The PCAC puzzle for the nucleon axial and pseudoscalar form factors

S. Collins
University of Regensburg

RQCD Collaboration

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 813942.

Interdisciplinary Developments in Neutrino Physics, KITP, March 29th, 2022.

The PCAC puzzle for the nucleon axial and pseudoscalar form factors

Motivation: events in long baseline neutrino oscillation experiments need to be reconstructed.

Monte-Carlo simulation requires knowledge of the $V-A$ non-perturbative matrix element relevant for quasi-elastic scattering. In the isospin limit:

$$
\begin{aligned}
&\left\langle\mathbf{p}\left(\mathbf{p}_{\mathbf{f}}\right)\right| \overline{\mathbf{u}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathbf{d}\left|\mathbf{n}\left(\mathbf{p}_{\mathbf{i}}\right)\right\rangle=\bar{u}_{p}\left(p_{f}\right)\left[\gamma_{\mu} \boldsymbol{F}_{1}\left(\boldsymbol{Q}^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} \boldsymbol{F}_{2}\left(\boldsymbol{Q}^{2}\right)\right. \\
&\left.+\gamma_{\mu} \gamma_{5} \boldsymbol{G}_{A}\left(Q^{2}\right)+\frac{q^{\mu}}{2 m_{N}} \gamma_{5} \tilde{\boldsymbol{G}}_{P}\left(\boldsymbol{Q}^{2}\right)\right] u_{n}\left(p_{i}\right)
\end{aligned}
$$

Virtuality $Q^{2}=-q^{2}>0$.
Dirac and Pauli form factors $F_{1,2}$ are well determined experimentally.
Axial form factor G_{A} is also needed but less well known. Induced pseudoscalar form factor \tilde{G}_{P} is not relevant (enters the cross-section with factor $\left.\left(m_{\mu} / m_{N}\right)^{2}\right)$. Lattice QCD provides a first principles calculation of $G_{A}\left(Q^{2}\right)$.

How reliable are the lattice determinations of $G_{A}\left(Q^{2}\right)$? Systematics (finite a and V, unphysical m_{q}, excited states, ...) must be under control.
Checks:
[2111.09849,FLAG]

Forward limit, lattice results for $G_{A}(0)=g_{A}$ agree with expt..

Finite Q^{2}, partially conserved axial current (PCAC) relation between G_{A}, \tilde{G}_{P} and pseudoscalar form factor $G_{P}\left(G_{5}\right)$ must be satisfied in the continuum limit. Pseudoscalar matrix element:

$$
\left\langle p\left(p_{f}\right)\right| P\left|n\left(p_{i}\right)\right\rangle=\bar{u}_{p} i \gamma_{5} G_{P}\left(Q^{2}\right) u_{n}
$$

Not relevant for tree-level Standard Model processes.

Partially conserved axial current (PCAC) relation

 Axial Ward identity for flavour isovector currents$$
\partial^{\mu} A_{\mu}=\left(m_{u}+m_{d}\right) P
$$

such as,

$$
\begin{array}{ll}
A_{\mu}=\bar{u} \gamma_{\mu} \gamma_{5} d & P=\bar{u} i \gamma_{5} d \\
A_{\mu}=\bar{u} \gamma_{\mu} \gamma_{5} u-\bar{d} \gamma_{\mu} \gamma_{5} d & P=\bar{u} i \gamma_{5} u-\bar{d} i \gamma_{5} d
\end{array}
$$

Leads to relations between correlation functions.

