nm (12).
Given the uncertainties, we calculate the

topological phase diagram as a function of
band offset, U0, and the Rashba spin-orbit
coupling, a (52). The band offset controls the
number of subbands in the nanowire as well
as their population. For U0 < 40 meV, the
system is in the single radial mode regime,
and the phase diagram appears qualitatively
similar to the hollow-cylinder model (Fig. 4,
C and D). Around 5 meV there is a gapped
topological phase that we identify with the
mJ = 0 angular sector, analogous to the
hollow-cylinder model. In this U0 regime,
apart from themJ = 0 sector, the topological
phases have very small gaps. The vertical fea-
ture at U0 ~ 40 meV band offset in Fig. 3D
corresponds to a second radial subband with
mJ = 0 crossing the Fermi level.
ForU0 >40meV, the phasediagrambecomes

qualitatively different. Owing to the increased
number of bands, the different topological
phases hybridize and merge into extended
topological regions (53, 54). Furthermore, as
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Fig. 3. Topological phase diagram in a hollow-cylinder model. (A) Bulk energy gap, Eg, as a function of
chemical potential and spin-orbit coupling. The energy gap is multiplied by the topological index Q = ±1,
so that red regions correspond to the gapped topological phase. The black dashed line denotes the boundary
of the topological phase in the mJ = 0 sector, according to Eq. 11, whereas the blue dashed lines denote
the boundaries at which higher mJ sectors become gapless (39). Here, FðR2Þ=F0 ¼ 1

2 , R=R0 ¼ 1
2 . We define

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=2m&p

and R0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m& D

p
. For reference, using realistic parameters m* = 0.026 me and D = 0.2

meV, one obtains a0 ≈ 17 meV·nm and R0 ≈ 85 nm. Inset shows cross section of a semiconducting nanowire
(yellow) with a full superconducting shell (blue), subject to a weak axial magnetic field B. The shaded yellow
region with r < R1 indicates the possible presence of an insulating core in the semiconductor. (B) Bulk
energy gap at fixed m/D = 2 and a/a0 = 1, as indicated by a black star in (A), as a function of flux and R.
(C to E) Band structures at the points indicated with colored square, triangle, and circle in (A), illustrating
the closing and reopening of the bulk gap in the mJ = 0 sector.
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3D Hamiltonian in cylindrical coordinates
Effective Hamiltonian for the semiconducting core: 

measurement techniques, see the Materials
and methods section.
Differential resistance of the shell, RS =

dVS/dIS, measured for device 1 as a function
of bias current, IS, and axial magnetic field,
B, showed a lobe pattern characteristic of the
destructive regime (Fig. 1C) with a maximum
switching current of 70 mA at B = 0, the center
of the zeroth lobe. Between the zeroth and first
lobes, supercurrent vanished at |B| = 45 mT,
reemerged at 70 mT, and had a maximum
near the center of the first lobe, at |B| = 110mT.
A second lobe with smaller critical current
was also observed, but a third lobe was not
observed.
Temperature dependence of RS around zero

bias yielded a reentrant phase diagramwith
superconducting regions separated by destruc-
tive regions with temperature-independent
normal-state resistance RS

(N) = 1.3 ohms (Fig.
1D). RS

(N) and shell dimensions from Fig. 1A
yield a Drudemean free path of l = 19 nm. The
dirty-limit shell coherence length (33, 40)

xS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pℏvFl
24kBTC

s

ð1Þ

can then be found using the zero-field critical
temperature TC = 1.2 K from Fig. 1D and Fermi
velocity of Al, vF = 2 × 106 m/s (41), with re-
duced Planck constant ħ and Boltzmann con-
stant kB, yielding xS = 180 nm. The same values

for xS are found using the onset of the first
destructive regime (42).

Tunneling spectroscopy

Differential conductance, dI/dV, as a func-
tion of source-drain voltage, V, measured in
the tunneling regime as a probe of the local
density of states at the end of the nanowire is
shown in Fig. 2. The Al shell was removed at
the end of thewire, and the tunnel barrier was
controlled by the global back-gate at voltage
VBG. At zero field, a hard superconducting gap
was observed throughout the zeroth super-
conducting lobe (Fig. 2, B and D). Similar to
the supercurrent measurements presented
above, the superconducting gap in the core
closed at |B| = 45 mT and reopened at 70 mT,
separated by a gapless destructive regime. Upon
reopening, a narrow zero-bias conductance peak
was observed throughout the first gapped lobe
(Fig. 2, B and F). Several flux-dependent sub-
gap states are also visible, separated from the
zero-bias peak in the first lobe. These nonzero
subgap states are analogs of Caroli–de Gennes–
Matricon bound states (43), in this case con-
fined at the metal-semiconductor interface
rather than around a vortex core.
The first lobe persists to 150 mT, above

which a second gapless destructive regime
was observed. A second gapped lobe centered
around |B| = 220 mT then appeared, contain-
ing several subgap states away from zero en-
ergy, as shown in greater detail in (39). The

second lobe closes at 250 mT, above which
only normal-state behavior was observed.
The dependence of tunneling spectra on

back-gate voltage in the zeroth lobe is shown
in Fig. 2C. In a weak tunneling regime, for
VBG < −1 V, a hard gap was observed, with D =
180 meV (Fig. 2, C and D). For VBG ~ −0.8 V, as
the tunneling barrier is decreased, the subgap
conductance is enhanced owing to Andreev
processes. The increase in conductance at
VBG ~ −1.2 V is likely caused by a resonance
in the barrier. In the first lobe, at B = 110 mT,
the sweep of VBG showed a zero-energy state
throughout the tunneling regime (Fig. 2E).
The cut displayed in Fig. 2F shows a discrete
zero-bias peak separated from other states
by a softened gap, presumably owing to finite
temperature and level broadening in the junc-
tion. As the tunnel barrier is opened, the zero-
bias peak gradually evolves into a zero-bias dip.
The increase of finite-bias conductance com-
pared with zero-bias conductance as tunnel
barrier decreases is in qualitative agreement
with theory supporting MZMs (44), although
the crossover from a peak to a dip occurs at
lower conductance than expected. Additional
line-cuts and the tunneling spectroscopy for
the second lobe are shown in figs. S3 and S4
(39). Several discontinuities in spectra occurred
as VBG was swept at the same gate voltages in
Fig. 2, C and E, presumably because of gate-
dependent charge motion in the barrier.

Modeling of topological phases

To better understand the origin of the zero-
energymodes in the first lobe, we analyze the-
oretically a semiconducting nanowire covered
by a superconducting shell. First, we present
a toy model of a cylindrically symmetric full-
shell wire (Fig. 3), highlighting the underlying
mechanism of the topological phase appear-
ance. Thereafter, wemove on to simulations of
realistic geometries (Figs. 4 and 5).
We assume that the semiconductor (InAs)

has a large Rashba spin-orbit coupling owing
to the local inversion symmetry breaking in
the radial direction at the semiconductor-
superconductor interface (corresponding to an
electric field pointing along the radial direction
at the superconductor-semiconductor inter-
face). The system is subject to a magnetic field
along the direction of the nanowire, B

→
¼ Bẑ .

Using cylindrical coordinates and the symmet-
ric gauge for the electromagnetic vector poten-
tial, A

→
¼ 1

2 ðB
→
$ r

→Þ, the effective Hamiltonian
for the semiconducting core can be written as

H0 ¼ ðp→ þ eAϕϕ̂Þ2

2m& ' m

þ ar̂ ( ½s→ $ ðp→ þ eAϕϕ̂Þ* ð2Þ

Here, we use natural units (ħ = 1), p
→
is the elec-

tron momentum operator, e > 0 the electric
charge,m* the effective mass, m is the chemical
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Fig. 1. Destructive Little-
Parks regime in full-
shell nanowire device.
(A) Colorized material-
sensitive electron
micrograph of InAs-Al
hybrid nanowire. Hexago-
nal InAs core (maximum
diameter: 130 nm)
with 30-nm full-shell epi-
taxial Al. (B) Micrograph
of device 1, colorized
to highlight four-probe
measurement setup.
(C) Differential resistance
of the Al shell, RS, as
a function of current bias,
IS, and axial magnetic
field, B, measured
at 20 mK. Top axis shows
flux, BAwire, in units of the
flux quantum F0 = h/2e,
with Planck constant
h and electric charge e.
Superconducting lobes are
separated by destructive
regions near odd half-
integer flux quanta. (D) Temperature evolution of RS as a function of B measured around IS = 0. RS equals the
normal-state resistance in all destructive regimes.
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measurement techniques, see the Materials
and methods section.
Differential resistance of the shell, RS =

dVS/dIS, measured for device 1 as a function
of bias current, IS, and axial magnetic field,
B, showed a lobe pattern characteristic of the
destructive regime (Fig. 1C) with a maximum
switching current of 70 mA at B = 0, the center
of the zeroth lobe. Between the zeroth and first
lobes, supercurrent vanished at |B| = 45 mT,
reemerged at 70 mT, and had a maximum
near the center of the first lobe, at |B| = 110mT.
A second lobe with smaller critical current
was also observed, but a third lobe was not
observed.
Temperature dependence of RS around zero

bias yielded a reentrant phase diagramwith
superconducting regions separated by destruc-
tive regions with temperature-independent
normal-state resistance RS

(N) = 1.3 ohms (Fig.
1D). RS

(N) and shell dimensions from Fig. 1A
yield a Drudemean free path of l = 19 nm. The
dirty-limit shell coherence length (33, 40)

xS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pℏvFl
24kBTC

s

ð1Þ

can then be found using the zero-field critical
temperature TC = 1.2 K from Fig. 1D and Fermi
velocity of Al, vF = 2 × 106 m/s (41), with re-
duced Planck constant ħ and Boltzmann con-
stant kB, yielding xS = 180 nm. The same values

for xS are found using the onset of the first
destructive regime (42).

Tunneling spectroscopy

Differential conductance, dI/dV, as a func-
tion of source-drain voltage, V, measured in
the tunneling regime as a probe of the local
density of states at the end of the nanowire is
shown in Fig. 2. The Al shell was removed at
the end of thewire, and the tunnel barrier was
controlled by the global back-gate at voltage
VBG. At zero field, a hard superconducting gap
was observed throughout the zeroth super-
conducting lobe (Fig. 2, B and D). Similar to
the supercurrent measurements presented
above, the superconducting gap in the core
closed at |B| = 45 mT and reopened at 70 mT,
separated by a gapless destructive regime. Upon
reopening, a narrow zero-bias conductance peak
was observed throughout the first gapped lobe
(Fig. 2, B and F). Several flux-dependent sub-
gap states are also visible, separated from the
zero-bias peak in the first lobe. These nonzero
subgap states are analogs of Caroli–de Gennes–
Matricon bound states (43), in this case con-
fined at the metal-semiconductor interface
rather than around a vortex core.
The first lobe persists to 150 mT, above

which a second gapless destructive regime
was observed. A second gapped lobe centered
around |B| = 220 mT then appeared, contain-
ing several subgap states away from zero en-
ergy, as shown in greater detail in (39). The

second lobe closes at 250 mT, above which
only normal-state behavior was observed.
The dependence of tunneling spectra on

back-gate voltage in the zeroth lobe is shown
in Fig. 2C. In a weak tunneling regime, for
VBG < −1 V, a hard gap was observed, with D =
180 meV (Fig. 2, C and D). For VBG ~ −0.8 V, as
the tunneling barrier is decreased, the subgap
conductance is enhanced owing to Andreev
processes. The increase in conductance at
VBG ~ −1.2 V is likely caused by a resonance
in the barrier. In the first lobe, at B = 110 mT,
the sweep of VBG showed a zero-energy state
throughout the tunneling regime (Fig. 2E).
The cut displayed in Fig. 2F shows a discrete
zero-bias peak separated from other states
by a softened gap, presumably owing to finite
temperature and level broadening in the junc-
tion. As the tunnel barrier is opened, the zero-
bias peak gradually evolves into a zero-bias dip.
The increase of finite-bias conductance com-
pared with zero-bias conductance as tunnel
barrier decreases is in qualitative agreement
with theory supporting MZMs (44), although
the crossover from a peak to a dip occurs at
lower conductance than expected. Additional
line-cuts and the tunneling spectroscopy for
the second lobe are shown in figs. S3 and S4
(39). Several discontinuities in spectra occurred
as VBG was swept at the same gate voltages in
Fig. 2, C and E, presumably because of gate-
dependent charge motion in the barrier.

Modeling of topological phases

To better understand the origin of the zero-
energymodes in the first lobe, we analyze the-
oretically a semiconducting nanowire covered
by a superconducting shell. First, we present
a toy model of a cylindrically symmetric full-
shell wire (Fig. 3), highlighting the underlying
mechanism of the topological phase appear-
ance. Thereafter, wemove on to simulations of
realistic geometries (Figs. 4 and 5).
We assume that the semiconductor (InAs)

has a large Rashba spin-orbit coupling owing
to the local inversion symmetry breaking in
the radial direction at the semiconductor-
superconductor interface (corresponding to an
electric field pointing along the radial direction
at the superconductor-semiconductor inter-
face). The system is subject to a magnetic field
along the direction of the nanowire, B

→
¼ Bẑ .

