BBN And The CMB Constrain

Equivalent Neutrinos (Dark Radiation)

Gary Steigman

with K. M. Nollett

KITP Neutrino Conference

November 3 - 7, 2014

The "Effective Number Of Neutrinos" &

Counting "Equivalent Neutrinos"

In the early Universe the energy density is dominated by the contributions from ER (extremely relativistic) particles. The early Universe is "Radiation Dominated" (R).

When T << m_e , the only ER standard model (SM) particles are the photons and neutrinos.

$$\rho \approx \rho_R = \rho_{\gamma} + 3 \rho_{\nu} >> \rho_B$$
where,
$$\rho_{\nu} / \rho_{\gamma} = 7/8 (T_{\nu} / T_{\gamma})^4$$

The SM neutrinos decouple when $T_{\gamma} = T_{\nu}$ $\approx 2-3$ MeV, before (barely) e^{\pm} annihilation.

IF neutrino decoupling were instantaneous, and, IF $T_{vd} >> m_e$, then after the e^{\pm} pairs have annihilated, $(T_v/T_v)^3 = 4/11$.

With these assumptions and, in this regime,

$$\rho/\rho_{\gamma} = 1 + 3[7/8(4/11)^{4/3}]$$

 N_{eff} , the "Effective Number of Neutrinos", is defined by: $\rho/\rho_{\gamma}\equiv 1+N_{eff}[7/8~(4/11)^{4/3}]$ or, $N_{eff}\equiv 3[11/4(T_{v}/T_{\gamma})^3]^{4/3}$ (when $T_{\gamma}<< m_e$).

If neutrino decoupling were instantaneous and, if electrons were massless, $N_{eff} = 3$.

Since T_{vd} is <u>not</u> >> m_e , $N_{eff} \approx 3.02$.

Since neutrino decoupling is <u>not</u> instantaneous, $N_{eff} \approx 3.05$.

An "Equivalent Neutrino", ξ , is a very light $(m_{\xi} << m_{e})$ particle that may, or may not, be a Majorana fermion ("neutrino").

If ξ is populated in the early Universe, either thermally or via mixing with the SM neutrinos, $\rho_R \rightarrow \rho_R + \rho_\xi \equiv \rho_R + \Delta N_\nu \rho_\nu$. $\Delta N_\nu = \rho_\xi/\rho_\nu$ is the number of equivalent neutrinos (a measure of dark radiation).

If ξ is a Majorana fermion ("neutrino") and if ξ is fully populated/mixed, $\Delta N_{\nu} = 1$ (sterile ν).

But, if ξ is a fully populated/mixed, real scalar, $\Delta N_v = 4/7$. In general, $\Delta N_v \le 1$ (Dark Radiation).

 N_{eff} and ΔN_{v} are related by:

$$N_{eff} = N_{eff}^{0} (1 + \Delta N_{v}/3), N_{eff}^{0} = 3[(11/4)^{1/3}(T_{v}/T_{y})_{0}]^{4}$$

The expansion rate, the Hubble parameter (H), depends on the mass/energy density: H α $\rho^{1/2}$

BBN Predicted Primordial Abundances Depend
On Two Physical / Cosmological Parameters
(ignoring any lepton (neutrino) asymmetry).

Baryon Density (Nucleon Asymmetry) Parameter

• $\eta_{\rm B} \equiv n_{\rm N}/n_{\rm y}$; $\eta_{10} \equiv 10^{10} \eta_{\rm B} = 274 \Omega_{\rm B} h^2$

Expansion Rate (Dark Radiation) Parameter

- S² = $(H'/H)^2 = \rho'/\rho$; S depends on ΔN_v (N_{eff})
- SBBN: $\Delta N_v = 0$ (S = 1)

- η_B Probes "Standard" Cosmology/Physics
- D $(y_{DP} = 10^5 (D/H)_P)$ is sensitive to η_B
- $\Delta N_v \neq 0$ Probes Non Standard Physics
- ${}^{4}\text{He}$ (Y_P) is sensitive to ΔN_{v}
 - * Two parameters (η_B and ΔN_v)

 Two observables (y_{DP} and Y_P)

Primordial (nearly) D

Finding D at low - Z in the Ly - α Forest

D and H absorption spectra are identical, except for an isotope shift of ~ 80 km/s

Cooke et al. 2013

Recent Results For Nearly Primordial Deuterium

Previous D observations had large dispersion among the D/H determinations.