$$
\left\langle\partial_{\mu} A_{\mu}(x) \mathcal{O}\right\rangle=\left(m_{u}+m_{d}\right)\langle P(x) \mathcal{O}\rangle \quad\left\langle\mathcal{O}^{\prime} \partial_{\mu} A_{\mu}(x) \mathcal{O}\right\rangle=\left(m_{u}+m_{d}\right)\left\langle\mathcal{O}^{\prime} P(x) \mathcal{O}\right\rangle
$$

and matrix elements

$$
\begin{aligned}
\langle 0| \partial^{\mu} A_{\mu}\left|\pi^{-}\right\rangle & =\left(m_{u}+m_{d}\right)\langle 0| P\left|\pi^{-}\right\rangle \\
\langle p| \partial^{\mu} A_{\mu}|n\rangle & =\left(m_{u}+m_{d}\right)\langle p| P|n\rangle
\end{aligned}
$$

Spectral decomposition of correlation functions gives matrix element relations.
Satisfied on the lattice up to discretisation effects, $O\left(a^{n}\right)$.

PCAC relation

Considering the Lorentz decomposition of the pseudoscalar and axial nucleon matrix elements we have

$$
\frac{m_{\ell}}{m_{N}} G_{P}\left(Q^{2}\right)=\boldsymbol{G}_{A}\left(Q^{2}\right)-\frac{Q^{2}}{4 m_{N}^{2}} \tilde{\boldsymbol{G}}_{P}\left(Q^{2}\right)
$$

$m_{u}=m_{d}=m_{\ell}$ in the isospin limit.
Forward limit: $m_{q} G_{P}(0)=m_{q} g_{p}=m_{N} g_{A}=F_{\pi} g_{\pi N N}\left[1+O\left(m_{\pi}^{2}\right)\right]$
(Goldberger-Treiman relation)
Chiral limit: $\tilde{G}_{P}\left(Q^{2}\right)=4 m_{N}^{2} G_{A}\left(Q^{2}\right) / Q^{2}$
Pion pole dominance (LO chiral perturbation theory):

$$
\tilde{G}_{P}\left(Q^{2}\right)=G_{A}\left(Q^{2}\right) \frac{4 m_{N}^{2}}{Q^{2}+m_{\pi}^{2}}+\text { corrections }
$$

PCAC+pion pole dominance (PPD)
\rightarrow only one independent form factor but PPD is an approximation.

Induced pseudoscalar and pseudoscalar form factors

Experimental information on \tilde{G}_{P} from muon capture in muonic hydrogen, $\mu^{-}+p \rightarrow \nu_{\mu} n$.
[MuCAP, 1210.6545]: $\quad g_{P}^{*}=m_{\mu} \tilde{G}_{P}\left(0.88 m_{\mu}^{2}\right) /\left(2 m_{N}\right)=8.06 \pm 0.48 \pm 0.28$.
Expt. results consistent with pion pole dominance.
Additional indirect information on \tilde{G}_{P} from pion electroproduction:
$e^{-}+N \rightarrow \pi+N+e^{-}$,
$N=n, p, \pi=\pi^{ \pm}, \pi^{0}$.
Model dependence.
Strong dependence on Q^{2}.

Information on G_{P} : using pion pole dominance (PPD) for \tilde{G}_{P} and the PCAC relation:

$$
G_{P}\left(Q^{2}\right)=G_{A}\left(Q^{2}\right) \frac{m_{N}}{m_{\ell}} \frac{m_{\pi}^{2}}{Q^{2}+m_{\pi}^{2}}
$$

PCAC relation satisfied by the correlation functions m_{q} extracted using pion two-point correlation functions: $P=\bar{u} \gamma_{5} d$.
zero momentum : $\quad 2 m_{\ell}=\frac{\left\langle\partial_{\mu} A_{\mu}(x) \mathcal{O}\right\rangle}{\langle P(x) \mathcal{O}\rangle}=\frac{\partial_{t}\left\langle A_{4}(t) P^{\dagger}(0)\right\rangle}{\left\langle P(t) P^{\dagger}(0)\right\rangle}=\frac{\partial_{t} C_{2 p t}^{P A_{4}}(t)}{C_{2 p t}^{P P}(t)}$
Using nucleon three-point correlation functions:
finite $\vec{q}: \quad 2 m_{\ell}=\frac{\left\langle\mathcal{N}(t) \partial_{\mu} A_{\mu}(x) \overline{\mathcal{N}}(0)\right\rangle}{\langle\mathcal{N}(t) P(x) \overline{\mathcal{N}}(0)\rangle}=\frac{\partial_{\mu} C_{3 p t, \Gamma_{i}}^{\overrightarrow{0}, \vec{p}, A_{\mu}}(t, \tau)}{C_{3 p t, \Gamma_{i}}^{\overrightarrow{0}, \vec{p},}(t, \tau)}$
[1810.05569,RQCD]

Is the PCAC relation between form factors satisfied?