Using cylindrical coordinates and the symmet-
ric gauge for the electromagnetic vector poten-
tial, A

→
¼ 1

2 ðB
→
$ r

→Þ, the effective Hamiltonian
for the semiconducting core can be written as

H0 ¼ ðp→ þ eAϕϕ̂Þ2

2m& ' m

þ ar̂ ( ½s→ $ ðp→ þ eAϕϕ̂Þ* ð2Þ

Here, we use natural units (ħ = 1), p
→
is the elec-

tron momentum operator, e > 0 the electric
charge,m* the effective mass, m is the chemical
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Fig. 1. Destructive Little-
Parks regime in full-
shell nanowire device.
(A) Colorized material-
sensitive electron
micrograph of InAs-Al
hybrid nanowire. Hexago-
nal InAs core (maximum
diameter: 130 nm)
with 30-nm full-shell epi-
taxial Al. (B) Micrograph
of device 1, colorized
to highlight four-probe
measurement setup.
(C) Differential resistance
of the Al shell, RS, as
a function of current bias,
IS, and axial magnetic
field, B, measured
at 20 mK. Top axis shows
flux, BAwire, in units of the
flux quantum F0 = h/2e,
with Planck constant
h and electric charge e.
Superconducting lobes are
separated by destructive
regions near odd half-
integer flux quanta. (D) Temperature evolution of RS as a function of B measured around IS = 0. RS equals the
normal-state resistance in all destructive regimes.
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz

" #
ϕ

$ %
, namelyH~BdG ¼

UHBdGU † where

H~BdG ¼ p2
z

2m% þ
p2
r

2m% $ m
& '

tz

þ 1
2m%r2

mJ $
1
2
sz $

1
2
ntz þ eAϕrtz

& '2

tz

$ a
r
sztz mJ $

1
2
sz $

1
2
ntz þ eAϕrtz

& '

þ apzsy tz þ DðrÞtx ð5Þ

Here, p2
r ¼ $ 1

r
@
@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz

" #
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$ %
, namelyH~BdG ¼
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Here, p2
r ¼ $ 1

r
@
@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ

VZ ¼ f
1
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CmJ ¼ $mJ
1
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz

" #
ϕ

$ %
, namelyH~BdG ¼

UHBdGU † where

H~BdG ¼ p2
z

2m% þ
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r

2m% $ m
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þ 1
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2
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Here, p2
r ¼ $ 1

r
@
@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ

VZ ¼ f
1

4m%R2
2
þ a
2R2
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ð8Þ

AmJ ¼ $ fmJ

2m%R2
2

ð9Þ

CmJ ¼ $mJ
1

2m%R2
2
þ a
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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Bogoliubov–de Gennes (BdG) Hamiltonian for the proximitized nanowire: 

potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz

" #
ϕ

$ %
, namelyH~BdG ¼

UHBdGU † where

H~BdG ¼ p2
z
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Here, p2
r ¼ $ 1

r
@
@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
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, namelyH~BdG ¼
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Here, p2
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@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz

" #
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$ %
, namelyH~BdG ¼

UHBdGU † where
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Here, p2
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r
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@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ

VZ ¼ f
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
2ntz
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, namelyH~BdG ¼

UHBdGU † where
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Here, p2
r ¼ $ 1

r
@
@r r

@
@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ

VZ ¼ f
1

4m%R2
2
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ð8Þ

AmJ ¼ $ fmJ
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CmJ ¼ $mJ
1
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2
þ a
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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Rotational symmetry of the BdG Hamiltonian: 

potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1
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1
2ntz

" #
ϕ

$ %
, namelyH~BdG ¼
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Here, p2
r ¼ $ 1
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@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1
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1
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, namelyH~BdG ¼
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@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1
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VZ ¼ f
1

4m%R2
2
þ a
2R2

& '
ð8Þ

AmJ ¼ $ fmJ

2m%R2
2

ð9Þ

CmJ ¼ $mJ
1

2m%R2
2
þ a
R2

& '
ð10Þ

with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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For mJ =0 in the first lobe (n=1), A0 and C0=0, 
and the Hamiltonian can be mapped to the 

Oreg-Lutchyn model

Hollow-core toy model

mJ: generalized angular quantum number 

potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1
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@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
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Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1
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Here, p2
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@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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The effective Zeeman term has an orbital origin here and is 
present even when the g factor in the semiconductor is zero

potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1

2 sz $
1
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, namelyH~BdG ¼
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Here, p2
r ¼ $ 1
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@r and pz ¼ $i @

@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as

mmJ
¼ m$ 1
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with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).
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potential, a the strength of the Rashba spin-orbit
coupling, andsi are the spin-1/2Paulimatrices. r̂,
ϕ̂, and ẑ are the cylindrical unit vectors. For ease
of presentation, we consider r-independent m
and a in our model, which may be viewed as
averaged versions of the corresponding r-
dependent quantities. The vector potential Aϕ =
F(r)/2pr, whereF(r) = pBr2 is the flux thread-
ing the cross section at radius r. For simplicity,
we neglect the Zeeman term caused by the small
magnetic fields required in the experiment.
The superconducting shell (Al) induces

superconducting correlations in the nano-
wire because of Andreev processes at the
semiconductor-superconductor interface. If
the tunnel coupling to the superconductor is
weak, the induced pairing in the nanowire can
be expressed as a local potentialDðr→Þ (39). In
the Nambu basis Y ¼ ðy↑;y↓;y

†
↓;$y†

↑Þ, the
Bogoliubov–de Gennes (BdG) Hamiltonian for
the proximitized nanowire is then given by

HBdG ¼ H0ðA
→
Þ Dðr→Þ

D%ðr→Þ $syH0ð$A
→
Þ%sy

" #

ð3Þ

We assume that the thickness of the shell
is smaller than London penetration depth:

R3 – R2 ≪ lL. Therefore, the magnetic flux thread-
ing the shell is not quantized. However, the
magnetic field induces a winding of the su-
perconducting phase of the order parameter
Dðr→Þ ¼ DðrÞe$inϕ, with ϕ the angular coordi-
nate and n∈ℤ the winding number deter-
mined by the external magnetic flux.
We notice the following rotational symmetry

of the BdG Hamiltonian:½Jz ;HBdG' ¼ 0 with
Jz ¼ $i@ϕ þ 1

2 sz þ
1
2ntz, wherewe introduced

ti matrices acting in Nambu space. Eigen-
states of HBdG can thus be labeled by a con-
served quantum numbermJ:YmJ ðr;ϕ; zÞº
ei mJ$1

2sz$
1
2ntzð ÞϕYmJ ðr; zÞ. The wave function

has to be single-valued, which imposes the
following constraint on mJ

mJ∈ ℤ n odd;
ℤþ1

2 n even

!
ð4Þ

Note that the particle-hole symmetry relates
states with opposite energy and angular quan-
tum number mJ, that is PYE;mJ ¼ Y$E;$mJ

with P ¼ tysyK, where K represents complex
conjugation. Thus, themJ = 0 sector—allowed
when the winding number n is odd—is special
because it allows nondegenerate Majorana so-
lutions at zero energy, as shown below.

The angular dependence of HBdG can be
eliminated via a unitary transformation U ¼
exp $i mJ $ 1
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@z . Al-
though the spin-orbit coupling might, naïvely,
be expected to average out, the nontrivial
structure of mJ eigenvectors yields finite
matrix elements proportional to the Rashba
spin-orbit coupling.
Assuming that the electrons in the core are

localized at the interface, we set R1 ≈ R2 (Fig.
3A). This approximation is motivated by the
fact that there is an accumulation layer in
certain semiconductor-superconductor het-
erostructures such as InAs-Al, as explained
below. In this case, electrons in the semicon-
ductor effectively form a thin-wall hollow
cylinder, and only the lowest-energy radial
mode in Eq. 5 needs to be considered. This
allows for an analytical solution of the model.
The effective Hamiltonian for the hollow-
cylinder model reads

H~mJ ¼
p2
z

2m% $ mmJ

( )
tz þ VZsz þ AmJ

þ CmJ sztz þ apzsy tz þ Dtx ð6Þ

Here, D ≡ DðR2Þ and the parameters mmJ

and VZ correspond to the effective chemical
potential and Zeeman energy. AmJ and CmJ

represent the coupling of the generalized
angular momentum Jz with magnetic field
and electron spin, respectively. The effective
parameters are defined as
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¼ m$ 1

8m%R2
2
ð4m2

J þ 1þ f2Þ $ a
2R2

ð7Þ

VZ ¼ f
1

4m%R2
2
þ a
2R2

& '
ð8Þ

AmJ ¼ $ fmJ

2m%R2
2

ð9Þ

CmJ ¼ $mJ
1

2m%R2
2
þ a
R2

& '
ð10Þ

with f ¼ n$ FðR2Þ=F0.
Equations 7 to 10 allow the identification of

a topological phase in themJ = 0 sector of the
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Fig. 2. Experimental
tunneling spectrum.
A hard gap is seen in the
zeroth lobe, and a zero-
bias peak in the first lobe.
(A) Micrograph of device 1,
colorized to highlight
tunneling spectroscopy
setup. (B) Base temperature
differential conductance,
dI/dV, as a function of
source-drain bias voltage, V,
and axial field, B. The zeroth
lobe shows a hard super-
conducting gap, the first
lobes show a zero-bias peak,
and the second lobes show
nonzero subgap states.
The lobes are separated by
featureless normal-state
spectra. (C) Zero-field
conductance as a function
of V and back-gate voltage,
VBG. (D) Line-cut of the
conductance taken at
B = 0 and VBG = −1.05 V.
(E and F) Similar to (C) and
(D), measured in the first
lobe at B = 110 mT. Data
shown are from two-terminal
measurements, which
include line resistances (see
Materials and methods).

RESEARCH | RESEARCH ARTICLE

on April 3, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



36

Full-shell superconductor-semiconductor nanowires

29

Vaitiekènas et al., Science 367, 1442 (2020)
U0 increases, the wave functions are pushed
closer to the superconductor, leading to a
stronger hybridization of the wave functions
with Al. In this U0 regime, one finds extended
topological regions with sizable gaps that
make up a substantial fraction of the super-
conducting gap.
Mixing of different angular sectors, facili-

tated by the broken cylindrical symmetry that,
in turn, is a consequence of the hexagonal
cross section, lifts the restriction that the
MZMs must have zero angular momentum
(mJ = 0). In the case of broken angular sym-
metry (as a result of disorder in supercon-
ductor or geometrical effects),mJ is not a good
quantum number and the topological super-
conducting phase may also appear at even
winding numbers [see (39) for the topolog-
ical phase diagram in the second lobe].
In addition to the gap size, we also compute

the topological coherence length, xT (Fig. 4E),
from the eigenvalue decomposition of the
translation operator at zero energy (55). As
expected, regions with a large gap also have
a short coherence length. Because of the
smaller Fermi velocity in the semiconductor,
the topological coherence length can be smaller
than the s-wave coherence length. We find
that the shortest xT is ~120 nm, whereas the
typical values for realistic spin-orbit cou-
pling strength and band offset range from
140 to 200 nm.

Having established bulk properties, we nu-
merically compute a 3D full-shell wire in a
transport geometry. The corresponding longi-
tudinal cross section of the simulated device
is shown in Fig. 5A. After calculating the
electrostatic potential of the 3D structure, we
simulate the quantum transport using the
Kwant and adaptive packages (56, 57). Here,
we focus on a single point in the phase dia-
gram with band offset of 150 meV and a =
−0.1 eV·nm (see open white circle in Fig. 4,
D and E). Results for other representative
points can be found in (39).
Computed conductance, dI/dv, as a function

of bias voltage,v, andmagnetic field,B, is shown
in Fig. 5B. The simulated back-gate voltage,vBG,
is chosen such that there is good visibility of
states in the wire. As in the experimental obser-
vations in Fig. 2B, the zeroth lobe shows a hard
gap with no subgap states. The first and sec-
ond lobes, on the other hand, show multiple
subgap states (58). The first lobe has a gapwith a
zero-bias peak owing to Majorana end states.
The size of the gap is consistent with the bulk
phase diagram in Fig. 4D. The second lobe has
more subgap states and appears to be gapless.
The evolution of the simulated spectrum

with the back-gate voltage in the topological
phase is displayed in Fig. 5C. As expected,
the bias voltages at which zero-bias peak and
subgap states are visible is independent of
vBG, but the intensities of the states change.

Because the wire is fully covered by a super-
conducting shell, the effect of the back gate
is completely screened inside the bulk of the
wire and does not influence the topological
phase or bulk states. When the tunnel-barrier
height is decreased, forvBG > −0.1 V, the zero-
bias peak transforms into a zero-bias dip, as
expected in this regime. The transport simu-
lation incorporates a small amount of dissipa-
tion (see Materials and methods), leading to
a finite conductance background and a non-
quantized zero-bias peak (Fig. 5D), which is
qualitatively similar to the data in Fig. 2F.

Coulomb blockade spectroscopy

Tunneling spectra simulated around one ap-
plied flux quantum (Fig. 5) indicate a local-
ized MZM at the end of the hybrid nanowire
and agreewell with themeasurements (Fig. 2).
The nature of the experimentally observed
zero-bias peaks can be better understood from
their length-dependent energy splitting. With
this in mind, we experimentally investigate
subgap-state hybridization, which can bemea-
sured using the spacing of Coulomb blockade
conductance peaks in Coulomb islands as a
function of island length (10, 37, 59, 60). The
exponential length dependence of hybridiza-
tion energy is a signature of MZMs localized
at the opposite ends of the nanowire (61–63).
We investigated full-shell islands over a range
of device lengths from 210 to 970 nm, fabri-
cated on a single nanowire, as shown in Fig. 6.
Zero-bias conductance as a function of

plunger-gate voltage, VG, and B for device 2
yielded a series of Coulomb blockade peaks
for each segment, examples ofwhich are shown
in Fig. 6B. The corresponding average peak
spacings, dV , for even and odd Coulomb val-
leys as a function of B are shown in Fig. 6C.
Around zero field, Coulomb blockade peaks
with 2e periodicity were found. These peaks
split at ~40 mT toward the high-field end of
the zeroth superconducting lobe, as the super-
conducting gap decreased below the charging
energy of the island. The peaks then became
1e-periodic (within experimental sensitivity)
around 55 mT and throughout the first de-
structive regime (see Fig. 1 for the onset of
destructive regime). When superconductivity
reappeared in the first lobe, the Coulomb
peaks did not become spaced by 2e again but
instead showed nearly 1e spacing with even-
odd modulation. The 210-nm island showed a
qualitatively similar even-odd peak spacing
modulation, also in the second lobe. Unlike
device 1, described in Fig. 2, the shortest island
in device 2 showed a third superconducting
lobe, which can be identified from the peak-
height contrast in Fig. 6B. Coulomb blockade
peaks were 1e-periodic within experimental
sensitivity throughout the third lobe.
Tunneling spectra at finite source-drain bias

showed 2e Coulomb diamonds around zero
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Fig. 4. Modeling the
electrostatic potential
and topological phase
diagram. (A) Schematic
cross section of the wire
superimposed with the
simulated potential energy,
U, in the semiconductor for
band offset U0 = 150 meV.
(B) Horizontal cuts of
the potential in the wire for
different band offsets.
(C) Topological phase
diagram of the full-shell
nanowire in the first lobe at
B = 0.124 T as a function
U0 and spin-orbit coupling,
a, close to the mJ = 0
topological phase. The gray
lines indicate a change
of the sign of the Pfaffian,
Q. (D) Topological phase
diagram for the same
set of parameters as in (C),
over a large range of band
offsets. (E) Topological
coherence length, xT,
computed for the same U0
and a ranges as in (D).
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field (Fig. 6D) and nearly 1e diamonds at B =
110 mT, near the middle of the first lobe (Fig.
6E). The zero-field diamonds are indistin-
guishable from each other, showing a region
of negative differential conductance associ-
ated with the onset of quasiparticle transport
(64–66). In the first lobe (Fig. 6E), Coulomb
diamonds alternate in size and symmetry,
with degeneracy points showing sharp, gapped
structure, indicating that the near-zero-energy
state is discrete. Additional resonances at finite
bias reflect excited discrete subgap states away
from zero energy.
Coulomb peaks for two longer islands are

shown in Fig. 7, A to E, with full datasets for
other lengths shown in figs. S11 to S15 (39). All
islands showed 2e-periodic Coulomb peaks in
the zeroth lobe and nearly 1e spacing in the
first lobe. Examining the 420 nm and 810 nm
data in Fig. 7, A, C, and E, reveals that themean
difference between even and odd peak spac-
ings in the first lobe decreased with increasing
island length. To address this question quan-
titatively, we determine the lever arm, h, for
each island independently to convert plunger
gate voltages to chemical potentials on the
islands, using the slopes of the Coulomb dia-
monds (10, 67). This allows the peak spacing
differences (Fig. 7, B and D) to be converted to
island-energy differences, A(L), between even
and odd occupations, as a function of device
length, L [a detailed exemplar peak spacing
analysis (fig. S17) is presented in (39)]. In the
context of topological superconductivity, the

energy scale A(L) reflects the length-dependent
hybridization energy of MZMs. Values for A(L)
at B = 110 mT, in the middle of the first lobe,
spanning two orders ofmagnitude are shown in
Fig. 7F. A fit to an exponential A ¼ A0e"L=x

yields fit parameters A0 = 105 meV and x =
180 nm. The data are well described by an
exponential length dependence, implying that
the low-energy modes are located at the ends
of the wire, not bound to impurities or local
potential fluctuations as expected for over-
lapping Majorana modes. The comparison
of exponential and power-law fits (fig. S18)
and the calculated length dependence that
shows exponential decay only in topological
regimes (fig. S24) are provided in (39). The
measured x is consistent with the calculated
xT using realistic parameters.
Alongwith length-dependent even-odd peak

spacing difference, we observe even-odd mod-
ulation in peak heights (Fig. 7E). A possible
explanation of these phenomena was pro-
posed in (68). Additionally, we find a complex
alternating peak-height structure depend-
ing on magnetic field within the first lobe
(Fig. 7E). Peak height modulation accompany-
ing peak spacing modulation was observed
previously (10, 59, 60).
To investigate how coherence length x, ex-

tracted from the exponential decrease of even-
odd peak spacing with length, depends on
the superconducting gap, D, we examine peak
spacing near the high-field edge of the first
lobe, B = 140mT, where the gap is reduced to

