BBN And The CMB Constrain

Equivalent Neutrinos (Dark Radiation)

Gary Steigman
with K. M. Nollett

KITP Neutrino Conference
November 3-7, 2014

The "Effective Number Of Neutrinos"

\&

Counting "Equivalent Neutrinos"

In the early Universe the energy density is dominated by the contributions from ER (extremely relativistic) particles. The early Universe is "Radiation Dominated" (R).

When $\mathrm{T} \ll \mathrm{m}_{\mathrm{e}}$, the only ER standard model (SM) particles are the photons and neutrinos.

$$
\begin{aligned}
& \rho \approx \rho_{\mathrm{R}}=\rho_{\gamma}+3 \rho_{v} \gg \rho_{\mathrm{B}} \\
& \text { where, } \rho_{v} / \rho_{\gamma}=7 / 8\left(T_{v} / T_{\gamma}\right)^{4}
\end{aligned}
$$

The SM neutrinos decouple when $\mathrm{T}_{\gamma}=\mathrm{T}_{v}$ ≈ 2 - 3 MeV , before (barely) $\mathrm{e}^{ \pm}$annihilation.

IF neutrino decoupling were instantaneous, and, IF $\mathrm{T}_{\mathrm{vd}} \gg \mathrm{m}_{\mathrm{e}}$, then after the $\mathrm{e}^{ \pm}$pairs have annihilated, $\left(T_{v} / T_{\gamma}\right)^{3}=4 / 11$. With these assumptions and, in this regime,

$$
\rho / \rho_{\gamma}=1+3\left[7 / 8(4 / 11)^{4 / 3}\right]
$$

$N_{\text {eff }}$, the "Effective Number of Neutrinos",
is defined by : $\rho / \rho_{\gamma} \equiv 1+N_{\text {eff }}\left[7 / 8(4 / 11)^{4 / 3}\right]$
or, $N_{\text {eff }} \equiv 3\left[11 / 4\left(T_{v} / T_{\gamma}\right)^{3}\right]^{4 / 3}$ (when $T_{\gamma} \ll m_{e}$).

If neutrino decoupling were instantaneous and, if electrons were massless, $\mathbf{N}_{\text {eff }}=3$.

Since $T_{v d}$ is not $\gg m_{e}, N_{\text {eff }} \approx 3.02$.
Since neutrino decoupling is not
instantaneous, $\mathrm{N}_{\text {eff }} \approx 3.05$.

An "Equivalent Neutrino", ξ, is a very light
($m_{\xi} \ll m_{e}$) particle that may, or may not, be a Majorana fermion ("neutrino").

If ξ is populated in the early Universe, either thermally or via mixing with the SM neutrinos, $\rho_{R} \Rightarrow \rho_{R}+\rho_{\xi} \equiv \rho_{R}+\Delta N_{v} \rho_{v}$. $\Delta N_{v}=\rho_{\xi} / \rho_{v}$ is the number of equivalent neutrinos (a measure of dark radiation).

If ξ is a Majorana fermion ("neutrino") and if ξ is fully populated $/$ mixed, $\Delta \mathbf{N}_{v}=1$ (sterile v).

But, if ξ is a fully populated/mixed, real scalar, $\Delta N_{v}=4 / 7$. In general, $\Delta N_{v} \leq 1$ (Dark Radiation). $\mathrm{N}_{\text {eff }}$ and $\Delta \mathrm{N}_{\mathrm{v}}$ are related by :
$N_{\text {eff }}=N_{\text {eff }}^{0}\left(1+\Delta N_{v} / 3\right), N_{\text {eff }}=3\left[(11 / 4)^{1 / 3}\left(T_{v} / T_{\gamma}\right)_{0}\right]^{4}$
The expansion rate, the Hubble parameter (H), depends on the mass/energy density : H $\alpha \rho^{1 / 2}$

BBN Predicted Primordial Abundances Depend On Two Physical / Cosmological Parameters (ignoring any lepton (neutrino) asymmetry).

Baryon Density (Nucleon Asymmetry) Parameter

- $\eta_{\mathrm{B}} \equiv \mathrm{n}_{\mathrm{N}} / \mathrm{n}_{\gamma} ; \eta_{10} \equiv 10^{10} \eta_{\mathrm{B}}=274 \Omega_{\mathrm{B}} h^{2}$

Expansion Rate (Dark Radiation) Parameter

- $S^{2}=\left(H^{\prime} / H\right)^{2}=\rho^{\prime} / \rho ; S$ depends on $\Delta N_{v}\left(N_{\text {eff }}\right)$
- $\underline{\text { SBBN }: ~} \Delta N_{v}=0(S=1)$
- η_{B} Probes "Standard" Cosmology / Physics
- $D\left(y_{D P}=10^{5}(\mathrm{D} / \mathrm{H})_{P}\right)$ is sensitive to η_{B}
- $\Delta \mathbf{N}_{\mathrm{v}} \neq 0$ Probes Non-Standard Physics
- ${ }^{4} \mathrm{He}\left(\mathrm{Y}_{\mathrm{P}}\right)$ is sensitive to $\Delta \mathrm{N}_{\mathrm{v}}$
* Two parameters (η_{B} and $\Delta \mathrm{N}_{\mathrm{v}}$)

