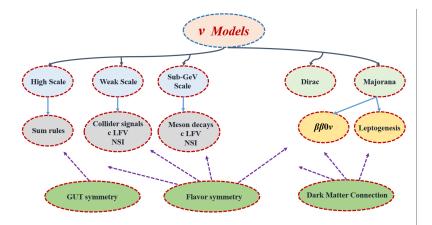
Neutrino Model Building

K.S. Babu

Oklahoma State University


Interdisciplinary Developments in Neutrino Physics KITP, Santa Barbara March 28-31, 2022

Current knowledge of neutrino oscillations

					NuFIT 5.0 (2020)	
		Normal Ore	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 2.7$)		
		bfp $\pm 1\sigma$	$p \pm 1\sigma$ 3σ range $bfp \pm$		3σ range	
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 \theta_{23}$	$0.570^{+0.018}_{-0.024}$	$0.407 \rightarrow 0.618$	$0.575^{+0.017}_{-0.021}$	$0.411 \rightarrow 0.621$	
	$\theta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
	$\sin^2\theta_{13}$	$0.02221^{+0.00068}_{-0.00062}$	$0.02034 \to 0.02430$	$0.02240^{+0.00062}_{-0.00062}$	$0.02053 \to 0.02436$	
	$\theta_{13}/^\circ$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$	
	$\delta_{\mathrm{CP}}/^{\circ}$	195^{+51}_{-25}	$107 \to 403$	286^{+27}_{-32}	$192 \to 360$	
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514\substack{+0.028\\-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497\substack{+0.028\\-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 7.1)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
lata	$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
ic d		10.016				
Ť	$sin^2 \theta_{23}$	$0.573^{+0.016}_{-0.020}$	$0.415 \rightarrow 0.616$	$0.575^{+0.016}_{-0.019}$	$0.419 \rightarrow 0.617$	
spheric	$\sin^2 \theta_{23}$ $\theta_{23}/^{\circ}$	$0.573^{+0.010}_{-0.020}$ $49.2^{+0.9}_{-1.2}$	$0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$	$0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$	$\begin{array}{c} 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \end{array}$	
tmospheric			0.000		0.220 . 0.021	
SK atmospheric	$\theta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$	
with SK atmospheric data	$\theta_{23}/^{\circ}$ $\sin^2 \theta_{13}$	$\begin{array}{c} 49.2^{+0.9}_{-1.2} \\ 0.02219^{+0.00062}_{-0.00063} \end{array}$	$40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$	$49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$	$40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$	
with SK atmospheric	$\theta_{23}/^{\circ}$ $\sin^2 \theta_{13}$ $\theta_{13}/^{\circ}$	$\begin{array}{c} 49.2\substack{+0.9\\-1.2}\\ 0.02219\substack{+0.00062\\-0.00063}\\ 8.57\substack{+0.12\\-0.12}\end{array}$	$40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$	$\begin{array}{c} 49.3^{+0.9}_{-1.1} \\ 0.02238^{+0.00063}_{-0.00062} \\ 8.60^{+0.12}_{-0.12} \end{array}$	$40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$	

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

Roadmap for Neutrino Models

Effective Field Theory for neutrino masses

- Neutrino masses are zero in the Standard Model. Observed oscillations require new physics beyond Standard Model
- Neutrino masses and oscillations can be explained in terms of the celebrated Weinberg operator
- It is the leading operator in Standard Model EFT and arises at dimension-five, suppressed by one power of an inverse mass scale
- It violates lepton number by two units and generates neutrino masses:

$$\mathcal{O}_{1} = \frac{\kappa_{ab}}{2} (L_{a}^{i} L_{b}^{j}) H^{k} H^{l} \epsilon_{ik} \epsilon_{jl}$$
$$= \frac{\kappa_{ab}}{2} (\nu_{a} H^{0} - \ell_{a} H^{+}) (\nu_{b} H^{0} - \ell_{b} H^{+})$$
$$\Rightarrow (M_{\nu})_{ab} = (\kappa)_{ab} \nu^{2}$$