Performing a standard analysis to extract the matrix elements from the correlation functions and using the Lorentz decompositions to extract $G_{A}, \tilde{G}_{P}, G_{P}$.

$$
r_{P C A C}=\frac{\frac{m_{\ell}}{m_{N}} G_{P}\left(Q^{2}\right)+\frac{Q^{2}}{4 m_{N}^{2}} \tilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)}=1+O\left(a^{n}\right)
$$

Left: blue \rightarrow red $m_{\pi}=410 \rightarrow 200 \mathrm{MeV}, a=0.064 \mathrm{fm}$
Right: blue \rightarrow red $m_{\pi} \approx 280 \mathrm{MeV}, a=0.086 \rightarrow 0.049 \mathrm{fm}$
Puzzle: discrepancy, which becomes worse for smaller m_{π} and does not improve with smaller a (discretisation effects expected to larger for large Q^{2}).
[1911.13150,RQCD]

See also, e.g., [1705.06834,PNDME] and [1807.03974,PACS]

Aside: pion pole dominance not satisfied

Not expected, even in the continuum limit (it is an approximation).

$$
r_{P P D}=\frac{\left(m_{\pi}^{2}+Q^{2}\right) \tilde{G}_{P}\left(Q^{2}\right)}{4 m_{N}^{2} G_{A}\left(Q^{2}\right)}=1+\text { corrections }
$$

Violations do not decrease with decreasing m_{π}.
[1911.13150,RQCD]

\tilde{G}_{P} does not reproduce muon capture result

Standard analysis:

Curve: results for $G_{A}\left(Q^{2}\right)$ and PPD.

Extracting the form factors: excited state contributions

Spectral decomposition of the 2 pt and 3pt functions: up to 1 st excited state

$$
C_{2 p t}^{\vec{p}}(t)=Z_{\vec{p}} \bar{Z}_{\vec{p}} \frac{E_{\vec{p}}+m_{N}}{E_{\vec{p}}} e^{-E_{\vec{p}} t}\left[1+b_{1} e^{-t \Delta_{\vec{p}}}+\ldots\right]
$$

Overlap factors: $Z_{\vec{p} f} u_{N}\left(\vec{p}_{f}\right)=\langle 0| \mathcal{N}\left|N\left(\vec{p}_{f}\right)\right\rangle, b_{1} \propto Z_{\vec{p}}^{1} \bar{Z}_{\vec{p}}^{1} /\left(Z_{\vec{p}} \bar{Z}_{\vec{p}}\right)$.
Energy difference between first excited and ground state: $\Delta_{\vec{p}}=E_{\vec{p}}^{1}-E_{\vec{p}}$.

$$
\begin{aligned}
& C_{3 p t, \Gamma_{i}}^{\vec{p}_{f}, \vec{p}_{i}, J}(t, \tau)=\frac{Z_{\vec{p}_{f}} \bar{Z}_{\vec{p}_{i}}}{2 E_{\vec{p}_{f}} 2 E_{\vec{p}_{i}}} e^{-E_{\vec{p}_{f}}(t-\tau)} e^{-E_{\vec{p}_{i}} \tau} B_{\Gamma_{i}, J}^{\vec{p}_{f}, \vec{p}_{i}} \\
& \quad \cdot\left[1+c_{10} e^{-(t-\tau) \Delta_{\vec{p}_{f}}}+c_{01} e^{-\tau \Delta_{\vec{p}_{i}}}+c_{11} e^{-(t-\tau) \Delta_{\vec{p}_{f}}} e^{-\tau \Delta_{\vec{p}_{i}}} \ldots\right]
\end{aligned}
$$

