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Who is to blame?

Near-Poisson variability in spike trains

(Data from Newsome et al)



Who is to blame?

Near Poisson variability due to chaotic
dynamics of balanced networks

(Van Vreeswijk and Sompolinsky, 1996; Shadlen and
Newsome, 1998; Banerjee et al, 2008, London et al, 2010)

Near-Poisson variability Behavioral variability



Who 1s to blame?

= [t's not just Poisson variability, it's correlated
Poisson variability

100

8o

'S 60
<< 40
20
o'

ctivity

-100 . O.. 100
Direction

10° r=0
E -§ 3
Q g 10 r=0.05
g S r=0.1
O = r=0.2
10 ; r=0.4

S,—S, preferred 10' 10° 10
Number of neurons

Huang and Lisberger, 2010 Zohary et al. 1994



Who 1s to blame?

* [t's not just Poisson variability, it's correlated
Poisson variability

» This variability explains, among other things,
Weber's law
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Weber’s law

= Numerosity

* Linelength

= Weights

= | uminance

= Speed of motion
= Distance traveled
= Time




Weber’s law
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The origin of behavioral
variability

Near-Poisson variability due to the chaotic dynamics of
balanced networks of excitatory and inhibitory neurons,
along with correlations inversely proportional to the
difference in preferred stimuli, are the main causes of

behavioral variability.
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Alternative view

The brain is noisy but...

= The near-Poisson noise induced by
chaotic dynamics of cortical circuits has
little impact on behavior

= Correlations inversely proportional the
difference in preferred stimuli do not _ e
necessarily limit information s T o

S-S, preferred

= Most of behavioral variability comes from

1. Variable data from the world (which naturally leads to
Weber’s law)

2. Suboptimal inference



Roadmap

= Suboptimal inference can generate
behavioral variability

» This cause dominates in most situations
» What this theory explains

= Implications for neuronal variability

= A normative view of Weber’s law



Roadmap

= Suboptimal inference can generate
behavioral variability

= This cause dominates in most situations
» What this theory explains
» |Implications for neuronal variability

= A normative view of Weber’s law




Orientation discrimination

= |et's consider a simple task:

Orientation discrimination




Orientation discrimination




Orientation discrimination

Image plus small
Sensor noise




Orientation discrimination

Optimal Filter

Image plus small
Sensor noise

Suboptimal Filter



Orientation discrimination
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Orientation discrimination

Optimal Filter

Image plus small
Sensor noise

Activity
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Suboptimal Filter ’

The extra variability comes from




Orientation discrimination
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99% of the variability comes from




Orientation discrimination

Optimal Filter

Image plus small
Sensor noise

Activity
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Causes of variability

= Suboptimal inference leads to extra
variability.

* For complex problems, suboptimal
approximations are unavoidable and
dominate

(Beck et al, 2012)



Orientation discrimination

Optimal Filter

Image plus small
Sensor noise

Activity

20, 30 :lO 50 60 70 80 90
Trial number

Suboptimal Filter



Motion estimation

* For most problems of interest, we cannot
know the generative model because it's too
complex: suboptimality dominates.

» For very simple tasks, we might be able to
learn the generative model (e.g. photon
detection)



The General Case

= How aboutinternal noise?

Stimulus ~ PUIS)
S



The impact of Poisson
variability
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Roadmap

» Suboptimal inference can generate
behavioral variability

= This cause dominates in most situations
= What this theory explains
» |Implications for neuronal variability

= A normative view of Weber’s law
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“If an optician wanted to sell me an instrument that had all
these defects, | should think myself quite justified in blaming
his carelessness in the strongest terms, and giving him his
instrument back.” Hermann von Helmholtz.




Osbourne et al, 2005
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Osbourne et al, 2005
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Osbourne et al, 2005
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Roadmap

» Suboptimal inference can generate
behavioral variability

» This cause dominates in most situations
» What this theory explains
= Implications for neuronal variability

= A normative view of Weber’s law




Correlations and information

= Suboptimality increases behavioral
variability.

= |In other words, it decreases information.

= How is that reflected in neural responses?



Correlations and information

= \What limits information in neural codes?

= Typical answer: positive correlations among
neurons with similar preferred stimuli



Who 1s to blame?

= [t's not just Poisson variability, it's correlated
Poisson variability
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Correlations and information
= Decorrelation = more information
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Correlation and information

= Correlations inversely proportional to
difference in preferred stimuli limit
information

= Decorrelation = more information

= No, not necessarily.
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(See aso Series, Latham and Pouget. 2004.)
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Implications for Neural
Coding

= \What limits information in neural codes?

= Differential correlations



Differential correlations

Discrimination task




Differential correlations
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Differential correlations

a o O
] (] ]

o)
o

Activity (spike count)
[y

N
O

(o]

-100 o} 100
Preferred direction



Differential correlations
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Differential correlations



Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations

= |nformation saturates because of differential
correlations.

= But wait, nobody has ever found differential
correlations.
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Differential correlations
might be very small
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Information and correlations

* Information is limited by differential
correlations

= Suboptimality increases differential
correlations




Alternative view

The brain is noisy but...

= The near-Poisson noise induced by
chaotic dynamics of cortical circuits has
little impact on behavior

= Correlations inversely proportional the
difference in preferred stimuli do not _ e
necessarily limit information s T o

S-S, preferred

= Most of behavioral variability comes from

1. Variable data from the world (which naturally leads to
Weber’s law)

2. Suboptimal inference



Roadmap

» Suboptimal inference can generate
behavioral variability

= This cause dominates in most situations
» What this theory explains
» |Implications for neuronal variability

= A normative view of Weber’s law
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Weber’s law
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Luminance
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Weber’s law
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Weber’s law

Sensory information is often scaled by global
nuisance parameters such as

= Contrast
= | oudness

= Co-contraction of muscles
= Attention
= | earning




Don’t we get Weber’s law even when the
contrast is maintained constant across images?




When contrast varies, the estimate of
numerosity should use normalized luminance
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When contrast varies, the estimate of
numerosity should use normalized luminance
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When contrast varies, the estimate of
numerosity should use normalized luminance
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When contrast varies, the estimate of
numerosity should use normalized luminance
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But subjects do not know contrast and must
therefore use an estimate of contrast
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But subjects do not know contrast, and must
therefore use an estimate of contrast

Induces
positive
correlations
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= Even when contrast is constant, the estimate
of contrast is likely to vary, and could greatly
vary due to approximations.




Weber’s law

Global scaling nuisance parameters induce
correlations that naturally leads to Weber’s law.

No need to invoke single cell Poisson variability
plus log normal tuning curves

In fact, log normal tuning curves might be the
consequence of Weber’s law, not the cause
(Dehaene et al, cosyne 2014).




Conclusions

Where does behavioral variability come from?

Poisson variability
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Conclusions

Where does behavioral variability come from?

Variable sensory data Suboptimal inference
(Beck et al, in prep) (Beck et al, 2012)

Optimal Filter

Luminance

Suboptimal Filter

Differential correlations
~(Moreno, Beck et al, submitted)







Positive roles of noise

= Sampling
= Exploration

= Game theory













Object recognition

Pixel 2 intensity

Vv

Pixel 1 intensity




Object recognition
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Orientation discrimination
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Experimental consequences
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Conclusions
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