• $\kappa^{-1} \sim (10^{14} {
m GeV})$ can be inferred from data

Strong reasons to go beyond EFT

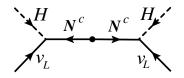
- EFT description cannot be the end goal, or else important phenomen would be missed
- What if neutrinos are Dirac particles? O₁ is then the wrong description
- What if neutrino masses arose from d = 7 operators or d = 9 operators in a fundamental theory, and not through O₁?
- Even when the scale of new physics is beyond reach of current experiments, opening the EFT operator can give new insights
- An example is baryon asymmetry generation via leptogensis
- Requires opening up the Weinberg operator. Baryon asymmetry originates from the decays of N^c, the mediator of the operator O₁

Origin of neutrino mass: Seesaw mechanism

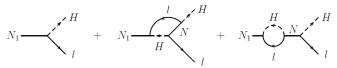
 Adding right-handed neutrino N^c which transforms as singlet under SU(2)_L,

$$\mathcal{L} = f_{\nu} \left(L \cdot H \right) N^{c} + \frac{1}{2} M_{R} N^{c} N^{c}$$

• Integrating out the N^c , $\Delta L = 2$ operator is induced:

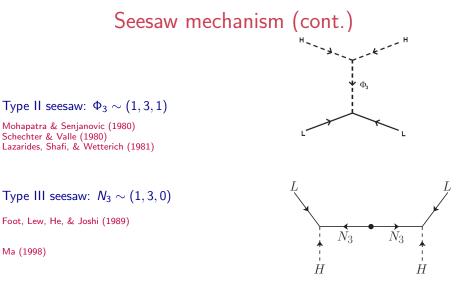

$$\mathcal{L}_{\mathrm{eff}} = -rac{f_{
u}^2}{2}rac{\left(L\cdot H
ight)\left(L\cdot H
ight)}{M_R}$$

$$m_{
u} \simeq f_{
u}^2 rac{v^2}{M_R}$$


Minkowski (1977) Yanagida (1979) Gell-Mann, Ramond, Slansky (1980) Mohapatra & Senjanovic (1980)

• For $f_{\nu}v \simeq 100$ GeV, $M_R \simeq 10^{14}$ GeV.

Baryogenesis via leptogenesis and type-I seesaw


- In the early history of the universe, a lepton asymmetry may be dynamically generated in the decay of N Fukugita, Yanagida (1986)
- ▶ *N* being a Maiorana fermion can decay to L + H as well as $\overline{L} + H^*$

- Three Sakharov conditions can be satisfied: B violation via electroweak sphaleron, C and CP violation in Yukawa couplings of N, and out of equilibrium condition via expanding universe
- Lepton asymmetry in decay of N_1 (with $M_1 \ll M_{2,3}$):

$$arepsilon_1 \simeq rac{3}{16\pi} rac{1}{(f_
u f_
u^\dagger)_{11}} \sum_{i=2,3} {
m Im} \left[(f_
u f_
u^\dagger)_{i1}^2
ight] rac{M_1}{M_i}$$

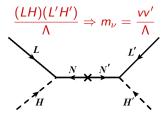
ε ~ 10⁻⁶ can explain observed baryon asymmetry of the universe
 Indirect tests in Majorana nature of *ν* and in CP violation in oscillations

Φ₃ abd N₃ contain charged particles which can be looked for at LHC
 Eg: Φ⁺⁺ → ℓ⁺ℓ⁺, Φ⁺⁺ → W⁺W⁺ decays would establish lepton number violation

Dirac Neutrino Models

- Neutrinos may be Dirac particles without lepton number violation
- Oscillation experiments cannot distinguish Dirac neutrinos from Majorana neutrinos
- Spin-flip transition rates are suppressed by small neutrino mass:

$$\Gamma_{
m spin-flip} pprox \left(rac{m_{
u}}{E}
ight)^2 \Gamma_{
m weak}$$


- Neutrinoless double beta decay discovery would establish neutrinos to be Majorana particles
- If neutrinos are Dirac, it would be nice to understand the smallness of their mass
- Models exist which explain the smallness of Dirac m_{ν}
- "Dirac leptogenesis" can explain baryon asymmetry Dick, Lindner, Ratz, Wright (2000)