where $\boldsymbol{B}_{\Gamma_{i}, J}^{\vec{p}_{f}, \vec{p}_{i}} \propto\langle\boldsymbol{N}| \boldsymbol{J}|\boldsymbol{N}\rangle, c_{10} \propto\left\langle N_{1}\right| J|N\rangle, c_{01} \propto\langle\boldsymbol{N}| J\left|N_{1}\right\rangle, c_{11} \propto\left\langle N_{1}\right| J\left|N_{1}\right\rangle$.

Extracting the form factors: $\underset{\substack{\text { excited } \\ 0}}{\text { state }}$ contributions

Normally, $\vec{p}_{f}=\overrightarrow{0}, \vec{q}=-\vec{p}_{i}$
Source-sink separation t fixed, current insertion τ varied. Computational expense increases with number of different t.

Ground state dominance through large t, τ alone is difficult to achieve due to the noise to signal ratio growing exponentially. Alternative: improve overlap of interpolator with ground state (Z).

Consider ratio: in the limit of ground state dominance, dependence on time and overlap factors removed.

$$
R_{\Gamma_{i}, J}^{\vec{p}_{f}, \vec{p}_{i}}(t, \tau)=\frac{C_{3 p+,, r_{i}}^{\vec{p}_{f}, \vec{p}_{i}, J}(t, \tau)}{C_{2 p t}^{\vec{p}_{p}}(t)} \sqrt{\frac{C_{2 p t}^{\vec{p}_{f}}(\tau) C_{2 p t}^{\vec{p}_{f}}(t) C_{2 p t}^{\vec{p}_{p}}(t-\tau)}{C_{2 p t}^{\vec{p}_{i}}(\tau) C_{2 p t}^{\vec{p}_{i}}(t) C_{2 p t}^{\vec{p}_{f}}(t-\tau)}} .
$$

Different polarisation Γ_{i}, current $J=A_{\mu}, P \rightarrow$ an over-determined system of equations involving G_{A}, \tilde{G}_{P} and G_{P}.

Large excited state contributions seen in some channels

[1911.13150,RQCD] Set-up: fixed $t=0.70-1.22 \mathrm{fm}$.
Ground state dominance: R independent of t and τ.

3pt function depends on the nucleon polarisation Γ_{i}, current A_{μ}, P and \vec{q}.
(a) $R_{A_{i} \| \Gamma_{i} \perp \vec{q}} \propto G_{A}\left(Q^{2}\right)$
(b) $R_{A_{i}\left\|\Gamma_{i}\right\| \vec{q}} \propto\left(m_{N}+E_{\vec{q}}\right) G_{A}\left(Q^{2}\right)-\frac{q_{i}^{2}}{2 m_{N}} \tilde{G}_{P}\left(Q^{2}\right)$
(c) $R_{A_{4}, \Gamma_{i} \| \vec{q}} \propto G_{A}\left(Q^{2}\right)+\frac{\left(m_{N}-E_{\vec{q}}\right)}{2 m_{N}} \tilde{G}_{P}\left(Q^{2}\right)$
(d) $R_{P, \Gamma_{i} \| \vec{q}} \propto G_{P}\left(Q^{2}\right)$

Extraction of the axial form factor

Well-known problem: previously, not all data (not all combinations of A_{μ}, Γ_{i} and \vec{q}) included in the analysis: e.g. extract axial form factor from (a) $R_{A_{i} \| \Gamma_{i} \perp \vec{q}} \propto G_{A}\left(Q^{2}\right)$.

