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The eyes have It!

or

Neuronal birthdate organizes the vestibulo-ocular reflex circuit
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Simple principles can have exceptional
explanatory power (thanks, Physics!)

. The neuroscience of behavior has

precious few examples of simple
principles.
But developmental neuroscience does.



Can we link the principles that
underlie development to the neural
circuits responsible for behavior?



evelopment happens
over time (duh
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Neuronal diversity
emerges Iin time

RGC Embryonic  Birth Postnatal
Time

El-Danaf et al 2022



Birthdate can give rise
to spatial organization

Zonal layer

Mantle layer
Ependymal layer
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Can birthdate organize
a sensorimotor circuit?



How vertebrate brains stabilize
gaze:

the vestibulo-ocular reflex circuit
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Superior rectus (SR)

Inferior oblique (IR)

"Eyes-up” torsional movement



Superior oblique (SO)

Inferior rectus (IR)

"Eyes-down” torsional movement









Marie Greaney
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Anatomical organization of
extraocular motor neurons

ventral (z5)

Greaney et al 2017



Motor neurons develop temporally
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Motor neuron pools are
spatially localized

|O 6=30° IR 6=60°




Sensory Central Motor
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Localizing gaze-stabilizing central vestibular projection neurons

Marie Greaney




Projection neurons are
iIndispensable for gaze stabilization

Before (Pre) After (Post)
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Schoppik et al 2018



Projection neurons are
iIndispensable for gaze stabilization
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Projection
neurons can
Induce eye
rotations
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Projection neurons can induce eye rotations
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pirthaating projection
neurons

O Born

O Not born

Photoconversion Imaging
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pirthaating projection
neurons

Merge 96 hpt
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Localizing birthdated
projection neurons Iin space

L_andmarks for
brain reqgistration

otic capsule



Early and late-born projection neurons
are differentially organized in space

Early-born Late-born
=610 1o > 48 hpf




The vertical vestibulo-ocular
reflex is organized into channels
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Functional classification of
projection neurons
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Objective

Fish

Galvo



Projection neurons can be
classified by their response to tilts

Nose-down (44%) Nose-up (49%) No preference (7%)
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Projection neurons can be
classified by their response to tilts
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Birthdate predicts the
response to tilts...

Early-born
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..and organizes projection
neurons In space.
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Srain/neuron
registration
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Volumetric map Two-photon map

Max. Intensity
Projection




Sensory Central Motor
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body tilts eyes rotate



There are two transducers
for tilt: otoliths and canals
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Birthdate organizes projection
neurons that receive input from the
canals

Sensory  Central
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ac/pc = high pass (anterior canal / posterior canal)
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Birthdate organizes impulse-
sensitive projection neurons

Early-born .
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Late-born (ventral) projection
neurons show topography for tilt

direction
Two-photon map (5 dpf) Two-photon map (5 dpf):
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Impulse-sensitive projection
neurons receive canal input

Two-photon map (5 dpf):
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Loss of canal input reduces
the impulse response

Mmrol
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Birthdate organizes projection
neuron axons in space
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Birthdate anticipates the rate of
synaptogenesis between projection
neurons and motor neurons
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Spatial organization (5 dpf)
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Can general developmental
principles organize a functional
sensorimotor circuit for behavior?

Yes! Birthdate organizes
the vestibulo-ocular reflex
circuit



Something fishy about balance

or

ldentifying populations of neurons responsible for postural
reflexes
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Key facts about larval zebrafis
for busy physicists

e Small (3-4mm, Re 10-100)

e Same ancient balance / gaze-
stabilizing neural circuits as
other vertebrates

e ~175K neurons total

* Transparent

* Genetically accessible

* Develop quickly (4 days to swim,
3 months to maturity)
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Anesthetized zebrafish rotate &
fall!
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Bout timing
or

Why do fish move when they do?

Ehrlich & Schoppik 2017a



Measuring posture
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Fish swim to cancel destabilizing torques







Bagnall & Schoppik 20
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Lindsey et. al. 2010



Ehrlich & Schoppik, 2017
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Swim timing corrects for instability in larval fish
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As larval zebrafish develop,
postural control transitions from
random timing to posture-
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Central vestibulospinal neurons
are well-poised for a role In
postural control

Primary Spinal
Sensory pina  Receive direct excitatory mputs
Afferent Cord from vestibular afferents |
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Vestibulospinal neurons are
necessary for posture-
correcting behaviors

Murray et al.,
2018



Genetic tools grant access to vestibulospinal cells
in fish

Nefma:Gal4/

Labels ~30 cells (~60% of total VS cel
UAS:GFP



What role do VS neurons play in
postural development?
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1. Bouts correct destabilization.

2. As they develop, larvae come to
bout preferentially when
unstable.

3. Vestibulospinal neurons are
indispensable for proper timing
of corrective bouts.

Ehrlich & Schoppik 201
Hamling et. al. 2021 bioR:



Bout kinematics
or

How do fish navigate in depth?

*Ehrlich & Schoppik 2017b
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Navigate




1. Navigate

*Ehrlich & Schoppik 2017b
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The righting reflex can use visual and vestibular
Input
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Tangential vestibular nucleus
post

pre post

Ehrlich, Hamling et. al. unpubli



Loss of neurons in the tangential vestibular nucleus
compromises the ability to correct posture.

Righting reflex gain

O
Ehrlich, Hamling et. al. unpubl




What happens at
night?



Bout rate (Hz)

Light

Dark Light

Dark
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Zeitgeber time (hrs)
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How can fish maintain posture given
that they make fewer bouts at night?
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Summary:

1. Fish make bouts when unstable

2. Each bout partially returns the fish to
its preferred posture

3. Amazingly, fish are better able to return
to their preferred posture at night.
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