Dirac Seesaw Models

- Dirac seesaw can be achieved in Mirror Models
 Lee, Yang (1956); Foot, Volkas (1995); Berezhiani, Mohapatra (1995)
- Mirror sector is a replica of Standard Model, with new particles transforming under mirror gauge symmetry:

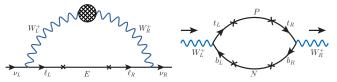
$$L = \begin{pmatrix} \nu \\ e \end{pmatrix}_{L}; \quad H = \begin{pmatrix} H^{+} \\ H^{0} \end{pmatrix}; \quad L' = \begin{pmatrix} \nu' \\ e' \end{pmatrix}_{L}; \quad H' = \begin{pmatrix} H'^{+} \\ H'^{0} \end{pmatrix}$$

Effective dimension-5 operator induces small Dirac mass:

► B - L may be gauged to suppress Planck-induced operators that would make neutrino pseudo-Dirac particle

Dirac Neutrinos from Left-Right Symmetry

- In a "universal seesaw" version of left-right symmetry, neutrinos are naturally Dirac particles
- These models provide understanding of Parity violation; some understanding of smallness of Yukawa couplings; requires right-handed neutrinos to exist; can provide a solution to the strong CP problem via Parity

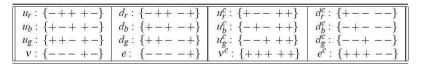

Davidson, Wali (1987); Babu, He (1989); Babu, Mohapatra (1990); Craig, Garcia Garcia, Koszegi, McCune (2020)

Higgs sector is very simple; new vector-like singlet fermions (U, D, E) generate charged fermion masses via a seesaw:

$$M_F = \begin{pmatrix} 0 & Y_{\kappa_L} \\ Y^{\dagger}_{\kappa_R} & M \end{pmatrix} \Rightarrow m_f = \frac{Y^2 \kappa_L \kappa_R}{M}$$

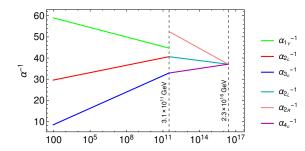
- There is no seesaw for neutrinos, since there is no corresponding singlet fermion
- Dirac neuutrino masses arise via two-loop diagrams

Two-loop Dirac Neutrino Masses $W_{l}^{+} - W_{R}^{+}$ mixing is absent at tree-level in model



Oscillation date fits well within the model Babu, Thapa (2022)

Oscillation 3σ range Model pre					ediction		
parameters	NuFit5.1	BP I (NH)	BP II (NH)	BP III (IH)	BP IV (IH)		
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	6.82 - 8.04	7.42	7.32	7.35	7.30		
$\Delta m_{23}^2 (10^{-3} \text{ eV}^2)(\text{IH})$	2.410 - 2.574	-	-	2.48	2.52		
$\Delta m_{31}^{2}(10^{-3} \text{ eV}^2)(\text{NH})$	2.43 - 2.593	2.49	2.46	-	-		
$\sin^2 \theta_{12}$	0.269 - 0.343	0.324	0.315	0.303	0.321		
sin ² θ ₂₃ (IH)	0.410 - 0.613	-	-	0.542	0.475		
$\sin^2 \theta_{23}$ (NH)	0.408 - 0.603	0.491	0.452	-	-		
$\sin^2 \theta_{13}$ (IH)	0.02055 - 0.02457	-	-	0.0230	0.0234		
$\sin^2 \theta_{13}(\text{NH})$	0.02060 - 0.02435	0.0234	0.0223	-	-		
$\delta_{\rm CP}$ (IH)	192 - 361	-	-	271 ⁰	296 ⁰		
δ_{CP} (NH)	105 - 405	199 ⁰	200°	-	-		
m _{light} (10 ⁻	0.66	0.17	0.078	4.95			
M _{E1} / M _V	917	321.3	639	3595			
M _{E2} / M _V	0.650	19.3	1.54	5.03			
M _{E3} / M _V	0.019	1.26	0.054	2.94			

