Interpretation of astrophysical neutrino signal, and the multi-messenger context

(a particle physics theorist's perspective)

Walter Winter

DESY, Zeuthen, Germany

KITP conference
Neutrinos: Recent developments
... and future challenges
Nov 3-7, 2014

Contents

- Introduction
- > Simulation of neutrino sources, detector response
- Interpretations of signal
 - Expected (guaranteed?) contributions
 - Conceptual insights, UHECR connection
 - Astrophysical object speculations
- Future challenges:
 - The question of flavor!?
 - Physics case for high-energy extension of IceCube?
- Summary

Cosmic messengers Physics of astrophysical neutrino sources = physics of Theory cosmic ray sources (source distribution) Multi-messenger interpretations must rely on theory (acceleration, radiation processes, particle escape, geometry, ...) Theory (radiation Large model) astrophysical Theory uncertainties (infrared etc BGs) Astrophysical beam dump Theory (magnetic fields, ...)

2014: 37 neutrinos in the TeV-PeV range

Simulation of neutrino sources

Neutrino and cosmic ray source (illustrative proton-only scenario, pγ interactions)

If neutrons can escape: Source of cosmic rays

$$n \rightarrow p + e^- + \bar{\nu}_e$$

$$p + \gamma_{\rm CMB} \to \Delta^+ \to {\color{blue}\mathsf{Cosmogenic}} \, {\color{blue}\mathsf{neutrinos}}$$

Neutrinos produced in ratio $(v_e: v_u: v_\tau) = (1:2:0)$

$$\pi^{+} \rightarrow \mu^{+} + \underline{\nu_{\mu}},$$

$$\mu^{+} \rightarrow e^{+} + \underline{\nu_{e}} + \overline{\nu_{\mu}}$$

Delta resonance approximation:

$$p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

 π^+/π^0 determines ratio between neutrinos and high-E gamma-rays

$$\pi^0 \rightarrow \gamma + \gamma$$

High energetic gamma-rays; typically cascade down to lower E Additional constraints!

Walter Winter | KITP Neutrinos | Nov 06, 2014 | Page 6

Source simulation: py (particle physics)

> Δ (1232)-resonance approximation:

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

Resonance condition: Proton energy [GeV] x Photon energy [GeV] ~ 0.2

- > Limitations:
 - No π^- production; cannot predict π^+/π^- ratio (Glashow resonance!)
 - High energy processes affect spectral shape (X-sec. dependence!)
 - Low energy processes (t-channel) enhance charged pion production
- > Example: Peak at PeV energies (here pions) from thermal target photons?

Example: E^{-2} proton spectrum interacting with 10 eV blackbody target photon spectrum Multi-pion processes exclude this as explanation for observed neutrinos unless $E_{p,max} < 10^8$ GeV!

From: Hümmer et al, ApJ 721 (2010) 630 parameterization based on SOPHIA – Mücke, Rachen, Engel, Protheroe, Staney, 2000

pp versus py interactions: commons and differences

- > In pp and p γ interactions, the secondary pions take about 20% of the proton energy, the neutrinos about 5% (per flavor)
 - \rightarrow PeV neutrinos must come from 20 PeV (pp/p γ) to 1 EeV (Fe-p)
- > The charged to neutral pion ratio is roughly 50-50 (both pp and p_{γ})
- > The spectral shape of the neutrinos follows the primary nuclei for pp interactions, for p_{γ} it depends on that of the target photons as well
- > There are typically (not necessarily) more electron neutrinos than antineutrinos at the source for pγ interactions (if Glashow resonance used for discrimination, proposed in Anchordoqui et al, hep-ph/0410003; Barger et al, 1407.3255 etc!)

Hümmer, Rüger, Spanier, Winter, ApJ 721 (2010) 630

Neutrino production (example: p_{γ})

Kinetic equations (steady state)

Treat energy losses/escape in continuous limit:

$$Q(E) = \frac{\partial}{\partial E} \left(b(E) N(E) \right) + \frac{N(E)}{t_{\rm esc}}$$

Injection

Energy losses

Escape

b(E)=-E t⁻¹_{loss} Q(E,t) [GeV⁻¹ cm⁻³ s⁻¹] injection per time frame (e. g. from acc. zone) N(E,t) [GeV⁻¹ cm⁻³] particle spectrum including spectral effects

NB: Need N(E) to compute particle interactions

- > Simple case: No energy losses b=0: $N(E) = Q(E) t_{
 m esc}$
- Special cases:
 - t_{esc} ~ R/c (free-streaming, aka "leaky box")
 - $t_{esc} \sim E^{-\alpha}$. Consequence: N(E) $\sim Q_{inj}(E) E^{-\alpha}$, Escape: $Q_{esc}(E) = N(E)/t_{esc} \sim Q_{inj}$

(Neutrino spectrum from N(E) can have a break which is not present in escaping primaries $Q_{esc}(E)$)

