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Questions on network learning

What changes occur in activity?
What changes occur in connectivity?

What are the rules?

How does multiscale signaling implement
these rules?



Questions on network learning

 What changes occur in activity?
 What changes occur in connectivity?



Pattern recognition and completion

Neural Networks as Cybernetic Systems
Holk Cruse



Network models:
Associative memory
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Synaptic weights define contents of
this memory
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Questions on network learning

 What changes occur in activity?
— Readout of what has been stored

 What changes occur in connectivity?
— Synaptic weights as a network basis for storage

— Note that excitability and other changes may
occur too.



Classical Conditioning: an
experimental model of memory
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Hebbian Associations and
Hetero-Associative Networks
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Hebbian Associations and
Hetero-Associative Networks
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Hebbian Associations

Stimuli co-presented

‘
Tone - CS

Puff - US

time

13



Tone - CS

Puff - US

Hebbian Associations

Separated stimuli - ?

time
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SR
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Hebbian Associations
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representation of tone

/
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Functions, Circuit of the
Mammalian Hippocampus

Mouse hippocampus: involved
in memory formation,
navigation

Multi-modal inputs to CA3
through DG

CA3 forms auto-associative
network

CA3-CA1l network hetero-
associative, feed-forward

16



Hippocampal Circuit -

Implications
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Time Cells — Sequence of Cell
Activity Encoding Time

C
Odour (1.2 s) =
-
c S
& =
Delay (10 s) 2 E
= ©
=
Object (1.2 s) 8

time (sec)

McDonald, Eichenbaum et al. Neuron, 71, 737

Object — Trace — Odour Paired
Associate task ; go/no-go
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Experimental Paradigm

Many neurons (Network phenomenon)
2-Photon Microscopy in hippocampal CA1l,
in vivo, awake

Behavioural task - Head-fixed, trace maintenance

through time
Trace eyeblink conditioning



Imaging of neural activity (in
mouse hippocampus)
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Experimental Paradigm
Trace Eyeblink Conditioning
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Neuronal Activity Read-out
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Behaviour Results — Learning in One Session

2 hrs Control Session Training Session
Surgery | === | 30 Trials — Tone Alone 50 Trials — Tone and Puff
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- Mice show detectable Conditioned Responses (CRs)
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Behaviour Results (Trial Classification)

Pseudo-Conditioned Mouse

Threshold = . Pre - Training
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Trial based on Threshold
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Awake, 2-Photon Imaging of CAl
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Awake, 2-Photon Imaging of CAl
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Image Processing

Cell Number
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Each cell’s dF/F
response
Normalised
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Cell No.

Fluorescence before and after learning

Same 6 cells
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Cell Number

Time Cells in Pseudo-conditioned Mice

Do Time Cells have relevance to the Task?
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Ridge:Background Ratio — Measures
time-specific firing of cells
Randomly Offset dF/F Traces
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Reliability Score — cells more reliable in
Trace than in Pseudo, Spontaneous

Trace Learners have high R:B Ratio, compared to randomly

offset control

Reliability Score

Trace Pseudo Spon

ANOVA p <<
0.01, Tukey
Kramer h.s.d.



Time Tuning Change Gradually, with Training

dF/F amplitude at time-Tuning centre increases with training
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Does timing improve or firing
probability improve?
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Does timing improve or firing
probability improve?
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There is no spatial organization of time
selective cells
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Can we decode time from activity in a

single frame?

Schematic of Template-Matching Decoder
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Single Trial decoding of time from
dF/F population activity

Trace Learners have Higher Decoder Performance Scores
than Pseudo-conditioned and Spontaneous Data Scores
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Questions on network learning

 What changes occur in connectivity?



Connectivity and correlations

Groups of correlated cells I I I I

I I I
CAl

CA3
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What happens to correlations
between time selective cells?
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Background Period Time-Cell Activity
Correlations Increase During Training
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Noise Correlations

Background Period Time-Cell Activity
Correlations Increase During Training
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Cells with the same time-tuning
become more correlated

Groups of
correlated
cells

Groups of
I | | 1 I I
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Cells cluster into correlated groups
before training
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Correlations change if network learns
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Cell-clusters are Stable Prior to Training

Trace Pseudo
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Cell clusters are destabilized only in learners

Pseudo

Learners
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Model of network learning

A Time .. B Location—>
Early Trials
— TR T RS S S R " . ‘
...................... T TSSO N SRR RSO SRS S
L Y S . *——o
@ o TH— T R ™ ; ;
&) <
S — [BTRTERY T S O
........................ R L . .

Middle Trials

Initial Network Connectivity

~ ¢+ |- o

2

S

< 0

© O O
CA1 Cells

Increase in Co-ordinated Input

Late Trials

= 4

[}
c
e
x
< * *
(32 ®
o0

CA1 Cells

Continued Short Term Plasticity 50

and Re-normalisation



Existing models:
Levy et al. Biol. Cyb. 2005
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Questions on network learning

* What changes occur in activity?

53



Questions on network learning

 What changes occur in connectivity?




Where are the sequences generated?
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Questions on network learning

e What are the rules?

* How does multiscale sighaling implement
these rules?

Molecules Signaling networks Cellular biophysics Network e



Thank you!
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