Approach taken by [2111.06333,CalLat 21],
Omit A_{4} component: [2112.00127,Mainz 21], [1705.06186,CLS 17], [1811.07292,PACS 18]
Different approach taken by [2103.05599,NME 21], [1911.13150,RQCD 20], [2011.13342,ETMC 20].

Excited states

Spectrum of excited states can contain resonances and multi-particle states.
Latter will be lowest states for ensembles with pion masses close to $m_{\pi}^{\text {phys }}$ and $L m_{\pi} \gtrsim 4$.

Sink: $\vec{p}_{f}=\overrightarrow{0}$, parity is a good QN, $N(\vec{p}) \pi(-\vec{p}), N(\overrightarrow{0}) \pi(\overrightarrow{0}) \pi(\overrightarrow{0})$ and $N \pi \pi \pi$ etc + momentum combinations.

Source: $\vec{p} \neq 0$, parity not a good $\mathrm{QN}, N(\vec{p}) \pi(\overrightarrow{0}), N(\overrightarrow{0}) \pi(\vec{p}), \ldots$
[1812.10574,Green] Total momentum zero, non-interacting levels.

Left: $m_{\pi}=m_{\pi}^{\text {phys }}$, right: $L m_{\pi}=4$.
Dense spectrum of states at $m_{\pi}^{\text {phys }}$ and large L (small $\left.\vec{p}\right)$.

Difficult to resolve the excited state spectrum

Standard approach: determine $\Delta_{\vec{p}}$ from $C_{2 p t}$ (statistically more precise than $C_{3 p t}$).

Overlap $Z_{\vec{p}_{f}}^{1} u_{\pi N}\left(\vec{p}_{f}\right)=\langle 0| \mathcal{N}\left|N \pi\left(\vec{p}_{f}\right)\right\rangle$ of single particle interpolator \mathcal{N} with multiparticle $N \pi$ states is small.

$$
C_{2 p t}^{\vec{p}}(t)=Z_{\vec{p}} \overline{\bar{Z}}_{\vec{p}} \frac{E_{\vec{p}}+m_{N}}{E_{\vec{p}}} e^{-E_{\vec{p}} t}\left[1+b_{1} e^{-t \Delta_{\vec{p}}}+\ldots\right]
$$

$b_{1} \propto Z_{\vec{p}}^{1} \bar{Z}_{\vec{p}}^{1} /\left(Z_{\vec{p}} \bar{Z}_{\vec{p}}\right)$. Not easy to resolve these contributions when fitting to $C_{2 p t}$. However, contributions may be large in $C_{3 p t}$, even if Z-factors are small.
[1911.13150,RQCD]
Three-point function:
$\vec{p}_{f}=0, \vec{q}=-\vec{p}_{i}$
First excitation consistent with:
Sink: $N(-\vec{p}) \pi(\vec{p})$
Source: $N(0) \pi\left(\vec{p}_{i}\right)$, not lowest level

$$
\vec{p}=\vec{n} \frac{2 \pi}{L}
$$

Guidance from leading order ChPT

$N \pi$ contributions to two- and three-point correlation functions can be computed within ChPT.

Tree-level diagrams:

Top diagram:

$$
\begin{aligned}
& \sim G_{A} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathcal{O}=A_{\mu} \\
& \text { for } \mathcal{O}=P
\end{aligned}
$$

Bottom middle diagram

$$
\begin{aligned}
& \sim \tilde{G}_{P}+\text { excited states } \\
& \sim G_{P}+\text { excited states }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathcal{O}=A_{\mu} \\
& \text { for } \mathcal{O}=P
\end{aligned}
$$

Other diagrams: only contribute to the excited states.