Two observables (y_{DP} and Y_{P})

BBN - Predicted Y_{P} vs. $(\mathrm{D} / \mathrm{H})_{\mathrm{P}}$

Primordial (nearly) D

Finding D at low - Z

 in the Ly- α Forest
D and H absorption

 spectra are identical, except for an isotope shift of $\sim \mathbf{8 0} \mathbf{k m} / \mathrm{s}$Cooke et al. 2013

Recent Results For Nearly Primordial Deuterium

Previous D observations had large dispersion among the D/H determinations.

Cooke et al. 2013 restricted their analysis to DLAs $(\log N(H I)>19)$, allowing them access
to many lines in the Lyman series, helping to reduce some sources of systematic errors.

${ }^{4} \mathrm{He} / \mathrm{H}$ is inferred from H and He recombinations

 observed in Low - Z, Extragalactic HII regions.

BBN - Predicted \& Observed

Lepton Asymmetry

An Excess of Neutrinos vs. Antineutrinos
(or, vice - versa).
Neutrino Mixing (Oscillations) Ensures
the SAME asymmetry for all SM Neutrinos.
Lepton Asymmetry is measured by the
degeneracy parameter ξ, related to the chemical potential μ, by $\xi=\mu / k T$
$(\xi \geq 0$ for more v than anti-v).

Electron Neutrinos and Antineutrinos play key roles in regulating the neutron - to - proton ratio.

For BBN there are (now) three parameters but, only two observables.

Unless is $|\xi|$ "large", Lepton Asymmetry is invisible to the CMB.

Use the CMB to constrain $\Omega_{B} h^{2}\left(\eta_{10}\right)$.
Use BBN (D \& ${ }^{4} \mathrm{He}$) to constrain $\Delta \mathrm{N}_{v}$ and ξ.

BBN \& CMB Constrain Lepton Asymmetry

How do BBN and the CMB change

 in the presence of a light WIMP?
BBN \& The CMB With A Light WIMP

Very light WIMPs, thermal relics, annihilate late in the early Universe, changing the energy and photon densities at BBN and at recombination.

The CMB Confronts A Light WIMP

In the presence of an electromagnetically coupled light WIMP ($m_{\chi} \leq 30 \mathrm{MeV}$), the effective number of neutrinos is: $\mathrm{N}_{\text {eff }}=\mathrm{N}^{0}$ eff $\left(1+\Delta \mathrm{N}_{v} / 3\right)$, where $\mathrm{N}^{0}{ }_{\text {eff }}$ now depends on the WIMP mass.

The annihilation of an EM coupled, light WIMP heats the photons relative to the neutrinos:

$$
\left(\mathrm{T}_{v} / \mathrm{T}_{\gamma}\right)_{0} \leq(4 / 11)^{1 / 3} \Rightarrow \mathrm{~N}_{\text {eff }} \leq 3 ; \mathrm{N}_{\text {eff }} \leq 3+\Delta \mathrm{N}_{v}
$$

EM Coupled Light WIMP $\left(\Delta N_{v}=0\right)$

BBN WITH A Light WIMP

For each value of m_{χ}, a pair of $\left\{\eta_{10}, \Delta N_{v}\right\}$ (or, $\left\{\Omega_{\mathrm{B}} \mathrm{h}^{2}, \mathrm{~N}_{\text {eff }}\right\}$) values can be found so that BBN predicts - exactly - the observed primordial abundances of ${ }^{4} \mathrm{He}$ and D .

SUMMARY

BBN \& CMB are consistent, constraining light WIMPs and the number of Equivalent Neutrinos.

In the absence of a light WIMP ($\mathrm{m}_{\chi}>30 \mathrm{MeV}$) BBN \& CMB are consistent, provided that $\Delta N_{v} \approx 0.35$ ($N_{\text {eff }} \approx 3.4$).

But, $\operatorname{SBBN}\left(\Delta \mathbf{N}_{v}=0\right)$ and a sterile neutrino $\left(\Delta N_{v}=1\right)$ are both disfavored.

SUMMARY

BBN \& CMB exclude an EM Coupled WIMP with $\mathrm{m}_{\chi} \leq 1-2 \mathrm{MeV}$.

BBN \& CMB favor an EM Coupled WIMP with $\mathrm{m}_{\chi} \approx 5 \mathbf{- 1 0} \mathrm{MeV}$, allowing for a sterile neutrino.