D140 = 40 meV, and shows no subgap features
besides the zero-bias peak (fig. S19). At this
reduced gap, we again find an exponential
dependence on length, as well as incompatibi-
litywith a power law, nowwith x = 230nm.We
observe that x140/x110 = 230 nm/180 nm ~ 1.3
is consistent with simple scaling, x º D−1

(not accounting for a field-dependent velocity).
From the data shown in Fig. 2B and fig. S19,
d110/D140 = 50 meV/40 meV ~ 1.2, where d110 is
the lowest nonzero subgap state, and d140 =
D140. Both x110 and x140 are slightly smaller
than the coherence length in the supercon-
ducting shell at corresponding B-field values:
xS(110mT) ~ 190 nmand xS(140mT) ~ 250 nm,
extracted from data in Fig. 1D using Eq. 1 and
the corresponding values of TC(B). This dis-
crepancymay be interpreted as resulting from
the velocity renormalization in the semicon-
ductor in the strong coupling limit (69–71).

Outlook

In comparison to the original nanowire pro-
posals with a partial shell coverage (6, 7), full-
shell nanowires have similar simplicity and
practical feasibility (38) but provide several
key advantages. First, the topological transi-
tion in a full-shell wire is driven by the field-
inducedwinding of the superconducting order
parameter rather than by the Zeeman effect,
so that, as demonstrated in the reportedmea-
surements, the required magnetic fields can
be very low (~0.1 T). Therefore, the present pro-
posal is compatible with conventional super-
conducting electronics and removes the need
for a large g factor semiconductor, potentially
expanding the landscape of candidate mate-
rials. Moreover, the full shell naturally pro-
tects the semiconductor from impurities and
random surface doping, thus enabling a re-
producible way of growing many wires with
essentially identical electrostatic environments.
Although full-shell wires do not allow for di-
rect gating of the electron density in the semi-
conducting core, we demonstrated that, using
a careful design of the wire properties—for
example, by choosing the appropriate radius—
it is possible to obtainwires that harborMZMs
at a predictable magnetic field. The modest
magnetic field requirements, protection of
the semiconducting core from surface defects,
and locked phase winding in discrete lobes
together suggest a distinct and relatively easy
route to creating and controlling MZMs in
hybrid materials. Our findings open a possi-
bility to study an interplay of mesoscopic and
topological physics in this system.

Materials and methods

The hybrid nanowires used in this work were
grown by molecular beam epitaxy on InAs
(111)B substrate at 420°C. The growth was
catalyzed by Au via the vapor-liquid-solid
method. The nanowire growth was initiated
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Fig. 5. Simulation
of tunneling transport.
(A) Schematic side
view of the normal-
superconducting
junction device
superimposed with the
simulated potential
energy, U, in the
semiconductor com-
puted for band offset
U0 = 150 meV and
back-gate voltage vBG =
−0.25 V. (B) Differential
conductance dI/dv
as a function of axial
magnetic field, B, and
bias voltage, v, simulated
at vBG = −0.3 V, U0 =
150 meV, and spin-orbit
coupling a = −0.1 eV·nm.
(C) Differential con-
ductance as a function
of vBG at B = 0.124 T for
the same U0 and a as
in (B). (D) Line-cut of the
conductance at vBG =
−0.25 V and B = 0.124 T.
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Full-shell nanowires (semiconducting nanowires fully coated with a superconducting shell) have been recently
presented as an alternative means to create Majorana zero modes. In contrast to partially coated nanowires,
it has been argued that full-shell nanowires do not require high magnetic fields and low densities to reach a
putative topological regime. Here we present a theoretical study of these devices taking into account all the basic
ingredients, including a charge distribution spread across the section of the nanowire, required to qualitatively
explain recent experimental results (Vaitiekėnas et al., arXiv:1809.05513). We derive a criterion, dependent on
the even-odd occupation of the radial subbands with zero angular momentum, for the appearance of Majorana
zero modes. In the absence of angular subband mixing, these give rise to strong zero-bias anomalies in tunneling
transport in roughly half of the system’s parameter space under an odd number of flux quanta. Due to their
coexistence with gapless subbands, the zero modes do not enjoy generic topological protection. Depending
on the details of subband mixing in realistic devices, they can develop a topological minigap, acquire a finite
lifetime, or even be destroyed.

DOI: 10.1103/PhysRevResearch.2.023171

Majorana quasiparticles are localized zero-energy exci-
tations, usually arising due to the nontrivial topology of
a superconducting bulk [1– 9]. Topological protection, to-
gether with the non-Abelian braiding statistics of Majoranas,
forms the basis of topologically protected quantum com-
puting [2,10,11]. This prospect has spurred a great deal of
effort in recent years towards their creation and manipulation
in various solid-state platforms [12– 16]. Amongst the most
developed is the so-called Majorana nanowire [17– 19], a
proximitized semiconducting nanowire partially coated with
a superconductor along its length. The device was designed
to realize the Oreg-Lutchyn model [20,21], which predicts the
emergence of one-dimensional (1D) topological superconduc-
tivity [2] and protected Majorana zero modes under a strong
Zeeman field at low carrier densities. The superconducting
coating of the device is limited to some facets of the nanowire
to allow depleting the nanowire carrier density with a gate
[22– 24], while still preserving a good proximity effect from
the superconductor [25,26]. Majorana-like signatures, e.g.,
zero-bias anomalies (ZBAs) in transport spectroscopy, have
been repeatedly reported in these systems [19]. Despite such
promising results, the search continues for alternative plat-
forms or detection schemes [27– 45] where Majoranas could
also be engineered and manipulated.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

A recent experiment [46] reported on an innovative type of
device, known as a full-shell Majorana nanowire, that appears
at first sight to be a minor variation of the Majorana nanowire.
The term full shell refers to the superconducting coating, that
is applied on all facets of the nanowire instead of just a few. A
full coating prevents external gating of the device as external
electric fields can be expected to be totally screened in the
nanowire bulk. The full-shell geometry, however, also enables
new possibilities, particularly the creation of superconduct-
ing vortices around the nanowire axis. Under a longitudinal
magnetic flux !, the order parameter develops an “n-fluxoid,”
" = |"|einφ , i.e., a winding n of its phase with angle φ around
the nanowire axis, where n = ⌊!/!0⌉ is the closest integer to
! normalized to the flux quantum !0 [47– 50]. Furthermore,
the Little-Parks (LP) effect [50,51] arises, whereby the su-
perconducting gap |"| becomes suppressed (even completely
in the “destructive” regime [52,53]) around half-integer flux.
It was found experimentally [46] that, in the presence of an
odd-n fluxoid, a Majorana-like ZBA arises in the nanowire
at magnetic fields much smaller than in partial-shell devices.
It was furthermore found to remain robust for any magnetic
flux throughout the “first lobe” centered around !/!0 ≈ 1;
see Fig. 1(a).

As shown in Ref. [54], a hollow version of the nanowire
can be mapped analytically to the Oreg-Luthyn model, which
could then sustain topologically protected states without the
need of a Zeeman field, an essential ingredient in the original
Oreg-Lutchyn proposal [20,21]. In such case, however, the
corresponding Majorana zero modes only survive near the
edge of the odd lobes, see Figs. 1(d) and 1(e), but not near
the center of the lobe, unlike in the experiment. The theory
analysis also showed that the more realistic case of a solid
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device, known as a full-shell Majorana nanowire, that appears
at first sight to be a minor variation of the Majorana nanowire.
The term full shell refers to the superconducting coating, that
is applied on all facets of the nanowire instead of just a few. A
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electric fields can be expected to be totally screened in the
nanowire bulk. The full-shell geometry, however, also enables
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perconducting gap |"| becomes suppressed (even completely
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It was found experimentally [46] that, in the presence of an
odd-n fluxoid, a Majorana-like ZBA arises in the nanowire
at magnetic fields much smaller than in partial-shell devices.
It was furthermore found to remain robust for any magnetic
flux throughout the “first lobe” centered around !/!0 ≈ 1;
see Fig. 1(a).

As shown in Ref. [54], a hollow version of the nanowire
can be mapped analytically to the Oreg-Luthyn model, which
could then sustain topologically protected states without the
need of a Zeeman field, an essential ingredient in the original
Oreg-Lutchyn proposal [20,21]. In such case, however, the
corresponding Majorana zero modes only survive near the
edge of the odd lobes, see Figs. 1(d) and 1(e), but not near
the center of the lobe, unlike in the experiment. The theory
analysis also showed that the more realistic case of a solid
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FIG. 1. (a) Experimental results for differential tunneling con-
ductance dI/dV vs bias voltage V and magnetic flux ! (or equiva-
lently magnetic field B) into a solid-core full-shell superconductor-
semiconductor nanowire in the destructive Little-Parks regime, taken
from Ref. [46]. Zero-bias anomalies, revealing the presence of zero
modes in the LDOS, are observed in the first Little-Parks lobes
with n= ±1 fluxoid around the shell. (b),(c) Numerical simula-
tion of the local density of states (LDOS) (in arbitrary units) in
semi-infinite solid-core full-shell nanowires, both in the destructive
(b) and weak/moderate (c) Little-Parks regime, showing similar
phenomenology. Zero modes are absent around integer flux in sim-
pler hollow-core full-shell nanowires (d),(e). Simulation parameters:
" = 0.2 meV, α = 20 meV nm; (b),(c) λN = 38 nm, λS = 35 nm,
R = 80 nm, and R2/(dξ ) = 1.72 (b) and 4.35 (c); (d),(e) λN = λS =
61 nm, R = 43, d ≈ 0, and R/ξ = 0.47 (d) and 0.67 (e).

full-shell nanowire can also exhibit a topological phase. Its
parameter window, however, was found to be very small and
restricted to low densities, at least in the case of a pristine
nanowire with perfect circular symmetry, and would require
fine control of its density to be realized. Away from this
small window, it was shown that the system is gapless, due
to the presence of ungapped subbands with higher angular
momentum components. An open question thus remains as
to the nature of the experimental ZBAs, that, surprisingly,
required no fine tuning of gates or field.

In this work we address this question by studying the
spectral properties of more general full-shell nanowires with
a solid core, generalizing previous results to the realistic case
in which charge density is spread across nanowire section.
We find that unprotected but strong Majorana-like ZBAs
arise from the sector with lowest angular momentum mj =
0, embedded in a gapless mj ̸= 0 background. Their emer-
gence results from a nontrivial topology of the mj = 0 sector
when the occupation of the corresponding normal-state radial
subbands is odd. We compute the system’s phase diagram,
which clearly reveals this even-odd effect, with ZBAs present
throughout a substantial fraction of parameter space. We
further demonstrate that ZBAs persist across odd lobes. Our
spectroscopy simulations shows a marked similarity to the
experimental observations without the need of fine tuning.
The resulting Majorana states are however unprotected against
general subband-mixing perturbations (from, e.g., interface
disorder or a noncircular nanowire section or shell), since
they coexist with a gapless background, as also noted in
Ref. [54]. We explore here their fate in the presence of angular
mode mixing. Depending on the mixing details, we find a
variety of possible behaviors, including the development of
a trivial or a nontrivial gap, a splitting or a broadening of the
zero mode into a delocalized quasibound Majorana state. We
conclude by commenting on possible alternative scenarios for
the observations.

Model. We first develop the simplest description of a solid
semiconducting nanowire of radius R, oriented along the z
direction, and fully coated with a conventional superconductor
of thickness d . The Fermi energies of the two materials are de-
noted by µN and µS respectively, with µS ≫ µN . The associ-
ated Fermi wavelengths are denoted by λN,S = h̄/

√
2m∗µN,S,

with m∗ the effective mass (assumed uniform for simplicity).
When the nanowire core is contacted to the superconducting
shell, µ(r) will in general acquire self-consistent screening
corrections. We assume instead the simple approximation
µ(r < R) = µN , µ(r > R) = µS. While the chemical poten-
tial is piecewise contact, the resulting charge density is not,
acquiring a nontrivial radial profile that affects the local
density of states (LDOS) measured by a tunnel probe. Sim-
ilarly, we assume |"(|r| < R)| = 0, |"(r > R)| = |"|. The
dependence of |"| with flux ! is incorporated from the LP
Ginzburg-Landau theory results, see Appendix A, whose high
accuracy has been recently established [55]. The relevant spin-
orbit Rashba coupling inside the nanowire is radial, α(r) ∥ r̂,
and is much smaller in the superconductor than in the semi-
conductor. We approximate α(r < R) = α r

R r̂, α(r > R) = 0
[56– 58]. The section of the nanowire is assumed circular for
the moment, so that subbands have a well defined total angular
momentum mj . The three-dimensional Nambu Hamiltonian
for this model can be written in cylindrical coordinates as

H =
[

(p + eA)2

2m∗ − µ(r) + α(r) · σ × [p + eA(r)]
]
τz

+ σyτy|"(r)|einφ, (1)

where σi are Pauli matrices for spin, and τi for the electron-
hole sectors. The magnetic flux is incorporated through the
n-fluxoid in the pairing term and through the axial gauge field
A(r) ≈ r!