In the presence of strong B: Secondary cooling

Example: GRB

Secondary spectra (μ , π , K) loss-steepend above critical energy

$$E_c' = \sqrt{\frac{9\pi\epsilon_0 m^5 c^7}{\tau_0 e^4 B'^2}}$$

- \succ E'_c depends on particle physics only (m, τ_0), and **B**'
- Leads to characteristic flavor composition and shape
- ➤ Very robust prediction for sources? [i.e. any additional radiation processes mainly affecting the primaries will not affect the flavor composition]

Decay/cooling: charged μ , π , K

Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508; also: Kashti, Waxman, 2005; Lipari et al, 2007

Neutrino propagation and detector response

- > Neutrino propagation: Flavor mixing $P_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$
- > Event rate computation: $N=\int_{E_{\min}}^{E_{\max}}\phi_{\nu}(E) A_{\mathrm{eff}}(E) t_{\mathrm{obs}} \left[d\Omega\right] dE$

(A_{eff} typically includes analysis cuts; \$\phi\$ in units of cm⁻² s⁻¹ GeV⁻¹ [sr⁻¹])

 A complication for interpretations: neutrino energy reconstruction (incident energy → deposited energy → reconstructed energy)

Reconstructed distribution does not exhibit statistically signficant gap, cutoff seems to be more evident

On the signal interpretation

Galactic "guaranteed" contribution?

- Cosmic rays interact with hydrogen in our Galaxy
- Cosmic ray density from local observations; extension of production region can be inferred from diffuse gamma-ray observations -(very narrow around Galactic plane)

Complication: the CR composition changes non-trivially in relevant range:

(all-sky averaged prediction)

O(0.1-1) event plausible to satisfy n_H , composition and γ -ray constraints

Page 14

Gaisser, Staney, Tilay, 2013

Cosmogenic (from CR propagation) origin?

- PeV neutrinos from cosmic infrared background interactions of UHECRs (here: protons); depends somewhat on model (high-z evolution?)
- > Even if protons, soft spectra etc, difficult to reach required flux

Figures: Bustamante, Evoli, Sigl, WW, in prep. See also Roulet, Sigl, van Vliet, Mollerach, JCAP 1301 (2013) 028

Conceptual insights? Neutrinos from Ap interactions

... in cosmologically distr. sources (star formation rate evolution)

Simplest model, as the neutrino spectrum follows that of the primaries

Parameter	Description	Unit
α	Spectral index of primary nuclei	none
E_{\max}	Maximal energy	${ m GeV}$
B	Magnetic field	Gauss (G)
A	Mass number	none

Possible fits to data:

Protons, α=2.5 [Problem: Fermi diffuse γ-ray bound Murase, Ahlers, Lacki, PRD 2013]

Protons α =2 E_{max} =10^{7.5} GeV

Protons

 α =2

 $B \sim 10^4 G$

(magnetic field effects on sec. pions, muons, kaons)

Nuclei

 α =2, E_{max}=10^{10.1} GeV Composition *at source*

$$A(E) = \max\left(1, 56 \times \left(\frac{E}{E_{\text{max}}}\right)^{\beta}\right)$$

with β =0.4

Connection to ultra-high energy cosmic rays (UHECR)?

Yes, but: Energy input per decade very different in neutrino-relevant and UHECR energy ranges (Energetics seem to favor $\alpha \sim 2$ – Waxman/Bahcall!)

see e. g. Katz et al, 1311.0287 for generic discussion; for GRBs specifically: extremely large baryonic loadings implied: Baerwald et al, Astropart. Phys. 62 (2015) 66

Yes, but: Synchrotron losses limit maximal proton energies as well. Need large Doppler factors (e. g. GRBs)

Protons, α=2.5 [Problem: Fermi diffuse γ-ray bound Murase, Ahlers, Lacki, PRD 2013]

Protons α =2 E_{max} =10^{7.5} GeV

 α =2 B ~ 10⁴ G

Protons

Nuclei α =2, E_{max} =10^{10.1} GeV Composition *at source*

$$A(E) = \max\left(1, 56 \times \left(\frac{E}{E_{\text{max}}}\right)^{\beta}\right)$$

with β =0.4

Yes, but: Need energydependent escape timescale leading to break/cutoff within source (diff. from ejection!)

see e.g. Liu et al, PRD, 2014; arXiv:1310.1263 or starburst galaxies

WW, arXiv:1407.7536 (PRD, in print)

Yes, but: A(E) change somewhat too shallow to match observation; difference source-observation from propagation?