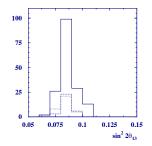

Unification of Forces & Matter in SO(10)

16 members of a family fit into a spinor of SO(10)

First 3 spins refer to color, last two are weak spins

$$Y = \frac{1}{3}\Sigma(C) - \frac{1}{2}\Sigma(W)$$

Yukawa Sector of Minimal SO(10)


 $16 \times 16 = 10_s + 120_a + 126_s$

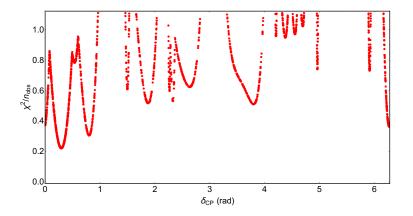
At least two Higgs fields needed for family mixing
 Symmetric 10_H and 126 is the minimal model

 $W_{SO(10)}^{
m Yukawa} = 16^T \left(Y_{10} \, 10_H + Y_{126} \overline{126}_H \right) 16 \; .$

Minimal Yukawa sector of SO(10)

- 12 parameters plus 7 phases to fit 18 observed quantities
- This setup fits all obsevables quite well
- Large neutrino mixings coexist with small quark mixings
- θ_{13} prediction turned out to be correct

Babu, Mohapatra (1993); Bajc, Senjanovic, Vissani (2001); (2003); Fukuyama, Okada (2002); Goh, Mohapatra, Ng (2003); Bajc, Melfo, Senjanovic, Vissani (2004); Bertolini, Malinsky, Schwetz (2006); Babu, Macesanu (2005); Dutta, Mimura, Mohapatra (2007); Aulakh et al (2004); Bajc, Dorsner, Nemevsek (2009); Joshipura, Patel (2011); Dueck, Rodejohann (2013); Ohlsson, Penrow (2019); Babu, Bajc, Saad (2018); Babu, Saad (2021)


Best fit values for fermion masses and mixings

Observables	SUSY			non-SUSY		
(masses in GeV)	Input	Best Fit	Pull	Input	Best Fit	Pull
$m_u/10^{-3}$	0.502 ± 0.155	0.515	0.08	0.442 ± 0.149	0.462	0.13
m_c	$0.245 {\pm} 0.007$	0.246	0.14	$0.238 {\pm} 0.007$	0.239	0.18
m_t	$90.28 {\pm} 0.89$	90.26	-0.02	74.51 ± 0.65	74.47	-0.05
$m_b/10^{-3}$	$0.839 {\pm} 0.17$	0.400	-2.61	$1.14{\pm}0.22$	0.542	-2.62
$m_s/10^{-3}$	$16.62 {\pm} 0.90$	16.53	-0.09	21.58 ± 1.14	22.57	0.86
m_b	$0.938 {\pm} 0.009$	0.933	-0.55	$0.994{\pm}0.009$	0.995	0.19
$m_e/10^{-3}$	$0.3440{\pm}0.0034$	0.344	0.08	$0.4707 {\pm} 0.0047$	0.470	-0.03
$m_{\mu}/10^{-3}$	$72.625 {\pm} 0.726$	72.58	-0.05	$99.365 {\pm} 0.993$	99.12	-0.24
$m_{ au}$	$1.2403{\pm}0.0124$	1.247	0.57	$1.6892{\pm}0.0168$	1.688	-0.05
$ V_{us} /10^{-2}$	$22.54{\pm}0.07$	22.54	0.02	22.54 ± 0.06	22.54	0.06
$ V_{cb} /10^{-2}$	$3.93 {\pm} 0.06$	3.908	-0.42	$4.856 {\pm} 0.06$	4.863	0.13
$ V_{ub} /10^{-2}$	$0.341{\pm}0.012$	0.341	0.003	$0.420 {\pm} 0.013$	0.421	0.10
δ°_{CKM}	69.21 ± 3.09	69.32	0.03	69.15 ± 3.09	70.24	0.35
$\Delta m_{21}^2 / 10^{-5} (eV^2)$	$8.982 {\pm} 0.25$	8.972	-0.04	12.65 ± 0.35	12.65	-0.01
$\Delta m_{31}^2 / 10^{-3} (eV^2)$	$3.05 {\pm} 0.04$	3.056	0.02	$4.307 {\pm} 0.059$	4.307	0.006
$\sin^2 \theta_{12}$	$0.318 {\pm} 0.016$	0.314	-0.19	$0.318 {\pm} 0.016$	0.316	-0.07
$\sin^2 \theta_{23}$	$0.563 {\pm} 0.019$	0.563	0.031	$0.563 {\pm} 0.019$	0.563	0.01
$\sin^2 \theta_{13}$	$0.0221{\pm}0.0006$	0.0221	-0.003	0.0221 ± 0.0006	0.0220	-0.16
δ°_{CP}	224.1 ± 33.3	240.1	0.48	224.1 ± 33.3	225.1	0.03
χ^2	-	-	7.98	-	-	7.96