Guidance from LO ChPT

Tree-level diagrams with $\vec{p}_{f}=\overrightarrow{\mathbf{0}}, \overrightarrow{\boldsymbol{q}}=-\vec{p}_{i}$ set-up. First excited state contributions from transitions

$$
N(-\vec{q}) \rightarrow N(-\vec{q}) \pi(\vec{q}) \text { and } N(\overrightarrow{0}) \pi(-\vec{q}) \rightarrow N(\overrightarrow{0})
$$

Only contribute when polarisation Γ is $\|$ to \vec{q}. No contribution for $\vec{q}=\overrightarrow{0}$.
[1911.13150,RQCD]
(a)

(b)
$A_{i}\left\|\Gamma_{i}\right\| \vec{q}$

(c)
$A_{4}, \Gamma_{i} \| \vec{q}$

(d)

Only \tilde{G}_{P} and G_{P} affected.
(a) $R_{A_{i} \| \Gamma_{i} \perp \vec{q}} \propto G_{A}\left(Q^{2}\right)$
(b) $R_{A_{i}\left\|\Gamma_{i}\right\| \vec{q}} \propto\left(m_{N}+E_{\bar{q}}\right) G_{A}\left(Q^{2}\right)-\frac{q_{i}^{2}}{2 m_{N}} \tilde{G}_{P}\left(Q^{2}\right)$
(c) $R_{A_{4}, \Gamma_{i} \| \vec{q}} \propto G_{A}\left(Q^{2}\right)+\frac{\left(m_{N}-E_{\vec{q}}\right)}{2 m_{N}} \tilde{G}_{P}\left(Q^{2}\right)$
(d) $R_{P, \Gamma_{i} \| \vec{q}} \propto G_{P}\left(Q^{2}\right)$

Guidance from ChPT

[Bär,1907.03284]: Tree-level diagrams account for the magnitude of excited state contamination observed.
$R_{A_{4}, \Gamma_{i} \| \vec{q}}$ vs $\tau / a-t_{f} /(2 a)$
$t_{f} \rightarrow \infty R_{A_{4}, \Gamma_{i} \| \vec{q}} \rightarrow$ const..
Data: [RQCD,1810.05569]:
$m_{\pi} \sim 150 \mathrm{MeV}, a=0.07 \mathrm{fm}$,
$t_{f}=1.06 \mathrm{fm}, \vec{p}_{f}=\overrightarrow{0},|\vec{q}|=$ $2 \pi /(64 a)$

$$
C_{3 p t}^{\overrightarrow{0}, \vec{p}_{i}, A_{4}}(t, \tau)=C_{3 p t, N}^{\overrightarrow{0}, \vec{p}_{i}, A_{4}}(t, \tau)+C_{3 p t, N \pi}^{\overrightarrow{0}, \vec{p}_{i}, A_{4}}(t, \tau)=\mathcal{O}\left(\frac{m_{\pi}}{m_{N}}\right)+\mathcal{O}(1)
$$

Considering also $C_{3 p t}$ for P : accounts for $r_{P C A C} \neq 1+O\left(a^{n}\right)$, bigger effect for smaller Q^{2} and m_{π}.
Beyond tree level a whole tower of $N \pi$ states contributes: [Bär,1906.03652,1812.09191]: $N \pi$ contributions to $C_{2 p t}$ and $C_{3 p t}^{J}$ for $J=A_{\mu}, P$ computed in leading one-loop order of $\mathrm{SU}(2)$ covariant ChPT.
Loop contributions to $G_{A}\left(\tilde{G}_{P}\right.$ and $\left.G_{P}\right)$.

Guidance from ChPT

[Bär,1907.03284] suggests to correct the lattice data using the ChPT expectation. Limitations of applicability of ChPT:
$\star m_{\pi} \ll \Lambda_{\chi}$ and $Q^{2}<m_{\pi}^{2}$.
\star Spatial extent of nucleon operator $\left\langle r^{2}\right\rangle^{1 / 2} \ll 1 / m_{\pi}$.
\star Source-sink separations need to be large, $t \gg 1 / m_{\pi}(\sim 2 \mathrm{fm}$, larger than presently achievable).

* ...

Aside: low order ChPT does not reproduce the excited state contamination seen in lattice results for $G_{A}(0)=g_{A}($ for smaller $t)$.