2πR2 φ̂, where φ̂ is the axial unit vector in cylindrical
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FIG. 1. (a) Experimental results for differential tunneling con-
ductance dI/dV vs bias voltage V and magnetic flux ! (or equiva-
lently magnetic field B) into a solid-core full-shell superconductor-
semiconductor nanowire in the destructive Little-Parks regime, taken
from Ref. [46]. Zero-bias anomalies, revealing the presence of zero
modes in the LDOS, are observed in the first Little-Parks lobes
with n= ±1 fluxoid around the shell. (b),(c) Numerical simula-
tion of the local density of states (LDOS) (in arbitrary units) in
semi-infinite solid-core full-shell nanowires, both in the destructive
(b) and weak/moderate (c) Little-Parks regime, showing similar
phenomenology. Zero modes are absent around integer flux in sim-
pler hollow-core full-shell nanowires (d),(e). Simulation parameters:
" = 0.2 meV, α = 20 meV nm; (b),(c) λN = 38 nm, λS = 35 nm,
R = 80 nm, and R2/(dξ ) = 1.72 (b) and 4.35 (c); (d),(e) λN = λS =
61 nm, R = 43, d ≈ 0, and R/ξ = 0.47 (d) and 0.67 (e).

full-shell nanowire can also exhibit a topological phase. Its
parameter window, however, was found to be very small and
restricted to low densities, at least in the case of a pristine
nanowire with perfect circular symmetry, and would require
fine control of its density to be realized. Away from this
small window, it was shown that the system is gapless, due
to the presence of ungapped subbands with higher angular
momentum components. An open question thus remains as
to the nature of the experimental ZBAs, that, surprisingly,
required no fine tuning of gates or field.

In this work we address this question by studying the
spectral properties of more general full-shell nanowires with
a solid core, generalizing previous results to the realistic case
in which charge density is spread across nanowire section.
We find that unprotected but strong Majorana-like ZBAs
arise from the sector with lowest angular momentum mj =
0, embedded in a gapless mj ̸= 0 background. Their emer-
gence results from a nontrivial topology of the mj = 0 sector
when the occupation of the corresponding normal-state radial
subbands is odd. We compute the system’s phase diagram,
which clearly reveals this even-odd effect, with ZBAs present
throughout a substantial fraction of parameter space. We
further demonstrate that ZBAs persist across odd lobes. Our
spectroscopy simulations shows a marked similarity to the
experimental observations without the need of fine tuning.
The resulting Majorana states are however unprotected against
general subband-mixing perturbations (from, e.g., interface
disorder or a noncircular nanowire section or shell), since
they coexist with a gapless background, as also noted in
Ref. [54]. We explore here their fate in the presence of angular
mode mixing. Depending on the mixing details, we find a
variety of possible behaviors, including the development of
a trivial or a nontrivial gap, a splitting or a broadening of the
zero mode into a delocalized quasibound Majorana state. We
conclude by commenting on possible alternative scenarios for
the observations.

Model. We first develop the simplest description of a solid
semiconducting nanowire of radius R, oriented along the z
direction, and fully coated with a conventional superconductor
of thickness d . The Fermi energies of the two materials are de-
noted by µN and µS respectively, with µS ≫ µN . The associ-
ated Fermi wavelengths are denoted by λN,S = h̄/

√
2m∗µN,S,

with m∗ the effective mass (assumed uniform for simplicity).
When the nanowire core is contacted to the superconducting
shell, µ(r) will in general acquire self-consistent screening
corrections. We assume instead the simple approximation
µ(r < R) = µN , µ(r > R) = µS. While the chemical poten-
tial is piecewise contact, the resulting charge density is not,
acquiring a nontrivial radial profile that affects the local
density of states (LDOS) measured by a tunnel probe. Sim-
ilarly, we assume |"(|r| < R)| = 0, |"(r > R)| = |"|. The
dependence of |"| with flux ! is incorporated from the LP
Ginzburg-Landau theory results, see Appendix A, whose high
accuracy has been recently established [55]. The relevant spin-
orbit Rashba coupling inside the nanowire is radial, α(r) ∥ r̂,
and is much smaller in the superconductor than in the semi-
conductor. We approximate α(r < R) = α r

R r̂, α(r > R) = 0
[56– 58]. The section of the nanowire is assumed circular for
the moment, so that subbands have a well defined total angular
momentum mj . The three-dimensional Nambu Hamiltonian
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H =
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ductance dI/dV vs bias voltage V and magnetic flux ! (or equiva-
lently magnetic field B) into a solid-core full-shell superconductor-
semiconductor nanowire in the destructive Little-Parks regime, taken
from Ref. [46]. Zero-bias anomalies, revealing the presence of zero
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semi-infinite solid-core full-shell nanowires, both in the destructive
(b) and weak/moderate (c) Little-Parks regime, showing similar
phenomenology. Zero modes are absent around integer flux in sim-
pler hollow-core full-shell nanowires (d),(e). Simulation parameters:
" = 0.2 meV, α = 20 meV nm; (b),(c) λN = 38 nm, λS = 35 nm,
R = 80 nm, and R2/(dξ ) = 1.72 (b) and 4.35 (c); (d),(e) λN = λS =
61 nm, R = 43, d ≈ 0, and R/ξ = 0.47 (d) and 0.67 (e).

full-shell nanowire can also exhibit a topological phase. Its
parameter window, however, was found to be very small and
restricted to low densities, at least in the case of a pristine
nanowire with perfect circular symmetry, and would require
fine control of its density to be realized. Away from this
small window, it was shown that the system is gapless, due
to the presence of ungapped subbands with higher angular
momentum components. An open question thus remains as
to the nature of the experimental ZBAs, that, surprisingly,
required no fine tuning of gates or field.

In this work we address this question by studying the
spectral properties of more general full-shell nanowires with
a solid core, generalizing previous results to the realistic case
in which charge density is spread across nanowire section.
We find that unprotected but strong Majorana-like ZBAs
arise from the sector with lowest angular momentum mj =
0, embedded in a gapless mj ̸= 0 background. Their emer-
gence results from a nontrivial topology of the mj = 0 sector
when the occupation of the corresponding normal-state radial
subbands is odd. We compute the system’s phase diagram,
which clearly reveals this even-odd effect, with ZBAs present
throughout a substantial fraction of parameter space. We
further demonstrate that ZBAs persist across odd lobes. Our
spectroscopy simulations shows a marked similarity to the
experimental observations without the need of fine tuning.
The resulting Majorana states are however unprotected against
general subband-mixing perturbations (from, e.g., interface
disorder or a noncircular nanowire section or shell), since
they coexist with a gapless background, as also noted in
Ref. [54]. We explore here their fate in the presence of angular
mode mixing. Depending on the mixing details, we find a
variety of possible behaviors, including the development of
a trivial or a nontrivial gap, a splitting or a broadening of the
zero mode into a delocalized quasibound Majorana state. We
conclude by commenting on possible alternative scenarios for
the observations.

Model. We first develop the simplest description of a solid
semiconducting nanowire of radius R, oriented along the z
direction, and fully coated with a conventional superconductor
of thickness d . The Fermi energies of the two materials are de-
noted by µN and µS respectively, with µS ≫ µN . The associ-
ated Fermi wavelengths are denoted by λN,S = h̄/

√
2m∗µN,S,

with m∗ the effective mass (assumed uniform for simplicity).
When the nanowire core is contacted to the superconducting
shell, µ(r) will in general acquire self-consistent screening
corrections. We assume instead the simple approximation
µ(r < R) = µN , µ(r > R) = µS. While the chemical poten-
tial is piecewise contact, the resulting charge density is not,
acquiring a nontrivial radial profile that affects the local
density of states (LDOS) measured by a tunnel probe. Sim-
ilarly, we assume |"(|r| < R)| = 0, |"(r > R)| = |"|. The
dependence of |"| with flux ! is incorporated from the LP
Ginzburg-Landau theory results, see Appendix A, whose high
accuracy has been recently established [55]. The relevant spin-
orbit Rashba coupling inside the nanowire is radial, α(r) ∥ r̂,
and is much smaller in the superconductor than in the semi-
conductor. We approximate α(r < R) = α r

R r̂, α(r > R) = 0
[56– 58]. The section of the nanowire is assumed circular for
the moment, so that subbands have a well defined total angular
momentum mj . The three-dimensional Nambu Hamiltonian
for this model can be written in cylindrical coordinates as

H =
[

(p + eA)2

2m∗ − µ(r) + α(r) · σ × [p + eA(r)]
]
τz

+ σyτy|"(r)|einφ, (1)

where σi are Pauli matrices for spin, and τi for the electron-
hole sectors. The magnetic flux is incorporated through the
n-fluxoid in the pairing term and through the axial gauge field
A(r) ≈ r!

2πR2 φ̂, where φ̂ is the axial unit vector in cylindrical
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FIG. 1. (a) Experimental results for differential tunneling con-
ductance dI/dV vs bias voltage V and magnetic flux ! (or equiva-
lently magnetic field B) into a solid-core full-shell superconductor-
semiconductor nanowire in the destructive Little-Parks regime, taken
from Ref. [46]. Zero-bias anomalies, revealing the presence of zero
modes in the LDOS, are observed in the first Little-Parks lobes
with n= ±1 fluxoid around the shell. (b),(c) Numerical simula-
tion of the local density of states (LDOS) (in arbitrary units) in
semi-infinite solid-core full-shell nanowires, both in the destructive
(b) and weak/moderate (c) Little-Parks regime, showing similar
phenomenology. Zero modes are absent around integer flux in sim-
pler hollow-core full-shell nanowires (d),(e). Simulation parameters:
" = 0.2 meV, α = 20 meV nm; (b),(c) λN = 38 nm, λS = 35 nm,
R = 80 nm, and R2/(dξ ) = 1.72 (b) and 4.35 (c); (d),(e) λN = λS =
61 nm, R = 43, d ≈ 0, and R/ξ = 0.47 (d) and 0.67 (e).
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nanowire with perfect circular symmetry, and would require
fine control of its density to be realized. Away from this
small window, it was shown that the system is gapless, due
to the presence of ungapped subbands with higher angular
momentum components. An open question thus remains as
to the nature of the experimental ZBAs, that, surprisingly,
required no fine tuning of gates or field.

In this work we address this question by studying the
spectral properties of more general full-shell nanowires with
a solid core, generalizing previous results to the realistic case
in which charge density is spread across nanowire section.
We find that unprotected but strong Majorana-like ZBAs
arise from the sector with lowest angular momentum mj =
0, embedded in a gapless mj ̸= 0 background. Their emer-
gence results from a nontrivial topology of the mj = 0 sector
when the occupation of the corresponding normal-state radial
subbands is odd. We compute the system’s phase diagram,
which clearly reveals this even-odd effect, with ZBAs present
throughout a substantial fraction of parameter space. We
further demonstrate that ZBAs persist across odd lobes. Our
spectroscopy simulations shows a marked similarity to the
experimental observations without the need of fine tuning.
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conclude by commenting on possible alternative scenarios for
the observations.

Model. We first develop the simplest description of a solid
semiconducting nanowire of radius R, oriented along the z
direction, and fully coated with a conventional superconductor
of thickness d . The Fermi energies of the two materials are de-
noted by µN and µS respectively, with µS ≫ µN . The associ-
ated Fermi wavelengths are denoted by λN,S = h̄/
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2m∗µN,S,

with m∗ the effective mass (assumed uniform for simplicity).
When the nanowire core is contacted to the superconducting
shell, µ(r) will in general acquire self-consistent screening
corrections. We assume instead the simple approximation
µ(r < R) = µN , µ(r > R) = µS. While the chemical poten-
tial is piecewise contact, the resulting charge density is not,
acquiring a nontrivial radial profile that affects the local
density of states (LDOS) measured by a tunnel probe. Sim-
ilarly, we assume |"(|r| < R)| = 0, |"(r > R)| = |"|. The
dependence of |"| with flux ! is incorporated from the LP
Ginzburg-Landau theory results, see Appendix A, whose high
accuracy has been recently established [55]. The relevant spin-
orbit Rashba coupling inside the nanowire is radial, α(r) ∥ r̂,
and is much smaller in the superconductor than in the semi-
conductor. We approximate α(r < R) = α r

R r̂, α(r > R) = 0
[56– 58]. The section of the nanowire is assumed circular for
the moment, so that subbands have a well defined total angular
momentum mj . The three-dimensional Nambu Hamiltonian
for this model can be written in cylindrical coordinates as

H =
[

(p + eA)2

2m∗ − µ(r) + α(r) · σ × [p + eA(r)]
]
τz

+ σyτy|"(r)|einφ, (1)

where σi are Pauli matrices for spin, and τi for the electron-
hole sectors. The magnetic flux is incorporated through the
n-fluxoid in the pairing term and through the axial gauge field
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FIG. 2. (a)–(c) LDOS at the end of a semi-infinite solid-core, full-shell nanowire as a function of energy eV and flux ! in the first
Little-Parks lobe (destructive regime). The Fermi wavelength of the superconducting shell λS is fixed and the semiconducting core’s λN

increases from (a) to (c). Log-scale line cuts of the LDOS at ! = !0 are shown on the right, resolved by sectors of different angular momentum
mj . The line cuts show that black regions in the density plots have a small nonzero LDOS background coming from gapless mj ̸= 0 subbands,
not visible with the chosen color scaling (as also happens in the experiment of Ref. [46]). Note the appearance of a quasibound zero mode
throughout the lobe in (b) and (c) that was split in (a). The contributions to the LDOS from sectors with different mj show that the zero mode
corresponds to the mj = 0 sector (in red). It arises as one mj = 0 subband undergoes an inversion at kz = 0, as shown in the Nambu band
structure in panels (d)–(f), thus becoming topologically nontrivial when considered on its own. The emergence of the mj = 0 Majorana zero
mode correlates with an odd occupancy of the mj = 0 radial subbands in the normal phase, panels (g)–(i). Parameters are as in Fig. 1(b) except
for R = 100 nm and λS = 24 nm.

coordinates, ! = πBR2 is the flux, and B is the magnetic field
along the z direction.

Due to the axial symmetry of the model, the above H
can be decomposed into decoupled sectors with different
total angular momentum mj [54]. By discretizing the result-
ing Hmj into a one-dimensional semi-infinite tight-binding
Hamiltonian along the z direction, we can compute the total
LDOS at the end of the nanowire as a sum of different mj
contributions. Experimentally, the LDOS is measured with the
dI/dV conductance through a tunnel probe coupled to the end
of the wire [59]. At small bias voltage V and temperature
T , the tunneling dI/dV is an approximate measure of the

nanowire LDOS at energy eV . An LDOS ZBA in this context
thus refers to the existence of a zero-energy mode [60]. We
compute the LDOS using the Green’s function formalism for
one-dimensional, semi-infinite conductors [61–63].

Results and discussion. In Fig. 1 we show a comparison
between the experimental dI/dV as a function of bias V and
flux ! (destructive LP regime) and our LDOS simulations
(both in the weak and destructive LP regimes). The LP regime
is mainly controlled by the ratio R2/(dξ ) between nanowire
radius R and superconductor coherence length ξ and thickness
d; a large ratio giving weak LP (see Appendix A). We also
present the corresponding simulation for a hollow nanowire,
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wherein the semiconductor is confined to a very thin shell R −
δ < r < R with δ ≪ R (see sketch). The experiment shows
a strong ZBA clearly visible throughout the odd n= ±1
LP lobes, including "/"0 = 1 and its vicinity. This feature
is reproduced by LDOS simulations in the solid nanowire
model. A ZBA across the lobe like in the experiment, however,
is not reproduced by the hollow nanowire model, as already
demonstrated in Ref. [54].