With or without an EM Coupled Light WIMP there is a lithium problem.

EXTRA SLIDES

MORE EXTRA SLIDES

LIGHT WIMPS COUPLED TO NEUTRINOS

The annihilation of a light WIMP coupled to the SM neutrinos heats the SM neutrinos relative to the photons : $\Rightarrow\left(T_{v} / T_{\gamma}\right)_{0}>(4 / 11)^{1 / 3}$

$$
\Rightarrow N^{0} \text { eff }>3 ; N_{\text {eff }}>3+\Delta N_{v}
$$

"Dark Radiation Without Dark Radiation"

In this case no additional photons are created,
$\left(\eta_{B}^{B B N}=\eta_{B}{ }^{C M B}\right)$, but the Universe expands faster.

BBN With A Neutrino Coupled Light WIMP

In the presence of a neutrino coupled light WIMP the Universe expands faster during BBN, destroying less D and producing more ${ }^{4} \mathrm{He}$. This disfavors $\Delta \mathrm{N}_{v}>0$ and a low WIMP mass.

For a neutrino coupled light WIMP, BBN (D \& ${ }^{4} \mathrm{He}$) and the CMB favor a "high mass" WIMP (i.e., the NO WIMP limit).

EVEN MORE EXTRA SLIDES

LIGHT WIMPS COUPLED TO NEUTRINOS

The annihilation of a light WIMP coupled to the SM neutrinos heats the SM neutrinos relative to the photons : $\Rightarrow\left(T_{v} / T_{\gamma}\right)_{0}>(4 / 11)^{1 / 3}$

$$
\Rightarrow N^{0}{ }_{\text {eff }}>3 ; N_{\text {eff }}>3\left(1+\Delta N_{v} / 3\right)
$$

"Dark Radiation Without Dark Radiation"

In this case no additional photons are created,
but the Universe expands faster.

CMB Light WIMP Constraints

BBN With A Neutrino Coupled Light WIMP

In the presence of a neutrino coupled light WIMP the Universe expands faster during BBN, destroying less D , producing more ${ }^{4} \mathrm{He}$, and synthesizing less ${ }^{7} \mathrm{Li}$.

For a neutrino coupled light WIMP, BBN (D \& ${ }^{4} \mathrm{He}$) and the CMB favor a "high mass" WIMP (i.e., the NO WIMP limit).

As a result, for neutrino coupled light WIMPs, the lithium problem persists.

The lithium problem cannot be solved by a very light, neutrino coupled WIMP.

SUMMARY OF BBN + CMB CONSTRAINTS

For No WIMP And / Or A Neutrino Coupled WIMP

$$
\begin{aligned}
& N_{\text {eff }}=3.40 \pm 0.16 ; \Delta N_{v}=0.35 \pm 0.16 \\
& \Omega_{\mathrm{B}} h^{2}=0.0224 \pm 0.0003\left(\eta_{10}=6.15 \pm 0.07\right)
\end{aligned}
$$

For An Electromagnetically Coupled WIMP
$\mathrm{N}_{\text {eff }}=3.22 \pm 0.25 ; \Delta \mathrm{N}_{v}=0.65(+0.45,-0.37)$
$\Omega_{\mathrm{B}} \mathrm{h}^{2}=0.0223 \pm 0.0003\left(\eta_{10}=6.11 \pm 0.08\right)$ $\mathrm{m}_{\chi} \approx 5-10 \mathrm{MeV}$ favored

SUMMARY OF BBN + CMB CONSTRAINTS

In the absence of a light WIMP $\left(m_{\chi} \geq 30 \mathrm{MeV}\right)$
BBN \& CMB are consistent, provided that $\Delta N_{v} \approx 0.35$ ($\mathrm{N}_{\text {eff }} \approx 3.4$). But, SBBN and a sterile neutrino are disfavored. Lithium is a problem!

BBN \& CMB exclude an EM Coupled light WIMP with $\mathrm{m}_{\chi} \leq 1-2 \mathrm{MeV}$.

BBN \& CMB favor an EM Coupled light WIMP with $\mathrm{m}_{\chi} \approx 5-10 \mathrm{MeV}$. Lithium is a problem!

BBN \& The CMB With A Light WIMP

Very light WIMPs, thermal relics, annihilate late in the early Universe, changing the energy and photon densities at BBN and at recombination.

Kolb, Turner, Walker, Phys. Rev. D 34 (1986) 2197
Serpico \& Raffelt, Phys. Rev. D 70 (2004) 043526
Boehm, Ensslin, Silk, J. Phys. G 30 (2004) 279 Ho \& Scherrer, Phys. Rev. D 87 (2013) 023505, 065016 Steigman, Phys. Rev. D 87 (2013) 103517 Nollett \& Steigman, Phys. Rev. D 89 (2014) 083508