Babu, Saad (2021)

Dirac CP phase

Multiple χ^2 minima make δ_{CP} prediction difficult

Babu, Bajc, Saad (2018)

Proton decay predictions

- Proton decay branching ratios determined by neutrino oscillation fits
- Mediated by superheavy gauge bosons
- Lifetime has large uncertainties, $\tau_p \approx (10^{32} 10^{36})$ yrs.

Prediction of branching ratios

$$\begin{split} & \Gamma(p \to \pi^0 e^+) \to 47\% \\ & \Gamma(p \to \pi^0 \mu^+) \to 1\% \\ & \Gamma(p \to \eta^0 e^+) \to 0.20\% \\ & \Gamma(p \to \eta^0 \mu^+) \to 0.00\% \\ & \Gamma(p \to K^0 e^+) \to 0.16\% \\ & \Gamma(p \to K^0 \mu^+) \to 3.62\% \\ & \Gamma(p \to \pi^+ \overline{\nu}) \to 48\% \\ & \Gamma(p \to K^+ \overline{\nu}) \to 0.22\% \end{split}$$

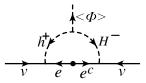
Babu, Khan (2015)

Radiative neutrino mass generation

- An alternative to seesaw is radiative neutrino mass generation, where neutrino mass is absent at tree level, but arises via quantum loop corrections
- The smallness of neutrino mass is explained by loop and chiral suppressions
- ► Loop diagrams may arise at 1-loop, 2-loop or 3-loop levels
- New physics scale typically near TeV and thus accessible to LHC
- Further tests in observable LFV processes and as nonstandard neutrino interaction (NSI) in oscillations

Effective $\Delta L = 2$ Operators

- $\mathcal{O}_1 = L^i L^j H^k H^l \epsilon_{ik} \epsilon_{jl}$
- $\mathcal{O}_2 = L^i L^j L^k e^c H^l \epsilon_{ij} \epsilon_{kl}$
- $\mathcal{O}_{3} = \{ L^{i} L^{j} Q^{k} d^{c} H^{l} \epsilon_{ij} \epsilon_{kl}, L^{i} L^{j} Q^{k} d^{c} H^{l} \epsilon_{ik} \epsilon_{jl} \}$
- $\mathcal{O}_4 = \{ L^i L^j \bar{Q}_i \bar{u}^c H^k \epsilon_{jk}, L^i L^j \bar{Q}_k \bar{u}^c H^k \epsilon_{ij} \}$
- $\mathcal{O}_5 = L^i L^j Q^k d^c H^l H^m \bar{H}_i \epsilon_{jl} \epsilon_{km}$
- $\mathcal{O}_6 = L^i L^j \bar{Q}_k \bar{u^c} H^l H^k \bar{H}_i \epsilon_{jl}$
- $\mathcal{O}_7 = L^i Q^j \bar{e^c} \bar{Q}_k H^k H^l H^m \epsilon_{il} \epsilon_{jm}$
- $\mathcal{O}_8 = L^i \bar{e^c} \bar{u^c} d^c H^j \epsilon_{ij}$
- $\mathcal{O}_9 = L^i L^j L^k e^c L^l e^c \epsilon_{ij} \epsilon_{kl}$
- $\mathcal{O}_1' = L^i L^j H^k H^l \epsilon_{ik} \epsilon_{jl} H^{*m} H_m$