New approaches to the analysis needed
\star Contributions of excited states to $C_{3 p t}$ can be much larger than in $C_{2 p t}$.
However,
$\star R_{A_{i} \| \Gamma_{i} \perp \vec{q}} \propto G_{A}\left(Q^{2}\right)$ only moderately affected.

New treatment of excited states: RQCD

Simultaneous fits to 3 pt functions for A_{μ} and P currents (yellow bands for $\left.R_{(a),(b),(c),(d)}\right)$: contributions included from
\star ground state
$\star N \pi+$ some constraints from LO ChPT

* 2nd excited state
$r_{P C A C}=\frac{\frac{m_{\ell}}{m_{N}} G_{P}\left(Q^{2}\right)+\frac{Q^{2}}{4 m_{N}^{2}} \tilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)}=1+O\left(a^{n}\right) \quad r_{P P D} \quad=\frac{\left(m_{\pi}^{2}+Q^{2}\right) \tilde{G}_{P}\left(Q^{2}\right)}{4 m_{N}^{2} G_{A}\left(Q^{2}\right)}=1+$ corr.
[1911.13150,RQCD]

New treatment of excited states: PNDME

\star Fix first excited state energies from A_{4} component of $C_{3 p t}$.
\star Used in a two-state analysis of $C_{3 p t}$ for A_{i} and P.
[1905.06470, Jang et al.]

See also [2103.05599,NME]: violations of PCAC relation for standard approach not consistent with lattice spacing effects. Other fit strategies considered.

Test of PCAC relation: ETMC

[2112.06750,ETMC] and talk of C. Alexandrou at "KITP Program: Neutrinos as a Portal to New Physics and Astrophysics"
 $N_{f}=2+1+1, m_{\pi} \sim m_{\pi}^{\text {phys }}, a=0.08 \mathrm{fm}$. First excited state in $C_{2 p t}$ and $C_{3 p t}$ allowed to be different.

First excited state in $C_{3 p t}$ set from A_{4} current 3pt function.

Violations of r r ${ }_{P A C}$ still observed, which decrease as $a \rightarrow 0$.

RQCD axial form factor results on CLS ensembles

Coordinated Lattice Simulations (CLS): Berlin, CERN, Mainz, UA Madrid, Milano Bicocca, Münster, Odense, Regensburg, Rome I and II, Wuppertal, DESY-Zeuthen.
\star High statistics
Aim to control all main sources of systematics (a, m_{q} and V).
\star Discretisation: Five lattice spacings: $a=0.1-0.04 \mathrm{fm}$.
\star Finite volume: $L m_{\pi} \gtrsim 4$.
\star Quark mass: $m_{\pi}=410 \mathrm{MeV}$ down to $m_{\pi}^{\text {phys }}$.

CLS ensembles: m_{π} vs a^{2}

$2 m_{\ell}+m_{s}=$ const.

$m_{s}=$ const.

$$
m_{\ell}=m_{s}
$$

CLS ensembles: $m_{\ell-} m_{s}$ plane

Baryon mass spectrum

Preliminary: interpolation in quark mass, finite a and V extrapolation. Octet masses: combined fit using SU(3) EOMS NNLO BChPT. Decuplet masses: combined fit of octet and decuplet masses using SU(3) EOMS NNLO BChPT and including the small scale expansion.

"Expt": corrected for isospin breaking and electromagnetic effects.