Cooke et al. 2013 restricted their analysis to DLAs (log N(H I) > 19), allowing them access to many lines in the Lyman series, helping to reduce <u>some</u> sources of systematic errors.

⁴He/H is inferred from H and He recombinations observed in Low – Z, Extragalactic H II regions.

Lepton Asymmetry

An Excess of Neutrinos vs. Antineutrinos (or, vice - versa).

Neutrino Mixing (Oscillations) Ensures the SAME asymmetry for all SM Neutrinos.

Lepton Asymmetry is measured by the degeneracy parameter ξ , related to the chemical potential μ , by $\xi = \mu/kT$ ($\xi \ge 0$ for more ν than anti- ν).

Electron Neutrinos and Antineutrinos play key roles in regulating the neutron - to - proton ratio.

For BBN there are (now) three parameters but, only two observables.

Unless is $|\xi|$ "large", Lepton Asymmetry is invisible to the CMB.

Use the CMB to constrain $\Omega_B h^2$ (η_{10}).

Use BBN (D & ⁴He) to constrain ΔN_v and ξ .

How do BBN and the CMB change in the presence of a light WIMP?

BBN & The CMB With A Light WIMP

Very light WIMPs, thermal relics, annihilate late in the early Universe, changing the energy and photon densities at BBN and at recombination.

The CMB Confronts A Light WIMP

In the presence of an electromagnetically coupled light WIMP ($m_{\chi} \le 30$ MeV), the effective number of neutrinos is: $N_{eff} = N^0_{eff} (1 + \Delta N_{\chi}/3)$, where N^0_{eff} now depends on the WIMP mass.

The annihilation of an EM coupled, light WIMP heats the photons relative to the neutrinos:

$$(T_{v}/T_{y})_{0} \le (4/11)^{1/3} \implies N_{eff}^{0} \le 3 ; N_{eff} \le 3 + \Delta N_{v}$$

BBN WITH A Light WIMP

For each value of m_{χ} , a pair of $\{\eta_{10}, \Delta N_{\nu}\}$ (or, $\{\Omega_B h^2, N_{eff}\}$) values can be found so that BBN predicts – <u>exactly</u> – the observed primordial abundances of ⁴He and D.

SUMMARY

BBN & CMB are consistent, constraining light WIMPs and the number of Equivalent Neutrinos.

In the <u>absence</u> of a light WIMP ($m_{\chi} > 30$ MeV) BBN & CMB are consistent, <u>provided that</u> $\Delta N_{\nu} \approx 0.35$ ($N_{eff} \approx 3.4$).

But, SBBN ($\Delta N_v = 0$) and a sterile neutrino ($\Delta N_v = 1$) are both <u>disfavored</u>.

SUMMARY

BBN & CMB <u>exclude</u> an EM Coupled WIMP with $m_{\gamma} \le 1-2$ MeV.

BBN & CMB <u>favor</u> an EM Coupled WIMP with $m_{\gamma} \approx 5 - 10$ MeV, allowing for a sterile neutrino.

With or without an EM Coupled Light WIMP there is a lithium problem.