Babu & Leung (2001) de Gouvea & Jenkins (2008) Angel & Volkas (2012) Cai, Herrero-Garcia, Schmidt, Vicente, Volkas (2017) Lehman (2014) – all d = 7 operators Li, Ren, Xiao, Yu, Zheng (2020); Liao, Ma (2020) – all d = 9 operators

Operator \mathcal{O}_2 and the Zee model

Introduce a singly charged scalar and a second Higgs doublet to standard model:

Zee (1980)

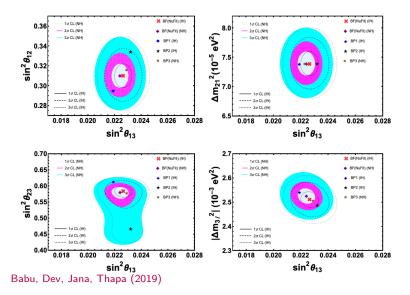
Neutrino mass arises at one-loop.

A minimal version of this model in which only one Higgs doublet couples to a given fermion sector with a Z₂ symmetry yields: Wolfenstein (1980)

$$m_{\nu} = \begin{pmatrix} 0 & m_{e\mu} & m_{e\tau} \\ m_{e\mu} & 0 & m_{\mu\tau} \\ m_{e\tau} & m_{\mu\tau} & 0 \end{pmatrix}, \quad m_{ij} \simeq rac{f_{ij}}{16\pi^2} rac{(m_i^2 - m_j^2)}{\Lambda}$$

It requires $heta_{12} \simeq \pi/4
ightarrow$ ruled out by solar + KamLAND data.

Koide (2001); Frampton et al. (2002); He (2004)


Neutrino oscillations in the Zee model

- Neutrino oscillation data can be fit to the Zee model consistently without the Z₂ symmetry
- Some benchmark points for Yukawa couplings of second doublet:

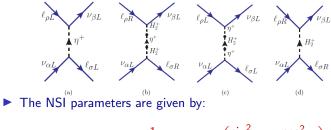
$$BP I: Y = \begin{pmatrix} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}$$
$$BP II: Y = \begin{pmatrix} 0 & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & 0 & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}$$
$$BP III: Y = \begin{pmatrix} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & 0 & Y_{\tau\tau} \end{pmatrix}$$

Babu, Dev, Jana, Thapa (2019)

Neutrino fit in the Zee model

Neutrino Non-Standard Interactions (NSI)

- Neutrino oscillation picture would change if there are non-standard interactions
- Modification of matter effects most important
- EFT for neutrino NSI:

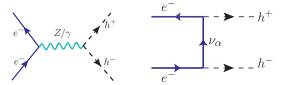

Effective Hamiltonian for neutrino propagation in matter is now:

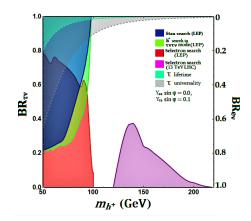
$$H = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

• $\epsilon_{\alpha\beta}$ measure of NSI normalized to weak interaction strength

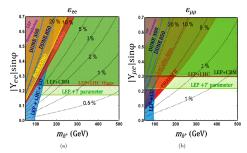
Neutrino NSI in the Zee model

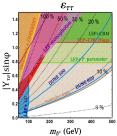
The two charged scalars of the Zee model mediate NSI


$$\varepsilon_{\alpha\beta} = \frac{1}{4\sqrt{2}G_F} Y_{\alpha e} Y_{\beta e}^* \left(\frac{\sin^2\varphi}{m_{h^+}^2} + \frac{\cos^2\varphi}{m_{H^+}^2}\right)$$