Due to the nongateable nature of the full-shell devices, µN
and to some extent also µS are unknown. It is thus important
to establish when ZBAs arise as a function of these two
quantities. To this end we first analyze the solid nanowire
LDOS for fixed µS and decreasing µN . This corresponds to
fixing λS and increasing λN . Simultaneously we compute the
mj-resolved band structure at "/"0 = 1, both in the super-
conducting and the normal phase. The combined results are
shown in Fig. 2. We find a trivial phase with split ZBAs [panel
(a)] that transitions to a non-trivial phase with an unsplit ZBA
[panel (c)] corresponding to a Majorana bound state localized
at the tunneling contact. This happens whenever an mj = 0
Nambu subband, in red in panels (d)–(f), becomes inverted.

The topological phases accurately correlate, in the limit
of $ ≪ µS, µN , with an odd occupation of the normal-state
mj = 0 radial subbands, panels (g)–(i). These normal sub-
bands are spread throughout the inner core and the outer shell
of the nanowire, so that the precise transition point depends
on both λN and λS. It also depends weakly on ". This is
demonstrated in Fig. 2(b), where λN and λS are tuned to the
vicinity of an even-odd transition. There, "/"0 ! 1 has odd
occupancy and a ZBA exactly at zero, while for "/"0 " 1 the
occupancy is still even, and the ZBA exhibits a weak splitting.
Such " dependence within odd lobes is however quite weak
in practice.

The phase diagram of the model at fixed " = "0 is
shown in Fig. 3(a), where we compare the normal-phase
odd-occupancy criterion (blue regions), the emergence
boundary of Majorana zero modes (orange lines), and two
analytical approximations for the latter, Eqs. (B10) and (B11)
of Appendix B (black and gray lines). We find that the unsplit
mj = 0 Majoranas are a common occurrence, occupying
essentially half of the phase diagram. No fine tuning is thus
necessary to achieve such a phase, which could explain why
the ungateable experimental nanowires are likely to show this
phenomenology.

The background of gapless mj ̸= 0 modes, represented in
gray in the second column of Fig. 2, provides a continuum
of excitations for the mj = 0 Majorana to couple to or decay
into [64]. As a result, the Majorana zero mode does not
enjoy generic topological protection in full-shell nanowires,
as mode mixing can potentially destroy it. To understand how,
we have performed simulations using a minimal model for
angular mode mixing, in line with our nanowire model; see
Appendix C for implementation details. A single parameter
η controls the strength of mj mixing, with all preceding
results corresponding to η = 0. In Figs. 3(c)–3(e) we show the
evolution of the LDOS in two topological points of the phase
diagram [yellow and green in (a)] as a uniform η is increased
throughout the semi-infinite nanowire. The LDOS first devel-
ops a small topological minigap (black background around the
ZBA), which then closes and reopens at a critical value of η,

FIG. 3. (a),(b) Phase diagram of a " = "0 solid-core, full-shell
nanowire of radius R, vs R/λN,S, where λN,S are Fermi wavelengths
in the semiconductor core and superconductor shell, respectively.
Panel (a) focuses on low densities while (b) shows a wider range.
The thick orange lines in (a) mark the boundaries of regions with
a topologically nontrivial mj = 0 subband with Majoranas. These
are computed using exact tight-binding simulations with finite $.
Blue regions in (a),(b) correspond to an odd occupancy of the mj = 0
normal-phase radial subbands, computed using wave matching at the
core-shell boundary for $ = α = 0. Black and gray lines correspond
to two analytical approximations for the even-odd boundaries; see
Eqs. (B10) and (B11). (c)–(f) LDOS as a function of energy eV and
subband-mixing strength η, starting at different points in the phase
diagram, colored squares in (a). Note that the color scale is zoomed
in around zero conductance with respect to Figs. 1 and 2 to resolve
the small background LDOS. (d) Line cuts of (c) that emphasize
the opening and subsequent band inversion of a minigap induced
by mixing, which in our model eventually results in the destruction
of the Majorana state. Parameters: (a) R = 100 nm, d = 100 nm,
$ = 0.2 meV, α = 10 meV nm (orange curve); (b) R = 65 nm,
d = 28 nm.

destroying the ZBA (c). The corresponding behavior starting
within a trivial phase [pink in (a)] is shown in (f). We see that
considerably complex evolutions with η may arise, including
intermediate phases with additional pairs of zero modes.
With a spatially nonuniform η we even see mode broad-
ening into a Majorana quasibound state; see Appendix C.
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a strong ZBA clearly visible throughout the odd n= ±1
LP lobes, including "/"0 = 1 and its vicinity. This feature
is reproduced by LDOS simulations in the solid nanowire
model. A ZBA across the lobe like in the experiment, however,
is not reproduced by the hollow nanowire model, as already
demonstrated in Ref. [54].
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and to some extent also µS are unknown. It is thus important
to establish when ZBAs arise as a function of these two
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LDOS for fixed µS and decreasing µN . This corresponds to
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of $ ≪ µS, µN , with an odd occupation of the normal-state
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of the nanowire, so that the precise transition point depends
on both λN and λS. It also depends weakly on ". This is
demonstrated in Fig. 2(b), where λN and λS are tuned to the
vicinity of an even-odd transition. There, "/"0 ! 1 has odd
occupancy and a ZBA exactly at zero, while for "/"0 " 1 the
occupancy is still even, and the ZBA exhibits a weak splitting.
Such " dependence within odd lobes is however quite weak
in practice.

The phase diagram of the model at fixed " = "0 is
shown in Fig. 3(a), where we compare the normal-phase
odd-occupancy criterion (blue regions), the emergence
boundary of Majorana zero modes (orange lines), and two
analytical approximations for the latter, Eqs. (B10) and (B11)
of Appendix B (black and gray lines). We find that the unsplit
mj = 0 Majoranas are a common occurrence, occupying
essentially half of the phase diagram. No fine tuning is thus
necessary to achieve such a phase, which could explain why
the ungateable experimental nanowires are likely to show this
phenomenology.

The background of gapless mj ̸= 0 modes, represented in
gray in the second column of Fig. 2, provides a continuum
of excitations for the mj = 0 Majorana to couple to or decay
into [64]. As a result, the Majorana zero mode does not
enjoy generic topological protection in full-shell nanowires,
as mode mixing can potentially destroy it. To understand how,
we have performed simulations using a minimal model for
angular mode mixing, in line with our nanowire model; see
Appendix C for implementation details. A single parameter
η controls the strength of mj mixing, with all preceding
results corresponding to η = 0. In Figs. 3(c)–3(e) we show the
evolution of the LDOS in two topological points of the phase
diagram [yellow and green in (a)] as a uniform η is increased
throughout the semi-infinite nanowire. The LDOS first devel-
ops a small topological minigap (black background around the
ZBA), which then closes and reopens at a critical value of η,

FIG. 3. (a),(b) Phase diagram of a " = "0 solid-core, full-shell
nanowire of radius R, vs R/λN,S, where λN,S are Fermi wavelengths
in the semiconductor core and superconductor shell, respectively.
Panel (a) focuses on low densities while (b) shows a wider range.
The thick orange lines in (a) mark the boundaries of regions with
a topologically nontrivial mj = 0 subband with Majoranas. These
are computed using exact tight-binding simulations with finite $.
Blue regions in (a),(b) correspond to an odd occupancy of the mj = 0
normal-phase radial subbands, computed using wave matching at the
core-shell boundary for $ = α = 0. Black and gray lines correspond
to two analytical approximations for the even-odd boundaries; see
Eqs. (B10) and (B11). (c)–(f) LDOS as a function of energy eV and
subband-mixing strength η, starting at different points in the phase
diagram, colored squares in (a). Note that the color scale is zoomed
in around zero conductance with respect to Figs. 1 and 2 to resolve
the small background LDOS. (d) Line cuts of (c) that emphasize
the opening and subsequent band inversion of a minigap induced
by mixing, which in our model eventually results in the destruction
of the Majorana state. Parameters: (a) R = 100 nm, d = 100 nm,
$ = 0.2 meV, α = 10 meV nm (orange curve); (b) R = 65 nm,
d = 28 nm.

destroying the ZBA (c). The corresponding behavior starting
within a trivial phase [pink in (a)] is shown in (f). We see that
considerably complex evolutions with η may arise, including
intermediate phases with additional pairs of zero modes.
With a spatially nonuniform η we even see mode broad-
ening into a Majorana quasibound state; see Appendix C.
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a strong ZBA clearly visible throughout the odd n= ±1
LP lobes, including "/"0 = 1 and its vicinity. This feature
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is not reproduced by the hollow nanowire model, as already
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mj = 0 Majoranas are a common occurrence, occupying
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necessary to achieve such a phase, which could explain why
the ungateable experimental nanowires are likely to show this
phenomenology.

The background of gapless mj ̸= 0 modes, represented in
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into [64]. As a result, the Majorana zero mode does not
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normal-phase radial subbands, computed using wave matching at the
core-shell boundary for $ = α = 0. Black and gray lines correspond
to two analytical approximations for the even-odd boundaries; see
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subband-mixing strength η, starting at different points in the phase
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in around zero conductance with respect to Figs. 1 and 2 to resolve
the small background LDOS. (d) Line cuts of (c) that emphasize
the opening and subsequent band inversion of a minigap induced
by mixing, which in our model eventually results in the destruction
of the Majorana state. Parameters: (a) R = 100 nm, d = 100 nm,
$ = 0.2 meV, α = 10 meV nm (orange curve); (b) R = 65 nm,
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destroying the ZBA (c). The corresponding behavior starting
within a trivial phase [pink in (a)] is shown in (f). We see that
considerably complex evolutions with η may arise, including
intermediate phases with additional pairs of zero modes.
With a spatially nonuniform η we even see mode broad-
ening into a Majorana quasibound state; see Appendix C.
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wherein the semiconductor is confined to a very thin shell R −
δ < r < R with δ ≪ R (see sketch). The experiment shows
a strong ZBA clearly visible throughout the odd n= ±1
LP lobes, including "/"0 = 1 and its vicinity. This feature
is reproduced by LDOS simulations in the solid nanowire
model. A ZBA across the lobe like in the experiment, however,
is not reproduced by the hollow nanowire model, as already
demonstrated in Ref. [54].

Due to the nongateable nature of the full-shell devices, µN
and to some extent also µS are unknown. It is thus important
to establish when ZBAs arise as a function of these two
quantities. To this end we first analyze the solid nanowire
LDOS for fixed µS and decreasing µN . This corresponds to
fixing λS and increasing λN . Simultaneously we compute the
mj-resolved band structure at "/"0 = 1, both in the super-
conducting and the normal phase. The combined results are
shown in Fig. 2. We find a trivial phase with split ZBAs [panel
(a)] that transitions to a non-trivial phase with an unsplit ZBA
[panel (c)] corresponding to a Majorana bound state localized
at the tunneling contact. This happens whenever an mj = 0
Nambu subband, in red in panels (d)–(f), becomes inverted.

The topological phases accurately correlate, in the limit
of $ ≪ µS, µN , with an odd occupation of the normal-state
mj = 0 radial subbands, panels (g)–(i). These normal sub-
bands are spread throughout the inner core and the outer shell
of the nanowire, so that the precise transition point depends
on both λN and λS. It also depends weakly on ". This is
demonstrated in Fig. 2(b), where λN and λS are tuned to the
vicinity of an even-odd transition. There, "/"0 ! 1 has odd
occupancy and a ZBA exactly at zero, while for "/"0 " 1 the
occupancy is still even, and the ZBA exhibits a weak splitting.
Such " dependence within odd lobes is however quite weak
in practice.

The phase diagram of the model at fixed " = "0 is
shown in Fig. 3(a), where we compare the normal-phase
odd-occupancy criterion (blue regions), the emergence
boundary of Majorana zero modes (orange lines), and two
analytical approximations for the latter, Eqs. (B10) and (B11)
of Appendix B (black and gray lines). We find that the unsplit
mj = 0 Majoranas are a common occurrence, occupying
essentially half of the phase diagram. No fine tuning is thus
necessary to achieve such a phase, which could explain why
the ungateable experimental nanowires are likely to show this
phenomenology.

The background of gapless mj ̸= 0 modes, represented in
gray in the second column of Fig. 2, provides a continuum
of excitations for the mj = 0 Majorana to couple to or decay
into [64]. As a result, the Majorana zero mode does not
enjoy generic topological protection in full-shell nanowires,
as mode mixing can potentially destroy it. To understand how,
we have performed simulations using a minimal model for
angular mode mixing, in line with our nanowire model; see
Appendix C for implementation details. A single parameter
η controls the strength of mj mixing, with all preceding
results corresponding to η = 0. In Figs. 3(c)–3(e) we show the
evolution of the LDOS in two topological points of the phase
diagram [yellow and green in (a)] as a uniform η is increased
throughout the semi-infinite nanowire. The LDOS first devel-
ops a small topological minigap (black background around the
ZBA), which then closes and reopens at a critical value of η,

FIG. 3. (a),(b) Phase diagram of a " = "0 solid-core, full-shell
nanowire of radius R, vs R/λN,S, where λN,S are Fermi wavelengths
in the semiconductor core and superconductor shell, respectively.
Panel (a) focuses on low densities while (b) shows a wider range.
The thick orange lines in (a) mark the boundaries of regions with
a topologically nontrivial mj = 0 subband with Majoranas. These
are computed using exact tight-binding simulations with finite $.
Blue regions in (a),(b) correspond to an odd occupancy of the mj = 0
normal-phase radial subbands, computed using wave matching at the
core-shell boundary for $ = α = 0. Black and gray lines correspond
to two analytical approximations for the even-odd boundaries; see
Eqs. (B10) and (B11). (c)–(f) LDOS as a function of energy eV and
subband-mixing strength η, starting at different points in the phase
diagram, colored squares in (a). Note that the color scale is zoomed
in around zero conductance with respect to Figs. 1 and 2 to resolve
the small background LDOS. (d) Line cuts of (c) that emphasize
the opening and subsequent band inversion of a minigap induced
by mixing, which in our model eventually results in the destruction
of the Majorana state. Parameters: (a) R = 100 nm, d = 100 nm,
$ = 0.2 meV, α = 10 meV nm (orange curve); (b) R = 65 nm,
d = 28 nm.

destroying the ZBA (c). The corresponding behavior starting
within a trivial phase [pink in (a)] is shown in (f). We see that
considerably complex evolutions with η may arise, including
intermediate phases with additional pairs of zero modes.
With a spatially nonuniform η we even see mode broad-
ening into a Majorana quasibound state; see Appendix C.
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Note that replacing = 0 by > 0 in Eq. (B10) above actually
selects the regions with odd normal occupation. Equation
(B10) is plotted in black in Figs. 3(a) and 3(b) of the main
text.

Alternatively, expanding π1,2 up to leading order in both
λS/λN and λS/R, reduces to
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which corresponds to the square mesh plotted in gray in
Figs. 3(a) and 3(b). Despite its simplicity, the above equation
captures quite well the essence of the even-odd effect in the
ZBA of our full-shell nanowire model.