Walter Winter | KITP Neutrinos | Nov 06, 2014 | Page 17

Neutrinos from py interactions

- More freedom, as spectral shape depends on photons as well
 - → Strategies to address the large parameter space?
- Target photon field typically:
 - Put in by hand (derived from observed spectrum)
 - Thermal target photon field (e. g. accretion disk)
 - From interplay of radiation processes (synchrotron radiation, Bremsstrahlung, inverse Compton, pair production ...).
- One of simplest self-consistent cases: From synchrotron radiation of co-accelerated electrons (AGN-like model)
- Requires few model parameters, mainly

Parameter	Units	Description	Typical values used
R	km (kilometers)	Size of acceleration region	$10^1 \mathrm{km} \dots 10^{21} \mathrm{km}$
B	G (Gauss)	Magnetic field strength	$10^{-9}\mathrm{G}\dots 10^{15}\mathrm{G}$
α	1	Universal injection index	$1.5 \dots 4$

Parameter space: Hillas plot?

Model-independent (necessary) condition for acceleration of cosmic rays:

$$E_{max} \sim \eta Z e B R$$

(Larmor-Radius < size of source; η: acceleration efficiency)
Particles confined to within accelerator!

- Caveat: condition relaxed if source heavily Lorentz-boosted (e.g. GRBs)
- Test points in these figures not to be taken too seriously (large astrophysical uncertainties)

Hillas 1984; version adopted from M. Boratav

1 Neutron stars

2 White dwarfs

Active galaxies:

5 hot-spots

7 Colliding galaxies

20

3 nuclei

4 iets

6 lobes

8 Clusters

Parameter space constraints (SFR evolution, py model)

Too low $E_{p,\max}$

 5σ

 3σ

15

10

5

12

- Current data start to constrain parameter space of radiation models
- Again, regions preferred where either or magnetic field

So, where do the neutrinos come from? (my personal bias)

- We have no clue. There are, however, plenty of candidate classes
 - Galactic sources
 - + testable by directional correlations (some workarounds in literature ...)
 - no evidence, so far; perhaps only a few events
 - Gamma-ray bursts
 - + may have enough power, cutoff "natural" from magnetic field effects
 - needs to be a "non-standard" population, as strong bounds on gamma-ray detected GRBs from stacking; low luminosity GRBs?
 - Active Galactic Nuclei
 - + wide playground, may have enough power; there is hope for some directional/flaring correlations
 - wide playground; not easy to accommodate a cutoff (unless from primaries)
 - Starburst galaxies, hypernova remnants, ... (diffuse flux contributions)
 - + good to blame for if not better solution found; cutoff/break expected if energy-dependent escape timescale
 - direct evidence difficult (not easily resolvable)
 - From interactions with photon backgrounds (cosmogenic or nearby populations)
 - + kind of expected fluxes (at some level)
 - models which produce IceCube flux require tweaking

(see Anchordoqui et al, arXiv:1312.6587 for a review)

There are some recent proposals for generic tests, e. g. limit source density from clustering of events

Future challenges

The question of flavor: Flavor composition is energy-dependent! (earlier pγ model)

Flavor composition ... can be predicted

- Pion beam good assumption for sources on galactic scales
- Muon beam sources if muon pile-up:

Injection: ν_{μ} NeuCosmA 2010 10^{-11} $E^2 Q(E) [N_e N_p \text{ GeV cm}^{-3} \ s^{-1}]$ (No losses) from π Pile-up effect from μ from K/ 10^{-15} 10^{5} 10^{4} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} Energy [GeV]

Hümmer, Maltoni, Winter, Yaguna, Astropart. Phys. 34 (2010) 205

Flavor composition ... can be measured!

Statistical significance yet to small to be meaningful, especially in region of standard predictions after flavor mixing (blue triangle)

There is a slight tension of astrophysical predictions with data, as the background prediction contains too many muon tracks

Future challenge: measure flavor composition with precision meaningful in blue triangle!

100

Mena, Palomares-Ruiz, Vincent, PRL 113 (2014) 091103; see also Fu, Ho, Weiler, 1411.1174 for a new related work

Discussion by Sergio Palomares-Ruiz on Oct. 2, 2014 at KITP; watch podcast at http://online.kitp.ucsb.edu/online/neutrinos14/palomaresruiz/

Physics case for high-E extension? Flavor! (Ap model)

- Cutoff from magnetic field effects degenerate with maximal energy cutoff in terms of spectral shape
- Flavor composition different (see below)
- Need sufficient statistics in cutoff region (about 1 PeV)

WW, arXiv:1407.7536, PRD, in print

Physics case for high-E extension? Precision! (py model)

WW, arXiv:1307.2793, PRD88 (2013) 083007

Summary and conclusions

- Cosmic neutrinos are interesting, as they point towards the sources of the cosmic rays
- Next major qualitative step: resolve the sources of the neutrinos; perhaps neutrino astronomy can do better than cosmic ray observations?
- If not, we have to rely on conceptual arguments, which require the statistics of an high-energy extension:
 - Spectral shape
 - Flavor composition
 - Anisotropies
 - Multiplets, ...
- Several constraints come from gamma-ray and cosmic ray observations; theory needed to draw a self-consistent multi-messenger picture
- Connection to UHECRs requires extrapolation over several orders of magnitude in energy, and composition; source modeling in presence of heavier nuclei one of future key issues for CR-neutrino theory