EXTRA SLIDES

MORE EXTRA SLIDES

LIGHT WIMPS COUPLED TO NEUTRINOS

The annihilation of a light WIMP coupled to the SM neutrinos heats the SM neutrinos relative to the photons: \Rightarrow $(T_{\nu}/T_{\gamma})_0 > (4/11)^{1/3}$ \Rightarrow $N_{eff}^0 > 3$; $N_{eff} > 3 + \Delta N_{\nu}$

"Dark Radiation Without Dark Radiation"

In this case no additional photons are created, $(\eta_B^{BBN} = \eta_B^{CMB})$, but the Universe expands faster.

BBN With A Neutrino Coupled Light WIMP

In the presence of a neutrino coupled light WIMP the Universe expands faster during BBN, destroying less D and producing more 4 He. This disfavors $\Delta N_{_{\rm V}} > 0$ and a low WIMP mass.

For a neutrino coupled light WIMP, BBN (D & ⁴He) and the CMB favor a "high mass" WIMP (i.e., the NO WIMP limit).

EVEN MORE EXTRA SLIDES

LIGHT WIMPS COUPLED TO NEUTRINOS

The annihilation of a light WIMP coupled to the SM neutrinos heats the SM neutrinos relative to the photons: \Rightarrow $(T_v/T_\gamma)_0 > (4/11)^{1/3}$ \Rightarrow $N_{eff}^0 > 3$; $N_{eff}^0 > 3(1 + \Delta N_v/3)$

"Dark Radiation Without Dark Radiation"

In this case no additional photons are created, but the Universe expands faster.

BBN With A Neutrino Coupled Light WIMP

In the presence of a neutrino coupled light WIMP the Universe expands faster during BBN, destroying less D, producing more ⁴He, and synthesizing less ⁷Li.

For a neutrino coupled light WIMP, BBN (D & ⁴He) and the CMB favor a "high mass" WIMP (i.e., the NO WIMP limit).

As a result, for neutrino coupled light WIMPs, the lithium problem persists.

The lithium problem <u>cannot</u> be solved by a very light, neutrino coupled WIMP.

SUMMARY OF BBN + CMB CONSTRAINTS

For No WIMP And / Or A Neutrino Coupled WIMP

$$N_{eff} = 3.40 \pm 0.16$$
; $\Delta N_{v} = 0.35 \pm 0.16$

$$\Omega_{\rm B}h^2 = 0.0224 \pm 0.0003 \ (\eta_{10} = 6.15 \pm 0.07)$$

For An Electromagnetically Coupled WIMP

$$N_{eff} = 3.22 \pm 0.25$$
; $\Delta N_v = 0.65 (+ 0.45, - 0.37)$

$$\Omega_{\rm B}h^2 = 0.0223 \pm 0.0003 \ (\eta_{10} = 6.11 \pm 0.08)$$

$$m_{\gamma} \approx 5 - 10 \text{ MeV favored}$$

SUMMARY OF BBN + CMB CONSTRAINTS

In the absence of a light WIMP ($m_y \ge 30 \text{ MeV}$) BBN & CMB are consistent, provided that $\Delta N_v \approx 0.35$ (N_{eff} ≈ 3.4). But, SBBN and a sterile neutrino are disfavored. Lithium is a problem! BBN & CMB exclude an EM Coupled light WIMP

BBN & CMB <u>favor</u> an EM Coupled light WIMP with $m_{\chi} \approx 5-10$ MeV. Lithium is a problem!

with $m_{\gamma} \leq 1-2$ MeV.

BBN & The CMB With A Light WIMP

Very light WIMPs, thermal relics, annihilate late in the early Universe, changing the energy and photon densities at BBN and at recombination.

Kolb, Turner, Walker, Phys. Rev. D 34 (1986) 2197
Serpico & Raffelt, Phys. Rev. D 70 (2004) 043526
Boehm, Ensslin, Silk, J. Phys. G 30 (2004) 279
Ho & Scherrer, Phys. Rev. D 87 (2013) 023505, 065016
Steigman, Phys. Rev. D 87 (2013) 103517
Nollett & Steigman, Phys. Rev. D 89 (2014) 083508