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Who is to blame?

Near-Poisson variability in spike trains

(Data from Newsome et al)



Who is to blame?

Near-Poisson variability Behavioral variability

Near Poisson variability due to chaotic 
dynamics of balanced networks

(Van Vreeswijk and Sompolinsky, 1996; Shadlen and 
Newsome, 1998; Banerjee et al, 2008, London et al, 2010)



Who is to blame?

 It’s not just Poisson variability, it’s correlated 
Poisson variability
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Who is to blame?

 It’s not just Poisson variability, it’s correlated 
Poisson variability

 This variability explains, among other things, 
Weber’s law
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Weber’s law
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Weber’s law

NO Poisson single 
cell variability

NO 
Weber’s law
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are the main causes of 
behavioral variability. 

along with correlations inversely proportional to the 
difference in preferred stimuli, 

The origin of behavioral 
variability

Near-Poisson variability due to the chaotic dynamics of 
balanced networks of excitatory and inhibitory neurons, 
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Alternative view

The brain is noisy but… 

 The near-Poisson noise induced by 
chaotic dynamics of cortical circuits has 
little impact on behavior 

 Correlations inversely proportional the 
difference in preferred stimuli do not 
necessarily limit information 0 60 120 180
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 Most of behavioral variability comes from

1. Variable data from the world (which naturally leads to 
Weber’s law)

2. Suboptimal inference



Roadmap

 Suboptimal inference can generate 
behavioral variability

 This cause dominates in most situations

 What this theory explains

 Implications for neuronal variability

 A normative view of Weber’s law
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Orientation discrimination

 Let’s consider a simple task:

Orientation discrimination



Orientation discrimination



Orientation discrimination

Image plus small

sensor noise



Orientation discrimination

Optimal Filter

Suboptimal Filter

Image plus small

sensor noise
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The filters have been adjusted

to ensure that the red and

green units have the same

mean activity
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Orientation discrimination
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Even when the image is maintained constant on the 
screen, a large fraction of the behavioral variability 
might be due to suboptimal inference.



Causes of variability

 Suboptimal inference leads to extra 
variability.

 For complex problems, suboptimal 
approximations are unavoidable and 
dominate

(Beck et al, 2012)



0 10 20 30 40 50 60 70 80 90
-300

-200

-100

0

100

200

300

Trial number

Orientation discrimination

Optimal Filter

Suboptimal Filter

Image plus small

sensor noise

A
ct

iv
it

y



 For most problems of interest, we cannot 
know the generative model because it’s too 
complex: suboptimality dominates.

 For very simple tasks, we might be able to 
learn the generative model (e.g. photon 
detection)

Motion estimation



 How about internal noise?

The General Case

rms
Stimulus Motor 

outputr

p(I|s)

rsI +

Noise?
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Information loss due to 
the near-Poisson 

variability: negligible!

Poisson variability in 
the output layer



Roadmap

 Suboptimal inference can generate 
behavioral variability

 This cause dominates in most situations

 What this theory explains

 Implications for neuronal variability

 A normative view of Weber’s law



Why is the optic of the eyes 
so bad?

“If an optician wanted to sell me an instrument that had all 
these defects, I should think myself quite justified in blaming 
his carelessness in the strongest terms, and giving him his 
instrument back.” Hermann von Helmholtz.
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Roadmap

 Suboptimal inference can generate 
behavioral variability

 This cause dominates in most situations
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Correlations and information

 Suboptimality increases behavioral 
variability.

 In other words, it decreases information.

 How is that reflected in neural responses?

 What limits information in neural codes?



Correlations and information

 What limits information in neural codes?

 Typical answer: positive correlations among 
neurons with similar preferred stimuli



Who is to blame?

 It’s not just Poisson variability, it’s correlated 
Poisson variability
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Correlations and information
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 Decorrelation = more information



Correlation and information

 Correlations inversely proportional to 
difference in preferred stimuli limit 
information

 Decorrelation = more information

 No, not necessarily.



Shamir and Sompolinsky, 2004. Ecker et al, 2012.
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Shamir and Sompolinsky, 2004. Ecker et al, 2012.
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Implications for Neural 
Coding

 What limits information in neural codes?

 Differential correlations



Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations
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Differential correlations

 Information saturates because of differential 
correlations.

 But wait, nobody has ever found differential 
correlations.
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Huang and Lisberger, 2010
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Differential correlations 
might be very small

Orientation (deg)
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Information and correlations

 Information is limited by differential 
correlations

 Suboptimality increases differential 
correlations



Alternative view

The brain is noisy but… 

 The near-Poisson noise induced by 
chaotic dynamics of cortical circuits has 
little impact on behavior 

 Correlations inversely proportional the 
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 Most of behavioral variability comes from

1. Variable data from the world (which naturally leads to 
Weber’s law)

2. Suboptimal inference
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Positive correlations lead naturally to Weber’s law



Weber’s law

Sensory information is often scaled by global 
nuisance parameters such as

 Contrast

 Loudness

 Co-contraction of muscles

 Attention

 Learning

…etc



Don’t we get Weber’s law even when the 
contrast is maintained constant across images?
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But subjects do not know contrast and must 
therefore use an estimate of contrast
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But subjects do not know contrast, and must 
therefore use an estimate of contrast
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 Even when contrast is constant, the estimate 
of contrast is likely to vary, and could greatly 
vary due to approximations.



Weber’s law

Global scaling nuisance parameters induce 
correlations that naturally leads to Weber’s law. 

No need to invoke single cell Poisson variability 
plus log normal tuning curves

In fact, log normal tuning curves might be the 
consequence of Weber’s law, not the cause 
(Dehaene et al, cosyne 2014). 



Conclusions

Where does behavioral variability come from?

Poisson variability
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Conclusions

Where does behavioral variability come from?
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Positive roles of noise

 Sampling

 Exploration

 Game theory
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Experimental consequences
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Conclusions

Where does behavioral variability come from?
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