APPENDIX C: FATE OF THE mj = 0 MAJORANA UNDER
INTERBAND MIXING

The analysis of the full-shell nanowire based on decou-
pled mj’s is valid in the idealized limit of nanowires with
perfect cylindrical symmetry. Any perturbation V̂η, such as
a noncircular section, disorder in the semiconductor, in the
superconductor shell or contact, or produced by the presence
of a substrate, should be expected to break the assumption of
decoupled mj’s to some degree, as was noted in Ref. [54].
To assess the likelihood of observing the mj = 0 ZBA phe-
nomenology connected to Majorana states, we compute and
analyze the local density of states (LDOS) under an increasing
coupling η = ⟨φ± 1|V̂η|φ0⟩ between a small set of angular mo-
menta mj = 0, ± 1 at % = %0 (adding higher bands does not
change the qualitative results). As we discussed in the main
text, this simplified model is enough to produce a very rich set
of possible evolutions of the mj = 0 Majoranas, eventually
leading to its destruction at strong enough mixing.

The interband mixing is introduced as a uniform coupling η
between mj = 0 and mj = ± 1. We first assume V̂η (and hence
also η) is independent of position. With a finite η, the LDOS
is no longer decomposable into different mj contributions. In
Figs. 3(c)– 3(f) of the main text we present the total LDOS
at % = %0 for increasing η, starting from different points in
the phase diagram of Fig. 3(a). In Fig. 3(c) we see the simplest
possibility. Starting in a nontrivial configuration with one zero
mode, a small η creates a minigap in the mj ̸= 0 subbands by
making these modes susceptible to superconducting pairing

FIG. 4. The LDOS at the end of a semi-infinite full-shell
nanowire at % = %0, truncated to the mj = 0, ± 1 subspace, as a
function of the coupling η between mj bands. The coupling is
restricted to within 10 nm of the end of the nanowire, where the
termination of the superconducting shell exposes the semiconductor
to external perturbations. The mj = 0 Majorana state is coupled
by the local η to the gapless mj ̸= 0 bands in the nanowire bulk,
which leads to broadening and decay in the limit of a semi-infinite
nanowire.

at zero energy, which otherwise only affects the mj = 0
sector. The minigap acts as a proper topological gap, and
protects the Majorana much as in conventional Oreg-Lutchyn
nanowires. As η is increased further, however, the minigap
eventually closes and reopens as a trivial gap, destroying the
Majorana.

Starting from a different topological point in the phase
diagram, see the green square in Fig. 3(a), can produce a more
complicated behavior, whereby the Majorana is not destroyed
after the minigap is reopened. Instead, two new zero modes
are added at a gap inversion, which takes place away from
the high-symmetry k = 0 point. Such kind of inversions are
trivial, and introduce zero modes in pairs that hybridize to
finite energy; see Figs. 3(e) and 3(f). Such split resonances
are also eventually destroyed at higher mixing.

Finally, a quite different scenario can take place. If η is zero
within the bulk of the nanowire, or due to some symmetry
some of the mj ̸= 0 modes remain ungapped, the Majorana
may become coupled to such gapless states by a local mixing
η confined to the tip of the nanowire, where the Majorana
wave function is concentrated. Such a local mode mixing is
a likely occurrence in experimental devices, since the tip of
the nanowire is not covered by a superconducting shell, and
is therefore more susceptible to mode-mixing perturbations
from the substrate or tunnel probes. The result of such a local
η is shown in Fig. 4. The background LDOS does not develop
a minigap. Instead, the zero mode becomes broadened into a
quasibound Majorana state, with a width that grows with η,
and which represents its decay rate into the gapless nanowire
bulk.

All these results assume a semi-infinite nanowire, without
any longitudinal quantization of the different mj subbands.
For finite nanowires the phenomenology becomes even more
complicated, although in such a case one can no longer rigor-
ously speak about topological nontriviality (at least in closed
systems [70]). The general conclusion from the analysis of
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The analysis of the full-shell nanowire based on decou-
pled mj’s is valid in the idealized limit of nanowires with
perfect cylindrical symmetry. Any perturbation V̂η, such as
a noncircular section, disorder in the semiconductor, in the
superconductor shell or contact, or produced by the presence
of a substrate, should be expected to break the assumption of
decoupled mj’s to some degree, as was noted in Ref. [54].
To assess the likelihood of observing the mj = 0 ZBA phe-
nomenology connected to Majorana states, we compute and
analyze the local density of states (LDOS) under an increasing
coupling η = ⟨φ± 1|V̂η|φ0⟩ between a small set of angular mo-
menta mj = 0, ± 1 at % = %0 (adding higher bands does not
change the qualitative results). As we discussed in the main
text, this simplified model is enough to produce a very rich set
of possible evolutions of the mj = 0 Majoranas, eventually
leading to its destruction at strong enough mixing.

The interband mixing is introduced as a uniform coupling η
between mj = 0 and mj = ± 1. We first assume V̂η (and hence
also η) is independent of position. With a finite η, the LDOS
is no longer decomposable into different mj contributions. In
Figs. 3(c)– 3(f) of the main text we present the total LDOS
at % = %0 for increasing η, starting from different points in
the phase diagram of Fig. 3(a). In Fig. 3(c) we see the simplest
possibility. Starting in a nontrivial configuration with one zero
mode, a small η creates a minigap in the mj ̸= 0 subbands by
making these modes susceptible to superconducting pairing

FIG. 4. The LDOS at the end of a semi-infinite full-shell
nanowire at % = %0, truncated to the mj = 0, ± 1 subspace, as a
function of the coupling η between mj bands. The coupling is
restricted to within 10 nm of the end of the nanowire, where the
termination of the superconducting shell exposes the semiconductor
to external perturbations. The mj = 0 Majorana state is coupled
by the local η to the gapless mj ̸= 0 bands in the nanowire bulk,
which leads to broadening and decay in the limit of a semi-infinite
nanowire.

at zero energy, which otherwise only affects the mj = 0
sector. The minigap acts as a proper topological gap, and
protects the Majorana much as in conventional Oreg-Lutchyn
nanowires. As η is increased further, however, the minigap
eventually closes and reopens as a trivial gap, destroying the
Majorana.

Starting from a different topological point in the phase
diagram, see the green square in Fig. 3(a), can produce a more
complicated behavior, whereby the Majorana is not destroyed
after the minigap is reopened. Instead, two new zero modes
are added at a gap inversion, which takes place away from
the high-symmetry k = 0 point. Such kind of inversions are
trivial, and introduce zero modes in pairs that hybridize to
finite energy; see Figs. 3(e) and 3(f). Such split resonances
are also eventually destroyed at higher mixing.

Finally, a quite different scenario can take place. If η is zero
within the bulk of the nanowire, or due to some symmetry
some of the mj ̸= 0 modes remain ungapped, the Majorana
may become coupled to such gapless states by a local mixing
η confined to the tip of the nanowire, where the Majorana
wave function is concentrated. Such a local mode mixing is
a likely occurrence in experimental devices, since the tip of
the nanowire is not covered by a superconducting shell, and
is therefore more susceptible to mode-mixing perturbations
from the substrate or tunnel probes. The result of such a local
η is shown in Fig. 4. The background LDOS does not develop
a minigap. Instead, the zero mode becomes broadened into a
quasibound Majorana state, with a width that grows with η,
and which represents its decay rate into the gapless nanowire
bulk.

All these results assume a semi-infinite nanowire, without
any longitudinal quantization of the different mj subbands.
For finite nanowires the phenomenology becomes even more
complicated, although in such a case one can no longer rigor-
ously speak about topological nontriviality (at least in closed
systems [70]). The general conclusion from the analysis of
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We have established the minimal ingredients necessary to model and explain the subgap tunneling 
dI/dV phenomenology of full-shell superconductor-semiconductor nanowires of recent experiments. 

The hollow-core version never shows ZBAs throughout a full LP lobe. It is necessary to consider 
solid-core nanowires with a nonzero charge density throughout the full nanowire section to obtain 
ZBAs similar to the experiment.  

ZBAs emerge for odd normal-state occupation of the radial mj = 0 subbands. We have mapped 
analytically and numerically this even-odd effect in the emergence of ZBAs at odd LP lobes 
throughout the full phase diagram of the system’s model, and established the connection between 
the ZBAs to topologically unprotected mj = 0 Majorana zero modes.  

ZBAs should be a common occurrence in these devices, occupying roughly half of their 
microscopic parameter space. 

The effect of angular subband mixing on the Majoranas is quite complex, ranging from topological 
minigap opening to mode splitting or broadening, but always ends up by destroying the Majorana 
states at sufficiently strong mixing. 

Conclusions
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Advantages of this new design:

The core of the wire is shielded from unwanted effects of the 
environment and surface disorder 

Needs smaller applied magnetic fields for topological transition (good to 
preserve the superconducting state of the parent SC) 

No need for large g-factor semiconducting wires 

Majorana bound states are predicted to appear at very specific regions 
of parameter space, particularly at the odd LP lobes (this might be 
useful to distinguish them from other unwanted trivial states)

Vaitiekènas et al., Science 367, 1442 (2020)
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Chemical potential of the wire is not tunable through direct gating 

SO coupling is not tunable through gates 

Higher angular momentum subbands are in principle not gapped — 
Majorana bound state coexists with a finite background conductance 

This hybrid system could display some of the problems as conventional 
partial-shell superconductor-semiconductor wires: inhomogeneous 
potentials (not inside the wire, but at the ends?) → quasi-Majoranas, 
disorder, QD formation...

Drawbacks
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A semiconducting nanowire core fully wrapped
by a superconducting shell has been proposed
as an alternative geometry for obtaining Majo-
rana modes without the need of fine tuning the
chemical potential or an external magnetic field.
While this robustness seems to avoid interpreta-
tion ambiguities in terms of non-topological An-
dreev bound states, we here demonstrate that the
appearance of subgap states is actually governed
by the junction region in tunneling spectroscopy
measurements, not the full-shell nanowire it-
self. Short tunneling regions never show subgap
states, while longer junctions always do. This
can be understood in terms of quantum dots
forming in the junction and hosting Andreev lev-
els in the Yu-Shiba-Rusinov regime. Their in-
tricate magnetic-field dependence, both through
the Zeeman and the Little-Parks e↵ects, may
result in robust zero-bias peaks, a feature that
could be easily misinterpreted as originating from
Majoranas, but is unrelated to topology.

INTRODUCTION

The superconducting Bardeen–Cooper–Schrie↵er
(BCS) density of states (DOS) is characterised by a gap
� around the Fermi energy which prevents quasiparticle
excitations at energies below it. This picture changes
in systems with spatially-inhomogeneous pairing poten-
tials, such as weak links between two superconductors
(SCs). In such cases, the DOS contains states inside the
gap known generically as Andreev bound states (ABSs)
[1]. Excitations created by the addition or removal of a
quasiparticle to/from ABSs have been observed in e.g.
carbon nanotubes [2, 3], superconducting atomic point
contacts [4], graphene [5] and hybrid semiconducting-
superconducting systems based on nanowires (NWs)
[6–15]. While ABSs are interesting, not only as e.g.
Andreev qubits [16, 17], but also for the rich physics

they o↵er, the intense research activity of the last few
years in the hybrid NW platform has arguably been
motivated by the prediction that a topological SC state
with Majorana zero modes (MZMs) can be engineered
out of them [18, 19] (see also Refs. [20, 21] for recent
reviews). Despite the fact that several experiments in
such platforms have reported on signatures compatible
with MZMs [22–27], the Majorana interpretation has
been challenged since zero-energy ABSs, without an
underlying topological state, can mimic MZMs [28–38].

Recently, it has been argued that full-shell NWs [39]
threaded by a magnetic flux � = AB, with A the cross-
section of the nanowire and B an external axial mag-
netic field, is a novel platform for realizing topological
superconductivity [40]. The full-shell geometry has the
great advantage that a topological phase can be induced
at known, and relatively low, magnetic fields; typically
when � is close to one flux quantum �0 = h/2e (the
precise range depending on the geometry of the full-
shell NW [41]). Experiments using InAs/Al full-shell
NWs have reported on flux tunability of superconduc-
tivity, including full destruction and reemergence, owing
to the Little-Parks (LP) e↵ect [42–44]. This LP e↵ect
is concomitant with zero bias peaks (ZBPs) in tunnel-
ing conductance, appearing in reentrant superconduct-
ing regions around � ⇠ �0, which have been interpreted
as MZMs [40]. We use here similar InAs/Al full-shell
NWs and investigate the role of the tunneling junction
(green region of length X in Fig. 1A) on the subgap
spectra by performing tunneling spectroscopy measure-
ments. Specifically, we use three experimental knobs,
the magnetic flux, the junction length X and the global
backgate voltage. Data from more than 40 devices verify
that for X <⇠ 100 nm, the bare InAs NW acts as a tunnel
barrier, while for X >⇠ 150 nm, a quantum dot (QD) is
formed in the tunnel junction region (data for interme-
diate lengths is not conclusive). The main text discusses
data from five devices, which we refer to as A, B, C, D
and E. Data from eight more devices are presented in the
supplementary information (SI).
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FIG. 1: Tunneling spectroscopy of a short-junction device. (A) False-color scanning electron micrograph of
device A. The tunnel junction of length X⇡ 50 nm created in the bare InAs nanowire (NW) (green) is formed between the
normal contact (yellow) and the proximitized full-shell NW (red), of length L. It can be tuned by the overall backgate Vbg

sidegate is grounded). The electrochemical potential µ inside the full-shell cannot be gated because of the Al screening, hence
Vbg a↵ects only the tunnel region. The magnetic field B is applied parallel to the NW. The inset shows the hexagonal NW
cross section with a semiconducting core radius R ⇡ 55 nm and a shell thickness d ⇡ 30 nm. (B) Sketch of a superconductor
(SC)-tunnel barrier (TB)-normal metal (N) junction. No quantum dot (QD) is formed in the bare InAs NW. (C) Di↵erential
conductance dI/dV plotted in logarithmic scale as a function of source-drain bias voltage V and Vbg, which tunes the tunnel
barrier transparency. (D) dI/dV as a function of V and B for device A at Vbg = �17V. Little-Parks (LP) oscillations are
observed, where superconducting lobes (denoted 0L, 1L and 2L) are separated by regions where superconductivity is
completely suppressed. From the shape of the lobes, one can extract the NW dimensions (R ⇡ 61 nm and d ⇡ 23 nm, in good
agreement with the nominal values mentioned above) and the coherence length (⇠ ⇡ 190 nm). (E and F) Line-cuts taken from
(D) at the center of 0L and 1L, respectively. In both cases the gap is hard.

SHORT JUNCTION DEVICES

We first focus on the short-junction devices for which
the bare InAs NW plays the role of a tunnel barrier
(Fig. 1B). Figure 1C displays the measured di↵erential
conductance at zero magnetic field of device A with a
short tunnel junction of X ⇡ 50 nm. With increasingly
negative Vbg, the tunneling conductance at source-drain
voltages V below the superconducting gap � decreases
and reveals a hard gap of size � ⇡ 200 µeV. The line
trace shown in Fig. 1E confirms the absence of subgap
states and a hard gap with a subgap conductance sup-
pressed by a factor of ⇠ 300 relative to the above-gap
conductance. Similar tunneling spectroscopy data have
been observed for all devices with a junction length X
< 100 nm (see Fig. S4 in the SI). The hardness of the
gap and the absence of subgap features make the short
junction devices the best candidates for an unambiguous
detection of MZMs signatures.