Dispersion relation

Assumed for the ground state energies in the analysis.
For range of \vec{p}^{2} of interest, discretisation effects are not significant.
$a=0.039 \mathrm{fm}$

Physical point extrapolation

Simultaneous fit to Q^{2}, m_{q}, a and V dependence.
Q^{2} parameterisation: dipole forms

$$
\begin{aligned}
& G_{A}\left(Q^{2}\right)=\frac{g_{A}}{\left(1+Q^{2} / M_{A}^{2}\right)^{2}} \quad \tilde{G}_{P}\left(Q^{2}\right)=\frac{1}{Q^{2}+m_{\pi}^{2}}\left[\frac{\tilde{g}_{p}^{\prime}}{\left(1+Q^{2} / M_{\tilde{P}^{2}}\right)^{2}}\right] \\
& m_{q} G_{P}\left(Q^{2}\right)=\frac{1}{Q^{2}+m_{\pi}^{2}}\left[\frac{g_{p}^{\prime}}{\left(1+Q^{2} / M_{P^{2}}\right)^{2}}\right]
\end{aligned}
$$

Also: $z-$ expansion (with PPD prefactors): $X\left(Q^{2}\right)=\sum_{n=0}^{N} a_{n}^{X} z\left(Q^{2}\right)$,
$z=\frac{\sqrt{t_{\text {cut }}+Q^{2}}-\sqrt{t_{\text {cut }}-t_{0}}}{\sqrt{t_{\text {cut }}}+Q^{2}}+\sqrt{t_{\text {cut }}-t_{0}}, t_{0}=-t_{\text {cut }}^{\text {phys }}=-9 m_{\pi}^{2, \text { phys }}$.
Using $m_{q} G_{P}$ means all form factors are renormalised with Z_{A}.
Each of the 2-4 fit parameters (for each of the form factors) have

* mass effects, quadratic in the pseudoscalar masses,
\star finite volume effects $\propto m_{P}^{2} e^{-m_{P} L} / \sqrt{m_{P} L}$
\star lattice spacing effects $\propto a^{2}, \propto a^{2}\left(2 m_{K}^{2}+m_{\pi}^{2}\right)$ and $a^{2}\left(m_{K}^{2}-m_{\pi}^{2}\right)$.
The ansätze for the mass and volume dependence are inspired by ChPT but phenomenological since ChPT does not apply to $Q^{2} \gg m_{\pi}^{2}$. Systematics explored by different excited state fits, cuts on the quark masses and the lattice spacing.

Results: physical point, continuum limit

[1911.13150,RQCD]

Agreement with expt. for $G_{A}(0)$ and $m_{\mu} \tilde{G}_{P}\left(0.88 m_{\mu}^{2}\right) /\left(2 m_{N}\right)=g_{P}^{*}$ (muon capture point).
G_{A} : Dipole and z-expansion fits agree well in range $Q^{2} \sim 0.2-1.0 \mathrm{GeV}^{2}$.
Slopes in forward limit differ \rightarrow axial radius. Reflects lack of data, $\boldsymbol{q}_{\min }=2 \pi / L$. However, not relevant for Q^{2} range of interest.

Results: PCAC and PPD relations

Right: PCAC relation is imposed in the fit.
Violations of the pion pole dominance (PPD) relation are rather small.

Summary and outlook

* Lattice QCD provides the most reliable determination of G_{A}.
* Many new lattice studies of the axial form factor, with a focus on increasing precision and controlling all the main systematics.
* Constraints, such as the PCAC relation on the form factors, provide an important check on the results.
* The PCAC "puzzle" (the very large violations of the relation seen with traditional analysis techniques) is largely resolved: due to very significant excited state contamination of the three-point functions from $N \pi$ states.
* LO ChPT (and data) indicate \tilde{G}_{p} and G_{p} are mostly affected, while excited state contamination in the extraction of G_{A} is "moderate".
\star Size of the excited state contamination when extracting G_{A} depends on details of the analysis (choice of nucleon interpolator \mathcal{N}, source-sink separations for $C_{3 p t}, m_{\pi}, L, \ldots$). Still needs to be considered carefully, for precision results. This is being done in current studies, c.f. agreement between those reviewed in [2201.01839,Meyer et al.].
* New analysis approaches lead to PCAC relation being satisifed in the continuum limit. Lattice results now reproduce the expt. value for g_{P}^{*}. Pion pole dominance in \tilde{G}_{P} is also found to hold on a few percent level.