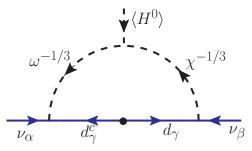

 Constrained by LHC and LEP direct limits; cLFV; precision electroweak tests; neutrino oscillation data; and theory Babu, Dev, Jana, Thapa (2019)

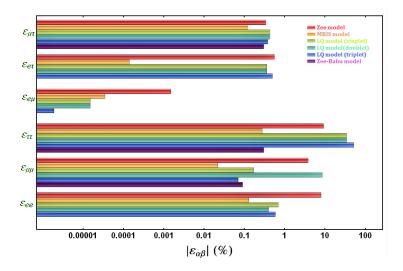
Constraints on Zee model parameters


- Electroweak T parameter sets limits on mixing sin φ
- $\mu \rightarrow e + \gamma$ type processes limit products of couplings
- ▶ $\mu \rightarrow 3e$ type processes lead to further constraints
- $\blacktriangleright \tau$ lifetime and universality constraints
- Lepton universality in W^{\pm} decays
- Theoretical constraint from avoiding charge breaking minima
- LEP direct search limits on charged scalars
- Constraints from LHC searches
- Higgs precision physics limits


LEP and LHC constraints on Charged Scalar

Diagonal NSI in Zee model

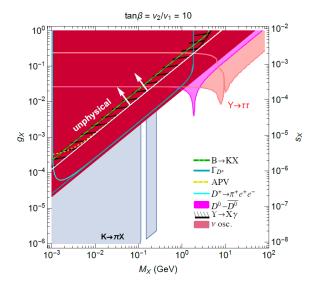



Babu, Dev, Jana, Thapa (2019)

Leptoquark models of radiative neutrino mass

- Charged lepton in Zee diagram may be replaced by quarks
- Charged scalars will then be replaced by Leptoquark scalars
- Several such models exist in literature
- More interest in context of B meson deacy anomalies

Summary of NSI in radiative models



Babu, Dev, Jana, Thapa (2019)

Nutrino Mass Models with Light Mediators

- ► If the mediator generating $(\overline{\nu}_{\alpha}\gamma_{\mu}\nu_{\beta})(\overline{f}\gamma^{\mu}f)$ interactions is light, the severe charged lepton flavor violation constraints may be evaded
- Gauging (B L) for the third family is an explicit example of this Babu, Friedland, Machado, Mocioiu (2017)
- ▶ The model has ν_R fields, a second Higgs doublet ϕ_2 and a singlet *s*, both with (B L) charge of 1/3
- ϕ_2 generates quark mixings; charged leptons remain unmixed \Rightarrow No flavor violation in charged leptons
- ▶ If mass of the new gauge boson X is of order 100 MeV, with the gauge coupling $g_X \sim 10^{-3}$ all constraints are satisfied
- This explicit model generates $\epsilon_{ au au} \sim 0.5$
- ν₃^c is light and may serve as the sterile neutrino relevant for short baseline anomalies
 Babu, Friedland, Mocioiu, Machado (to appear)

$(B - L)_3$ Model Constraints

Babu, Friedland, Machado, Mocioiu (2017)

Other Models with large NSI

Several models have been proposed to generate observable NSI

- Main challenge is to control charged lepton flavor violation and universality constraints
- Some models use cancellations among d = 6 and d = 8 operators Gavela, Hernandez, Ota, Winter (2009)
- Light mediators help with satisfing such constraints Farzan, Shoemaker (2016); Farzan (2016); Denton, Farzan, Shoemaker (2018)
- Collider signals of these models have been studied, especailly for monojet signals Friedland, Graesser, Shoemaker (2012); Elahi, Martin (2019); Babu, Goncalves, Jana, Machado (2021)

Conclusions

- EFT description alone in neutrino sector is inadequate; we may miss important phenomena such as leptogenesis
- Grand Unification provides powerful tools to interconnect neutrino sector with quark sector
- Neutrino may very well be Dirac particles; interesting models of Dirac neutrino exist
- Various d = 7 and d = 9 lepton number violating EFT operators can lead to interesting neutrino mass models
- These models may be realized near the TeV scale, with potential signals for NSI, cFLV and direct detection at colliders