NOT NOISY, JUST WRONG

Alexandre Pouget

Department of Basic Neuroscience

UNIVERSITÉ DE GENÈVE

Department of Brain and Cognitive Sciences

Collaborators

Ingmar Kanitscheider Universite de Geneve

Near-Poisson variability in spike trains

(Data from Newsome et al)

Near Poisson variability due to chaotic dynamics of balanced networks

(Van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998; Banerjee et al, 2008, London et al, 2010)

Near-Poisson variability

 It's not just Poisson variability, it's correlated Poisson variability

- It's not just Poisson variability, it's correlated Poisson variability
- This variability explains, among other things, Weber's law

$\frac{\Delta N}{N} = \frac{2}{10} = \text{constant}$

$\frac{\Delta N}{N} = \frac{2}{10} = \frac{4}{20} = \text{constant}$

$\frac{\Delta N}{N} = \frac{2}{10} = \frac{4}{20} = \frac{8}{40} = \text{constant}$

- Numerosity
- Line length
- Weights
- Luminance
- Speed of motion
- Distance traveled
- Time

. . .

NO Poisson single cell variability

NO

Weber's law

The origin of behavioral variability

Near-Poisson variability due to the chaotic dynamics of balanced networks of excitatory and inhibitory neurons, along with correlations inversely proportional to the difference in preferred stimuli, are the main causes of behavioral variability.

Alternative view

The brain is noisy but...

- The near-Poisson noise induced by chaotic dynamics of cortical circuits has little impact on behavior
- Correlations inversely proportional the difference in preferred stimuli do not necessarily limit information

- Most of behavioral variability comes from
- Variable data from the world (which naturally leads to Weber's law)
- 2. Suboptimal inference

Roadmap

- Suboptimal inference can generate behavioral variability
- This cause dominates in most situations
- What this theory explains
- Implications for neuronal variability
- A normative view of Weber's law

Roadmap

- Suboptimal inference can generate behavioral variability
- This cause dominates in most situations
- What this theory explains
- Implications for neuronal variability
- A normative view of Weber's law

Let's consider a simple task:
Orientation discrimination

Image plus small sensor noise

Suboptimal Filter

NOTE: The filters have been adjusted to ensure that the red and green units have the same mean activity

the deterministic approximation!

Even when the image is maintained constant on the screen, a large fateroim file behavioral variability might be due to suboptimal inference.

Causes of variability

 Suboptimal inference leads to extra variability.

 For complex problems, suboptimal approximations are unavoidable and dominate

(Beck et al, 2012)

Suboptimal Filter

Motion estimation

- For most problems of interest, we cannot know the generative model because it's too complex: suboptimality dominates.
- For very simple tasks, we might be able to learn the generative model (e.g. photon detection)

The General Case

How about internal noise?

The impact of Poisson variability

Ma, Beck et al, 2006. Beck et al, 2012.

Roadmap

- Suboptimal inference can generate behavioral variability
- This cause dominates in most situations
- What this theory explains
- Implications for neuronal variability
- A normative view of Weber's law

Why is the optic of the eyes so bad?

"If an optician wanted to sell me an instrument that had all these defects, I should think myself quite justified in blaming his carelessness in the strongest terms, and giving him his instrument back." Hermann von Helmholtz.

Roadmap

- Suboptimal inference can generate behavioral variability
- This cause dominates in most situations
- What this theory explains
- Implications for neuronal variability
- A normative view of Weber's law

Correlations and information

- Suboptimality increases behavioral variability.
- In other words, it decreases information.
- How is that reflected in neural responses?
- What limits information in neural codes?

Correlations and information

What limits information in neural codes?

 Typical answer: positive correlations among neurons with similar preferred stimuli

Who is to blame?

 It's not just Poisson variability, it's correlated Poisson variability

Correlations and information

Decorrelation = more information

Correlation and information

- Correlations inversely proportional to difference in preferred stimuli limit information
- Decorrelation = more information
- No, not necessarily.

Shamir and Sompolinsky, 2004. Ecker et al, 2012.

(See aso Series, Latham and Pouget. 2004.)

Shamir and Sompolinsky, 2004. Ecker et al, 2012.

Implications for Neural Coding

- What limits information in neural codes?
- Differential correlations

Discrimination task

Differential

- Information saturates because of differential correlations.
- But wait, nobody has ever found differential correlations.

Differential

Huang and Lisberger, 2010

Differential

 $\begin{array}{c} \begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ S_i - S_j \end{array} \text{ preferred} \end{array}$

Huang and Lisberger, 2010

Differential

Huang and Lisberger, 2010

Differential correlations might be very small

Number of V1 neurons

Information and correlations

- Information is limited by differential correlations
- Suboptimality increases differential correlations

Alternative view

The brain is noisy but...

- The near-Poisson noise induced by chaotic dynamics of cortical circuits has little impact on behavior
- Correlations inversely proportional the difference in preferred stimuli do not necessarily limit information

- Most of behavioral variability comes from
- Variable data from the world (which naturally leads to Weber's law)
- 2. Suboptimal inference

Roadmap

- Suboptimal inference can generate behavioral variability
- This cause dominates in most situations
- What this theory explains
- Implications for neuronal variability
- A normative view of Weber's law

$$\sigma_N^2 \propto N^2$$

$$\sigma_N^2 \propto N^2$$

 $\sigma_{_{\hat{N}}}^2 \propto N^2$

Sensory information is often scaled by global nuisance parameters such as

- Contrast
- Loudness
- Co-contraction of muscles
- Attention
- Learning

...etc

Don't we get Weber's law even when the contrast is maintained constant across images?

But subjects do not know contrast and must therefore use an estimate of contrast

But subjects do not know contrast, and must therefore use an estimate of contrast

 Even when contrast is constant, the estimate of contrast is likely to vary, and could greatly vary due to approximations.

Global scaling nuisance parameters induce correlations that naturally leads to Weber's law.

No need to invoke single cell Poisson variability plus log normal tuning curves

In fact, log normal tuning curves might be the <u>consequence</u> of Weber's law, not the cause (Dehaene et al, cosyne 2014).

Conclusions

Where does behavioral variability come from?

Poisson variability

Correlations

Conclusions

Where does behavioral variability come from?

Variable sensory data (Beck et al, in prep)

Suboptimal inference (Beck et al, 2012)

Differential correlations (Moreno, Beck et al, submitted)

Positive roles of noise

- Sampling
- Exploration
- Game theory

Object recognition

Pixel 1 intensity

Object recognition

Note that there is NO sensory noise. The error is due entirely to the approximation

Pixel 1 intensity

Orientation discrimination

Experimental consequences

Explicit Computation

Information from decoding

Conclusions

Where does behavioral variability come from?

Poisson variability

Correlations