We now discuss transport spectroscopy data as a func-
tion of an external parallel magnetic field B. Figure 1D
shows the dI/dV evolution as a function of B at a fixed
value of Vbg for device A. The modulation of � with B

is the result of the destructive LP e↵ect [42, 45, 46], with

regions where the gap is completely suppressed and sub-
sequently regenerated (in what follows we will label the
regions with finite gaps as zeroth lobe, first lobe, and so
on). Theory predicts the observation of a ZBP in the first
lobe due to the formation of MZMs [40, 41]. Notwith-
standing these predictions, none of the nine short junc-
tion devices reported here (Fig. 1 and Fig. S4 of the SI)
exhibit a ZBP (or any other subgap state) as the mag-
netic field increases. Instead, a slightly smaller but still
hard gap is observed in the first lobe, as enlightened in
Fig. 1F. Possible explanations for the absence of ZBPs in
the first lobe could be that the NWs are always topologi-
cally trivial due to renormalization of the semiconductor
properties owing to strong coupling to the superconduc-
tor [47, 48] or lack of proper tuning into a topological
phase [41, 49, 50]. The described short junction results
are seemingly in contradiction with recent experimental
report on MZMs in similar NWs [40]. However, we note
that the lithographic length of the shown tunnel junction
in Ref. 40 seems to be larger than 100 nm and falls into
what we call the long junction regime. We will discuss
in the following how, in this regime, we observe ZBPs of
non topological origin owing to QD physics.
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FIG. 2: Tunneling spectroscopy of a long-junction device. (A) False-color scanning electron micrograph of device
B. The tunnel region of length X⇡ 240 nm accommodates a QD with charging energy U ⇡ 2.5meV. (B) Sketch of a
superconductor (SC)-QD-normal metal (N) junction, showing all the physical energy scales involved in this problem, namely,
the superconducting gap �, the tunnel rates �S and �N , and U . For the devices studied here U � � and the first excited
state over the doublet ground state (GS) at odd occupation is a Kondo-like singlet between the unpaired spin in the QD and
the quasiparticles in the SC [Yu-Shiba-Rusinov (YSR) singlet]. This excitation creates subgap states inside the
superconducting gap at energies ±⇣. Another possible excitation is the BCS-like singlet superposition of even charge states in
the QD, but it is located much higher in energy (order ⇠ U). (C) dI/dV plotted in logarithmic scale as a function of V and
Vbg. (D) Line-cut extracted from (C) at Vbg = �2.3V. Despite the fact that this device supports Andreev bound states
(ABSs), still a hard gap can be observed for certain gate voltage values.

LONG JUNCTION DEVICES

Figure 2A shows a micrograph of device B with X
⇡ 240 nm, for which a QD is formed in the tunnel junc-
tion as sketched in Fig. 2B. In this QD-SC system, two
ground states (GSs) are accessible: a spin doublet, |Di,
with spin 1

2 , and a spin singlet, |Si, with spin 0. Whether
the GS is a doublet or a singlet is determined by the in-
terplay between the Andreev processes at the SC-QD
interface and Coulomb blockade (CB), with charging en-
ergy U , in the QD. CB enforces a one by one electron
filling, favouring odd electron occupations with a doublet
GS [51–54]. The coupling to the SC, �S , on the other
hand, privileges a singlet GS. Its physical nature cru-
cially depends on the ratio �/U . In the large �/U limit,
the coupling to the SC mainly induces local supercon-
ducting correlations in the QD that lead to Bogoliubov-
type singlets, which are superpositions of the empty |0i
and doubly-occupied |"#i states in the QD. In the oppo-
site, small �/U limit, the unpaired spin in the QD cou-
ples with quasiparticles in the SC, see Fig. 2B, with an
exchange interaction J ⇠ 2�S/U . This exchange interac-
tion creates so-called Yu-Shiba-Rusinov (YSR) singlets,
the superconducting counterpart of Kondo singlets [55–
58]. For small J , the GS is a doublet and the YSR sin-
glets occur as discrete ABS excitations near the edge of
the SC gap. A larger J , however, detaches these excita-

tions at subgap energies, and eventually may induce zero-
energy crossings, which signal a quantum phase transi-
tion (QPT) where the YSR singlet becomes the new GS.
Since our experiments are always in a large U limit (even
for the largest gap at � = 0 we always have U � �), the
YSR regime [7–10, 54, 59, 60] is the relevant one to ex-
plain our data (for a full theoretical discussion about all
the physical regimes, see the SI). Transitions between the
GS and the first excited state of the system, i.e., between
a doublet and a singlet state or vice-versa, manifest in
transport spectroscopy as a subgap resonance at volt-
age V = ⇣ (and its electron-hole-symmetric partner at
V = �⇣). Furthermore, changes in the parity of the GS
of the system appear as points in parameter space (here
Vbg or B) where ⇣ changes sign (signalled by the crossing
of ABSs at zero energy) [7–10].

Figure 2C displays the measured di↵erential conduc-
tance at zero magnetic field of the long junction device
B. As explained above, a symmetric pair of conductance
peaks appears at |V | < �. Vbg can tune the position of
these subgap states that move up and down in energy,
and even induce zero-energy crossings forming a charac-
teristic eye-shaped loop (red dashed square), which is the
superconducting analog of an odd-occupation CB valley.
Right in the middle of this valley, the system behaves
as a spin 1/2 impurity, which induces YSR physics. Far
from the odd valleys, Vbg tunes the ABSs to higher en-
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FIG. 1: Tunneling spectroscopy of a short-junction device. (A) False-color scanning electron micrograph of
device A. The tunnel junction of length X⇡ 50 nm created in the bare InAs nanowire (NW) (green) is formed between the
normal contact (yellow) and the proximitized full-shell NW (red), of length L. It can be tuned by the overall backgate Vbg

sidegate is grounded). The electrochemical potential µ inside the full-shell cannot be gated because of the Al screening, hence
Vbg a↵ects only the tunnel region. The magnetic field B is applied parallel to the NW. The inset shows the hexagonal NW
cross section with a semiconducting core radius R ⇡ 55 nm and a shell thickness d ⇡ 30 nm. (B) Sketch of a superconductor
(SC)-tunnel barrier (TB)-normal metal (N) junction. No quantum dot (QD) is formed in the bare InAs NW. (C) Di↵erential
conductance dI/dV plotted in logarithmic scale as a function of source-drain bias voltage V and Vbg, which tunes the tunnel
barrier transparency. (D) dI/dV as a function of V and B for device A at Vbg = �17V. Little-Parks (LP) oscillations are
observed, where superconducting lobes (denoted 0L, 1L and 2L) are separated by regions where superconductivity is
completely suppressed. From the shape of the lobes, one can extract the NW dimensions (R ⇡ 61 nm and d ⇡ 23 nm, in good
agreement with the nominal values mentioned above) and the coherence length (⇠ ⇡ 190 nm). (E and F) Line-cuts taken from
(D) at the center of 0L and 1L, respectively. In both cases the gap is hard.

SHORT JUNCTION DEVICES

We first focus on the short-junction devices for which
the bare InAs NW plays the role of a tunnel barrier
(Fig. 1B). Figure 1C displays the measured di↵erential
conductance at zero magnetic field of device A with a
short tunnel junction of X ⇡ 50 nm. With increasingly
negative Vbg, the tunneling conductance at source-drain
voltages V below the superconducting gap � decreases
and reveals a hard gap of size � ⇡ 200 µeV. The line
trace shown in Fig. 1E confirms the absence of subgap
states and a hard gap with a subgap conductance sup-
pressed by a factor of ⇠ 300 relative to the above-gap
conductance. Similar tunneling spectroscopy data have
been observed for all devices with a junction length X
< 100 nm (see Fig. S4 in the SI). The hardness of the
gap and the absence of subgap features make the short
junction devices the best candidates for an unambiguous
detection of MZMs signatures.

We now discuss transport spectroscopy data as a func-
tion of an external parallel magnetic field B. Figure 1D
shows the dI/dV evolution as a function of B at a fixed
value of Vbg for device A. The modulation of � with B

is the result of the destructive LP e↵ect [42, 45, 46], with

regions where the gap is completely suppressed and sub-
sequently regenerated (in what follows we will label the
regions with finite gaps as zeroth lobe, first lobe, and so
on). Theory predicts the observation of a ZBP in the first
lobe due to the formation of MZMs [40, 41]. Notwith-
standing these predictions, none of the nine short junc-
tion devices reported here (Fig. 1 and Fig. S4 of the SI)
exhibit a ZBP (or any other subgap state) as the mag-
netic field increases. Instead, a slightly smaller but still
hard gap is observed in the first lobe, as enlightened in
Fig. 1F. Possible explanations for the absence of ZBPs in
the first lobe could be that the NWs are always topologi-
cally trivial due to renormalization of the semiconductor
properties owing to strong coupling to the superconduc-
tor [47, 48] or lack of proper tuning into a topological
phase [41, 49, 50]. The described short junction results
are seemingly in contradiction with recent experimental
report on MZMs in similar NWs [40]. However, we note
that the lithographic length of the shown tunnel junction
in Ref. 40 seems to be larger than 100 nm and falls into
what we call the long junction regime. We will discuss
in the following how, in this regime, we observe ZBPs of
non topological origin owing to QD physics.

Tunneling spectroscopy of a short-junction device
<latexit sha1_base64="zrORRPjsiuc+qyZ5oAje/X873Bs=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgqsxIUZdFNy4r2Ad0hpJJM21okglJRlqG+RU3LhRx64+4829M21lo64ELh3Pu5d57IsmoNp737ZQ2Nre2d8q7lb39g8Mj97ja0UmqMGnjhCWqFyFNGBWkbahhpCcVQTxipBtN7uZ+94koTRPxaGaShByNBI0pRsZKA7faC5CUKpnChhcongmeD9yaV/cWgOvEL0gNFGgN3K9gmOCUE2EwQ1r3fU+aMEPKUMxIXglSTSTCEzQifUsF4kSH2eL2HJ5bZQjjRNkSBi7U3xMZ4lrPeGQ7OTJjverNxf+8fmrimzCjQqaGCLxcFKcMmgTOg4BDqgg2bGYJworaWyEeI4WwsXFVbAj+6svrpHNZ96/q3kOj1rwt4iiDU3AGLoAPrkET3IMWaAMMpuAZvII3J3denHfnY9lacoqZE/AHzucPw0yURA==</latexit>
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FIG. 2: Tunneling spectroscopy of a long-junction device. (A) False-color scanning electron micrograph of device
B. The tunnel region of length X⇡ 240 nm accommodates a QD with charging energy U ⇡ 2.5meV. (B) Sketch of a
superconductor (SC)-QD-normal metal (N) junction, showing all the physical energy scales involved in this problem, namely,
the superconducting gap �, the tunnel rates �S and �N , and U . For the devices studied here U � � and the first excited
state over the doublet ground state (GS) at odd occupation is a Kondo-like singlet between the unpaired spin in the QD and
the quasiparticles in the SC [Yu-Shiba-Rusinov (YSR) singlet]. This excitation creates subgap states inside the
superconducting gap at energies ±⇣. Another possible excitation is the BCS-like singlet superposition of even charge states in
the QD, but it is located much higher in energy (order ⇠ U). (C) dI/dV plotted in logarithmic scale as a function of V and
Vbg. (D) Line-cut extracted from (C) at Vbg = �2.3V. Despite the fact that this device supports Andreev bound states
(ABSs), still a hard gap can be observed for certain gate voltage values.

LONG JUNCTION DEVICES

Figure 2A shows a micrograph of device B with X
⇡ 240 nm, for which a QD is formed in the tunnel junc-
tion as sketched in Fig. 2B. In this QD-SC system, two
ground states (GSs) are accessible: a spin doublet, |Di,
with spin 1

2 , and a spin singlet, |Si, with spin 0. Whether
the GS is a doublet or a singlet is determined by the in-
terplay between the Andreev processes at the SC-QD
interface and Coulomb blockade (CB), with charging en-
ergy U , in the QD. CB enforces a one by one electron
filling, favouring odd electron occupations with a doublet
GS [51–54]. The coupling to the SC, �S , on the other
hand, privileges a singlet GS. Its physical nature cru-
cially depends on the ratio �/U . In the large �/U limit,
the coupling to the SC mainly induces local supercon-
ducting correlations in the QD that lead to Bogoliubov-
type singlets, which are superpositions of the empty |0i
and doubly-occupied |"#i states in the QD. In the oppo-
site, small �/U limit, the unpaired spin in the QD cou-
ples with quasiparticles in the SC, see Fig. 2B, with an
exchange interaction J ⇠ 2�S/U . This exchange interac-
tion creates so-called Yu-Shiba-Rusinov (YSR) singlets,
the superconducting counterpart of Kondo singlets [55–
58]. For small J , the GS is a doublet and the YSR sin-
glets occur as discrete ABS excitations near the edge of
the SC gap. A larger J , however, detaches these excita-

tions at subgap energies, and eventually may induce zero-
energy crossings, which signal a quantum phase transi-
tion (QPT) where the YSR singlet becomes the new GS.
Since our experiments are always in a large U limit (even
for the largest gap at � = 0 we always have U � �), the
YSR regime [7–10, 54, 59, 60] is the relevant one to ex-
plain our data (for a full theoretical discussion about all
the physical regimes, see the SI). Transitions between the
GS and the first excited state of the system, i.e., between
a doublet and a singlet state or vice-versa, manifest in
transport spectroscopy as a subgap resonance at volt-
age V = ⇣ (and its electron-hole-symmetric partner at
V = �⇣). Furthermore, changes in the parity of the GS
of the system appear as points in parameter space (here
Vbg or B) where ⇣ changes sign (signalled by the crossing
of ABSs at zero energy) [7–10].

Figure 2C displays the measured di↵erential conduc-
tance at zero magnetic field of the long junction device
B. As explained above, a symmetric pair of conductance
peaks appears at |V | < �. Vbg can tune the position of
these subgap states that move up and down in energy,
and even induce zero-energy crossings forming a charac-
teristic eye-shaped loop (red dashed square), which is the
superconducting analog of an odd-occupation CB valley.
Right in the middle of this valley, the system behaves
as a spin 1/2 impurity, which induces YSR physics. Far
from the odd valleys, Vbg tunes the ABSs to higher en-

<latexit sha1_base64="BkhoHX+ss5ZglL7+TXTLonX9wKQ=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5AUX8uiG5cVTFtoQplMJ+3QmUmYmYg1FH/FjQtF3Pof7vwbp20W2nrgwuGce7n3nihlVGnX/bZKS8srq2vl9crG5tb2jr2711RJJjHxccIS2Y6QIowK4muqGWmnkiAeMdKKhtcTv3VPpKKJuNOjlIQc9QWNKUbaSF37wA9QmsrkAdacs0DynJPmuGtXXcedAi4SryBVUKDRtb+CXoIzToTGDCnV8dxUhzmSmmJGxpUgUyRFeIj6pGOoQJyoMJ9eP4bHRunBOJGmhIZT9fdEjrhSIx6ZTo70QM17E/E/r5Pp+DLMqUgzTQSeLYozBnUCJ1HAHpUEazYyBGFJza0QD5BEWJvAKiYEb/7lRdKsOd65496eVutXRRxlcAiOwAnwwAWogxvQAD7A4BE8g1fwZj1ZL9a79TFrLVnFzD74A+vzB9PUlNM=</latexit>

U ⇡ 2.5meV
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X ⇡ 230nm

Superconducting single-impurity Anderson model:  
Coulomb blockaded QD coupled to a SC lead Theoretical modeling: 
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FIG. S1. Gap modulation of the phase diagram through the Little-Parks e↵ect. (a) LP modulation of the
superconducting gap in the destructive regime vs normalized flux �/�0 . (b-c) Full phase diagram of hn"i � hn#i vs �S/U and
✏0/U for � = 0 in the small and large �/U regimes, respectively. Only the LP e↵ect is included here so we take g = 0. Hartree-
Fock (HF) solution: Inside the dark blue dome the superconductor-quantum dot (SC-QD) system is in a doublet ground state
(GS), whereas it is in a singlet GS in the white region. Grey, red and cyan dashed lines mark the analytic boundaries in the
�/U ! 1 (atomic), generalized atomic (GAL) and �/U ! 0 (Anderson) approximations, respectively. (d-e) hn"i � hn#i vs
�/�0 for fixed ✏0 = �U/2 and increasing values of �S/U from 0.06 (black) to 0.36 (d) and 0.45 (e) (light grey). The orange
lines mark the destructive LP regime. Note that for the larger couplings, the singlet phase occurs before the LP destructive
region. Similarly, the system is back to a doublet well outside the LP destructive region. (f-g) hn"i � hn#i vs �S/U for fixed
✏0 = �U/2 and increasing fluxes marked with colours in (a) for the two regimes of (b) and (c), respectively, also in the absence
of Zeeman e↵ect. The LP e↵ect results in an oscillatory modulation of the dome. Parameters: g = 0, �N ⇡ 0, � = 0.2 meV,
R = 50 nm, d = 35 nm, and U = 0.5 meV (U = 0.05 meV) in (b), (d) and (f) [in (c), (e) and (g)].
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FIG. 5: ZBPs arising from ABSs ”hidden” in the superconducting gap edge. (A to C) dI/dV for three
di↵erent devices as a function of V and B for Vbg = �1.84V, Vbg = �1.27V and Vbg = �1.89V, respectively. ABSs close to
the gap edge at zero field, where the GS is in the singlet state, converge to a ZBP in the 1L. (D to F) dI/dV versus V traces
at B = 0mT (yellow) and at the middle of the 1L at B = 102mT, B = 112mT and B = 123mT (green), respectively, showing
a zero-bias peak (ZBP). (G and H) Numerical simulation of the LDOS as a function of V and B for parameters corresponding
to device D. In (G) there is a constant pairing equal to �, whereas a destructive LP modulation of the BCS gap is considered
in (H). In red, poles of the Green’s function of a superconducting Anderson model. For comparison, we also show in (G) the
evolution of the ABS with increasing B assuming that only Zeeman splitting is relevant (green lines). The observation of the
non-linear B evolution of the ABSs strongly depends on the individual parameters of the device, namely �S , U and their
position at B = 0. (I) Phase diagram of the dot-level spin-polarized occupations hn"i � hn#i vs �S/U and ✏0/U for three
di↵erent magnetic fields: B = 30mT, B = 105mT, and B = 140mT (for the model parameters see the SI). ✏0 is the dot level
energy at zero field. The yellow circle corresponds to the specific configuration in the phase diagram that leads to (H). The
singlet-doublet transition line (between white and blue regions) as a function of B exhibits a strong dependence on �S/U . As
we increase the magnetic field we go from a singlet phase (top) to a doublet phase (bottom), across a parity crossing located
at B = 105mT (center panel). The red and blue circles denote similar experimental configurations, but with slightly di↵erent
gate/coupling to the SC, that never cross the singlet-doublet transition line for the shown magnetic fields.

rameter regime: we again consider the evolution of in-
gap ABSs far from the gap edge at B = 0 but close to a
singlet-doublet transition mediated by Vbg, see the three
colored diamonds in Fig. 3A. Our results are presented
in Fig. 4E. The three subpanels show the evolution in
magnetic field of the same pair of ABSs but at slightly
di↵erent backgate values (see also Fig. S7 in the SI). The
closer the backgate is to the singlet-doublet zero-energy
crossing, the smaller the ABS energy is. For increasing

magnetic fields, this B = 0 energy influences the partic-
ular B value at which the excitation reaches zero energy
(compare the panels in Fig. 4E as one moves from left
to right). This gate dependence allows to tune the value
of B at which the ZBP emerges. For Vbg = �2.705V, in
particular (blue diamond), the ZBP appears at the be-
ginning of the first lobe and persists throughout its full
extent. The lower panels in Fig. 4E show numerics in
this regime, whose overall agreement is excellent. This

Phase diagram of the 
dot-level spin-polarized 
occupations
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FIG. 3: Andreev bound states in the Little-Parks regime with a doublet ground state. (A) Plot showing
a zoom of Fig. 2C (red dashed box) for device B. From Vbg = �2.70V to Vbg = �2.55V the QD is in a doublet GS. (B) Same
as (A) but for B = 115mT, at the center of the first lobe, see (D). (C) Schematics showing the evolution of the ABSs with a
doublet GS when a magnetic field B is switched on. (D) dI/dV as a function of V and B for Vbg = �2.62V, at the center of
the doublet GS [white dashed line in (A)]. The green dashed line corresponds to the analytical level positions given in Eq. (1),
showing that these ABSs are of the YSR type (here U = 2.5 meV and �S = 0.8 meV= 0.32U is inferred from the position of
the ABSs at B = 0). Line-cuts taken at di↵erent magnetic fields as well as the Kondo e↵ect observed in the destructive
regimes are discussed in the SI.

ergies (green line) where they merge/disappear into the
continuum of states. In such a region, the line trace in
Fig. 2D again reveals a hard gap, with a subgap con-
ductance suppressed by a factor of ⇠ 90 relative to the
above-gap conductance.

Magnetic field evolution of ABSs in the YSR limit

We first study a doublet GS, occurring in a Vbg region
between �2.70V and �2.55V (red box in Fig. 2C). Fig-
ure 3A displays a zoom-in of this region, illustrating that
the gap is clean apart from a single pair of ABSs at ener-
gies ±⇣ . At finite magnetic fields, |⇣| slightly increases
in the doublet region, as can be seen in Fig. 3B. The in-
creasing energy results from the decreasing doublet GS
energy owing to the Zeeman e↵ect. The spin-polarized
doublet states change their energy with B by the Zeeman
energy ±VZ = ±gµBB/2 (with g and µB being the g-
factor and the Bohr’s magneton, respectively), while the
excited singlet energy remains una↵ected, see the sketch
in Fig. 3C. Importantly, since the GS is spin-polarized,
there is only one allowed excitation (vertical arrows in
Fig. 3C). This excitation results in a pair of ABSs inside
the LP lobes (as opposed to the short junction discussed
in Fig. 1). This is illustrated in Fig. 3D, where we show
the full magnetic field evolution for fixed Vbg = �2.62V
(dashed line in Fig. 3A). This B-field evolution strongly
deviates from the linear increase expected for a standard
Zeeman e↵ect and actually stays nearly constant within

the zeroth lobe. Since we fix Vbg right in the middle of
the loop (middle of the CB valley), charge fluctuations
are greatly suppressed in this configuration and the sys-
tem should essentially behave as a spin 1/2 coupled to a
SC. Indeed, by modelling the system as a CB QD cou-
pled to a SC lead (the so-called superconducting Ander-
son model), we can write an analytic expression for the
ABSs in this large-U limit of the form (see SI):

⇣ = ±�(�)
1�

⇣
2�S

U+VZ

⌘2

1 +
⇣

2�S
U+VZ

⌘2 , (1)

where the QD level position is fixed to ✏0 = �U/2 to
describe the spinful odd CB valley. This equation is
the expression for YSR bound states [58] written in the
language of our system and including the external mag-
netic flux (through both the LP modulation of the su-
perconducting gap �(�) and the Zeeman e↵ect VZ). The
dashed green curves in Fig. 3D are calculated with this
analytical expression without fitting parameters (since
the energy of the ABSs at zero magnetic field fixes �S).
The excellent agreement between Eq. (1) and the ex-
periment demonstrate that, indeed, our ABSs are YSR
singlets (for comparison, the excitations to the BCS-like
singlet |Si = |0i � |"#i would occur at a much higher
energy, of order ⇣ ⇡ ±(U � �S)/2 = 0.85 meV� �).

Analytical level position showing that these 
ABSs are of the YSR type 

YSR singlets become Kondo singlets 
in the destructive LP regions
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FIG. 4: Andreev bound states in the Little-Parks regime with a singlet ground state. (A) Plot showing a
zoom of Fig. 2C around a singlet GS for device B (blue dashed box). (B) Same as (A) but at finite magnetic field
B = 115mT. The ABSs split and the splitting depends on Vbg. (C) Schematics of the ABS behavior with a singlet GS when a
magnetic field B is switched on. (D) dI/dV as a function of V and B for Vbg = �1.84V [dashed white line in (A)]. A zero
bias peak (ZBP) starts at the end of the 1L and persists throughout all the 2L, extending thus for more than 100mT. (E)
(Upper row) dI/dV as a function of V and B for Vbg = �2.725V, Vbg = �2.715V and Vbg = �2.705V (from left to right), see
colored diamonds in Fig. 3A. By changing the ABS position at zero field, it is possible to create a situation in which the ABSs
form a ZBP throughout all the 1L. (Lower row) Numerical simulation of the LDOS versus V and B in a QD-SC system
(modelled as a superconducting Anderson model), with the SC in the destructive LP regime and the QD in a singlet GS for
three di↵erent gate configurations (the parameters can be found in Table S1 of the SI).

Magnetic field evolution of ABSs with a singlet GS:
deep in-gap limit

We can tune the device to a singlet GS region by
making the backgate voltage less negative (see Fig. 2C
around Vbg = �1.84V, green dashed square). The exci-
tations from this singlet GS are doublet-like and hence
split under a Zeeman field [8], as opposed to the previous
case. Figure 4A presents a detailed zoom of device B in
this gate region. Fig. 4B shows the same scan but for
B = 115mT (corresponding to the center of the first LP
lobe). Since two spin-polarized excitations from the sin-
glet GS are possible [8], two pairs of ABSs are observed:
one at lower bias and another at higher bias (denoted as

⇣" and ⇣# in the sketch of Fig. 4C). The B-field evolution
at Vbg = �1.84V (dashed line in Fig. 4A) is displayed
in Fig. 4D. In the zeroth lobe, the pair of ABSs neither
splits nor moves. In contrast, the ABSs show a clear Zee-
man splitting in the first lobe. For increasing magnetic
fields, the lowest ABS excitation moves towards zero en-
ergy at the end of the first lobe, forming a ZBP. This
zero-energy crossing signals a QPT to a spin polarized
doublet GS. The ZBP persists throughout the second
lobe, as revealed in Fig. 4D. Our theoretical analysis of
this regime supports this interpretation and explains the
absence of a clear Zeeman splitting in the zeroth lobe
(see Fig. S3 in the SI).

We now study B-field driven ZBPs in a di↵erent pa-
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FIG. 5: ZBPs arising from ABSs ”hidden” in the superconducting gap edge. (A to C) dI/dV for three
di↵erent devices as a function of V and B for Vbg = �1.84V, Vbg = �1.27V and Vbg = �1.89V, respectively. ABSs close to
the gap edge at zero field, where the GS is in the singlet state, converge to a ZBP in the 1L. (D to F) dI/dV versus V traces
at B = 0mT (yellow) and at the middle of the 1L at B = 102mT, B = 112mT and B = 123mT (green), respectively, showing
a zero-bias peak (ZBP). (G and H) Numerical simulation of the LDOS as a function of V and B for parameters corresponding
to device D. In (G) there is a constant pairing equal to �, whereas a destructive LP modulation of the BCS gap is considered
in (H). In red, poles of the Green’s function of a superconducting Anderson model. For comparison, we also show in (G) the
evolution of the ABS with increasing B assuming that only Zeeman splitting is relevant (green lines). The observation of the
non-linear B evolution of the ABSs strongly depends on the individual parameters of the device, namely �S , U and their
position at B = 0. (I) Phase diagram of the dot-level spin-polarized occupations hn"i � hn#i vs �S/U and ✏0/U for three
di↵erent magnetic fields: B = 30mT, B = 105mT, and B = 140mT (for the model parameters see the SI). ✏0 is the dot level
energy at zero field. The yellow circle corresponds to the specific configuration in the phase diagram that leads to (H). The
singlet-doublet transition line (between white and blue regions) as a function of B exhibits a strong dependence on �S/U . As
we increase the magnetic field we go from a singlet phase (top) to a doublet phase (bottom), across a parity crossing located
at B = 105mT (center panel). The red and blue circles denote similar experimental configurations, but with slightly di↵erent
gate/coupling to the SC, that never cross the singlet-doublet transition line for the shown magnetic fields.

rameter regime: we again consider the evolution of in-
gap ABSs far from the gap edge at B = 0 but close to a
singlet-doublet transition mediated by Vbg, see the three
colored diamonds in Fig. 3A. Our results are presented
in Fig. 4E. The three subpanels show the evolution in
magnetic field of the same pair of ABSs but at slightly
di↵erent backgate values (see also Fig. S7 in the SI). The
closer the backgate is to the singlet-doublet zero-energy
crossing, the smaller the ABS energy is. For increasing

magnetic fields, this B = 0 energy influences the partic-
ular B value at which the excitation reaches zero energy
(compare the panels in Fig. 4E as one moves from left
to right). This gate dependence allows to tune the value
of B at which the ZBP emerges. For Vbg = �2.705V, in
particular (blue diamond), the ZBP appears at the be-
ginning of the first lobe and persists throughout its full
extent. The lower panels in Fig. 4E show numerics in
this regime, whose overall agreement is excellent. This
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Tunneling spectroscopy measurements on hybrid full-shell InAs/Al NWs have shown that, 
for short junction devices with X≲100nm, no ABSs or other subgap states are observed.  

For long junctions, a rich spectral structure arises in the LP lobes and destructive 
regimes.  

When the GS is odd, we demonstrate that the subgap excitations of the system are YSR 
singlets. In the metallic state within the destructive LP regions, these YSR singlets fully 
develop a Kondo effect, confirming our interpretation in terms of QDs.  

When the GS is a singlet, the flux may induce a QPT to a spin-polarized odd GS. This 
zero-energy fermionic parity crossing leads to a ZBP. Depending on different gate 
conditions, this ZBP can persist for an extended magnetic field range in the first LP lobe 
around Φ ∼ Φ0.  

When the ABS energy at zero magnetic field is close to the superconducting gap, such 
robust ZBPs could be mistaken with topological Majorana zero modes. 

Conclusions



36
43

Thanks for your attention!

MINECO FIS2016-80434-P 

H2020-FETOPEN-2018-2019-2020-01 
Number 828948. AndQC project. 

ERANET FLAG–ERA JTC 2017. Ref. 
Topograph PCI2018 - 093026

Funding agencies:


