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The PCAC puzzle for the nucleon axial and pseudoscalar
form factors
Motivation: events in long baseline neutrino oscillation experiments need to be
reconstructed.
Monte-Carlo simulation requires knowledge of the V − A non-perturbative
matrix element relevant for quasi-elastic scattering. In the isospin limit:

〈p(pf)|ūγµ(1− γ5)d|n(pi)〉 = up(pf )
[
γµF1(Q2) + iσµνqν

2mN
F2(Q2)

+ γµγ5GA(Q2) + qµ

2mN
γ5G̃P(Q2)

]
un(pi )

Virtuality Q2 = −q2 > 0.

Dirac and Pauli form factors F1,2 are well determined experimentally.

Axial form factor GA is also needed but less well known. Induced pseudoscalar
form factor G̃P is not relevant (enters the cross-section with factor (mµ/mN)2).

Lattice QCD provides a first principles calculation of GA(Q2).



How reliable are the lattice determinations of GA(Q2)? Systematics (finite a and
V , unphysical mq, excited states, . . .) must be under control.

Checks:

Forward limit, lattice results for
GA(0) = gA agree with expt..

[2111.09849,FLAG]
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Finite Q2, partially conserved axial current (PCAC) relation between GA, G̃P
and pseudoscalar form factor GP (G5) must be satisfied in the continuum limit.

Pseudoscalar matrix element:

〈p(pf )|P|n(pi )〉 = up iγ5GP(Q2)un

Not relevant for tree-level Standard Model processes.



Partially conserved axial current (PCAC) relation
Axial Ward identity for flavour isovector currents

∂µAµ = (mu + md )P

such as,

Aµ = uγµγ5d P =uiγ5d
Aµ = uγµγ5u − dγµγ5d P =uiγ5u − diγ5d

Leads to relations between correlation functions.

〈∂µAµ(x)O〉 = (mu + md )〈P(x)O〉 〈O′∂µAµ(x)O〉 = (mu + md )〈O′P(x)O〉

and matrix elements

〈0|∂µAµ|π−〉 = (mu + md )〈0|P|π−〉
〈p|∂µAµ|n〉 = (mu + md )〈p|P|n〉

Spectral decomposition of correlation functions gives matrix element relations.

Satisfied on the lattice up to discretisation effects, O(an).



PCAC relation
Considering the Lorentz decomposition of the pseudoscalar and axial nucleon
matrix elements we have

m`

mN
GP(Q2) = GA(Q2)− Q2

4m2
N

G̃P(Q2)

mu = md = m` in the isospin limit.

Forward limit: mqGP(0) = mqgp = mNgA = FπgπNN
[
1 + O(m2

π)
]

(Goldberger-Treiman relation)

Chiral limit: G̃P(Q2) = 4m2
NGA(Q2)/Q2

Pion pole dominance (LO chiral perturbation theory):

G̃P(Q2) = GA(Q2) 4m2
N

Q2 + m2
π

+ corrections

PCAC+pion pole dominance (PPD)
→ only one independent form factor but PPD is an approximation.



Induced pseudoscalar and pseudoscalar form factors
Experimental information on G̃P from muon capture in muonic hydrogen,
µ− + p → νµn.

[MuCAP, 1210.6545] : g∗P = mµG̃P(0.88m2
µ)/(2mN) = 8.06± 0.48± 0.28.

Expt. results consistent with pion pole dominance.

Additional indirect information on
G̃P from pion electroproduction:
e− + N → π + N + e−,
N = n, p, π = π±, π0.

Model dependence.

Strong dependence on Q2.

[hep-ph/0107088,Bernard et al.]
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Information on GP : using pion pole dominance (PPD) for G̃P and the PCAC
relation:

GP(Q2) = GA(Q2)mN
m`

m2
π

Q2 + m2
π



PCAC relation satisfied by the correlation functions
mq extracted using pion two-point correlation functions: P = uγ5d .

zero momentum : 2m` = 〈∂µAµ(x)O〉
〈P(x)O〉 = ∂t〈A4(t)P†(0)〉

〈P(t)P†(0)〉 =
∂tCPA4

2pt (t)
CPP
2pt (t)

Using nucleon three-point correlation functions:

finite ~q : 2m` = 〈N (t)∂µAµ(x)N (0)〉
〈N (t)P(x)N (0)〉

=
∂µC

~0,~p,Aµ
3pt,Γi

(t, τ)

C~0,~p,P3pt,Γi
(t, τ)

[1810.05569,RQCD]
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Is the PCAC relation between form factors satisfied?
Performing a standard analysis to extract the matrix elements from the correlation
functions and using the Lorentz decompositions to extract GA, G̃P , GP .

rPCAC =
m`
mN

GP(Q2) + Q2

4m2
N

G̃P(Q2)
GA(Q2) = 1 + O(an)

Left: blue → red mπ = 410→ 200 MeV, a = 0.064 fm
Right: blue → red mπ ≈ 280 MeV, a = 0.086→ 0.049 fm
Puzzle: discrepancy, which becomes worse for smaller mπ and does not improve
with smaller a (discretisation effects expected to larger for large Q2).

[1911.13150,RQCD]
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See also, e.g., [1705.06834,PNDME] and [1807.03974,PACS]



Aside: pion pole dominance not satisfied
Not expected, even in the continuum limit (it is an approximation).

rPPD = (m2
π + Q2)G̃P(Q2)
4m2

NGA(Q2) = 1 + corrections

Violations do not decrease with decreasing mπ.

[1911.13150,RQCD]
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G̃P does not reproduce muon capture result

Standard analysis:

[1811.07292,PACS 18]
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Curve: results for GA(Q2) and PPD.



Extracting the form factors: excited state contributions
0τt

Spectral decomposition of the 2pt and 3pt functions: up to 1st excited state

C~p2pt(t) = Z~pZ~p
E~p + mN

E~p
e−E~pt [1 + b1e−t∆~p + . . .

]
Overlap factors: Z~pf uN(~pf ) = 〈0|N |N(~pf )〉, b1 ∝ Z1

~p Z1
~p/(Z~pZ~p).

Energy difference between first excited and ground state: ∆~p = E 1
~p − E~p.

C~pf ,~pi ,J
3pt,Γi

(t, τ) = Z~pf Z~pi

2E~pf 2E~pi

e−E~pf (t−τ)e−E~pi τB~pf ,~pi
Γi ,J

·
[
1 + c10e−(t−τ)∆~pf + c01e−τ∆~pi + c11e−(t−τ)∆~pf e−τ∆~pi . . .

]
where B~pf ,~pi

Γi ,J ∝ 〈N|J|N〉, c10 ∝ 〈N1|J |N〉, c01 ∝ 〈N|J |N1〉, c11 ∝ 〈N1|J |N1〉.



Extracting the form factors: excited state contributions
0τt

Normally, ~pf = ~0, ~q = −~pi

Source-sink separation t fixed, current insertion τ varied. Computational
expense increases with number of different t.

Ground state dominance through large t, τ alone is difficult to achieve due to
the noise to signal ratio growing exponentially. Alternative: improve overlap of
interpolator with ground state (Z).

Consider ratio: in the limit of ground state dominance, dependence on time and
overlap factors removed.

R~pf ,~pi
Γi ,J (t, τ ) =

C~pf ,~pi ,J
3pt,Γi

(t, τ)
C~pf
2pt(t)

√√√√C~pf
2pt(τ)C~pf

2pt(t)C~pi
2pt(t − τ)

C~pi
2pt(τ)C~pi

2pt(t)C~pf
2pt(t − τ)

.

Different polarisation Γi , current J = Aµ,P → an over-determined system of
equations involving GA, G̃P and GP .



Large excited state contributions seen in some channels

[1911.13150,RQCD] Set-up: fixed t = 0.70− 1.22 fm.
Ground state dominance: R independent of t and τ .
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3pt function depends on the nucleon polarisation Γi , current Aµ,P and ~q.

(a) RAi‖Γi⊥~q ∝ GA(Q2) (b) RAi‖Γi‖~q ∝ (mN + E~q)GA(Q2)−
q2

i
2mN

G̃P (Q2)

(c) RA4,Γi‖~q ∝ GA(Q2) +
(mN − E~q)

2mN
G̃P (Q2) (d) RP,Γi‖~q ∝ GP (Q2)



Extraction of the axial form factor
Well-known problem: previously, not all data (not all combinations of Aµ, Γi and ~q)
included in the analysis: e.g. extract axial form factor from (a) RAi‖Γi⊥~q ∝ GA(Q2).

[2201.01839,Meyer et al.]
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Approach taken by [2111.06333,CalLat 21],
Omit A4 component: [2112.00127,Mainz 21], [1705.06186,CLS 17],
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Different approach taken by [2103.05599,NME 21], [1911.13150,RQCD 20],
[2011.13342,ETMC 20].



Excited states
Spectrum of excited states can contain resonances and multi-particle states.
Latter will be lowest states for ensembles with pion masses close to mphys

π and
Lmπ & 4.

Sink: ~pf = ~0, parity is a good QN, N(~p)π(−~p), N(~0)π(~0)π(~0) and Nπππ etc +
momentum combinations.

Source: ~p 6= 0, parity not a good QN, N(~p)π(~0), N(~0)π(~p), . . ..

[1812.10574,Green] Total momentum zero, non-interacting levels.
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Difficult to resolve the excited state spectrum
Standard approach: determine ∆~p from C2pt (statistically more precise than
C3pt).

Overlap Z1
~pf

uπN(~pf ) = 〈0|N |Nπ(~pf )〉 of single particle interpolator N with
multiparticle Nπ states is small.

C~p2pt(t) = Z~pZ~p
E~p + mN

E~p
e−E~p t [1 + b1e−t∆~p + . . .

]
b1 ∝ Z1

~p Z1
~p/(Z~pZ~p). Not easy to resolve these contributions when fitting

to C2pt . However, contributions may be large in C3pt , even if Z -factors
are small.
Three-point function:
~pf = 0, ~q = −~pi

First excitation consis-
tent with:
Sink: N(−~p)π(~p)
Source: N(0)π(~pi ), not
lowest level

~p = ~n 2π
L

[1911.13150,RQCD]
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Guidance from leading order ChPT
Nπ contributions to two- and three-point correlation functions can be computed
within ChPT.

Tree-level diagrams:
O

O O O

Top diagram:

∼ GA for O = Aµ
=0 for O = P

Bottom middle diagram

∼ G̃P+excited states for O = Aµ
∼ GP+excited states for O = P

Other diagrams: only contribute to the excited states.



Guidance from LO ChPT
Tree-level diagrams with ~pf = ~0, ~q = −~pi set-up. First excited state
contributions from transitions

N(−~q)→ N(−~q)π(~q) and N(~0)π(−~q)→ N(~0)

Only contribute when polarisation Γ is ‖ to ~q. No contribution for ~q = ~0.

[1911.13150,RQCD] (a) (b) (c) (d)
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Guidance from ChPT
[Bär,1907.03284]: Tree-level diagrams account for the magnitude of excited
state contamination observed.

RA4,Γi‖~q vs τ/a − tf /(2a)

tf →∞ RA4,Γi‖~q → const..
Data: [RQCD,1810.05569]:
mπ ∼ 150 MeV, a = 0.07 fm,
tf = 1.06 fm, ~pf = ~0, |~q| =
2π/(64a)

Nπ contamination

-��� -��� ��� ��� ���
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t ⇡ 1.06 fm

M⇡ ⇡ 150 MeV

|~q| =
2⇡

L

M⇡L ⇡ 3.47

Bali et. al.,  
arXiv:1810.05569

 from

ChPT ( no fit ! )

‣ ChPT reproduces the almost linear time dependence

‣  Very good agreement for all times !  
Expected: Reproduce the slope in the middle of the plot (if at all…)

ChPT works much better than expected.  Why ???

C~0,~pi ,A4
3pt (t, τ) = C~0,~pi ,A4

3pt,N (t, τ) + C~0,~pi ,A4
3pt,Nπ(t, τ) = O

(
mπ

mN

)
+O (1)

Considering also C3pt for P: accounts for rPCAC 6= 1 + O(an), bigger effect for
smaller Q2 and mπ.
Beyond tree level a whole tower of Nπ states contributes:
[Bär,1906.03652,1812.09191]: Nπ contributions to C2pt and C J

3pt for J = Aµ, P
computed in leading one-loop order of SU(2) covariant ChPT.

Loop contributions to GA (G̃P and GP).



Guidance from ChPT

[Bär,1907.03284] suggests to correct the lattice data using the ChPT expectation.

Limitations of applicability of ChPT:
? mπ � Λχ and Q2 < m2

π.
? Spatial extent of nucleon operator 〈r2〉1/2 � 1/mπ.
? Source-sink separations need to be large, t � 1/mπ (∼ 2 fm, larger than

presently achievable).
? . . .

Aside: low order ChPT does not reproduce the excited state contamination seen
in lattice results for GA(0) = gA (for smaller t).

New approaches to the analysis needed
? Contributions of excited states to C3pt can be much larger than in C2pt .

However,
? RAi‖Γi⊥~q ∝ GA(Q2) only moderately affected.



New treatment of excited states: RQCD
Simultaneous fits to 3pt functions for Aµ and P currents (yellow bands for
R(a),(b),(c),(d)): contributions included from
? ground state
? Nπ + some constraints from LO ChPT
? 2nd excited state

rPCAC =

m`
mN

GP (Q2) + Q2

4m2
N

G̃P (Q2)

GA(Q2)
= 1 + O(an) rPPD =

(m2
π + Q2)G̃P (Q2)
4m2

NGA(Q2)
= 1 + corr.
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New treatment of excited states: PNDME

? Fix first excited state energies from A4 component of C3pt .
? Used in a two-state analysis of C3pt for Ai and P.

[1905.06470,Jang et al.] mπ ∼ mphys
π , a = 0.09 fm.
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See also [2103.05599,NME]: violations of PCAC relation for standard approach
not consistent with lattice spacing effects. Other fit strategies considered.



Test of PCAC relation: ETMC
[2112.06750,ETMC] and talk of C. Alexandrou at “KITP Program: Neutrinos as a Portal to
New Physics and Astrophysics”

We allow the first excited state to be different in the two- and three-point functions, O. Baer, 
Phys. Rev. D 99, 054506 (2019). 

✴Extract first excited state from the zero component of the axial-vector current 

Analysis of  excited states

11

	Yong-Chull Jang et al., Phys.Rev.Lett. 124 (2020) 7, 072002, 1905.06470 


Nf = 2 + 1 + 1, mπ ∼ mphys
π , a = 0.08 fm.

First excited state in C2pt and C3pt allowed
to be different.

First excited state in C3pt set from A4 cur-
rent 3pt function.

Violations of rPCAC still observed, which de-
crease as a→ 0.

Both PCAC and PPD are recovered but 
ONLY in the continuum limit

PCAC and pion pole dominance (PPD) at the continuum limit
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RQCD axial form factor results on CLS ensembles

Coordinated Lattice Simulations (CLS): Berlin, CERN, Mainz, UA Madrid,
Milano Bicocca, Münster, Odense, Regensburg, Rome I and II, Wuppertal,
DESY-Zeuthen.

? High statistics

Aim to control all main sources of systematics (a, mq and V ).

? Discretisation: Five lattice spacings: a = 0.1− 0.04 fm.

? Finite volume: Lmπ & 4.

? Quark mass: mπ = 410 MeV down to mphys
π .



CLS ensembles: mπ vs a2
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CLS ensembles: m`-ms plane
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Baryon mass spectrum
Preliminary: interpolation in quark mass, finite a and V extrapolation.
Octet masses: combined fit using SU(3) EOMS NNLO BChPT. Decuplet masses: combined
fit of octet and decuplet masses using SU(3) EOMS NNLO BChPT and including the small
scale expansion.
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“Expt”: corrected for isospin breaking and electromagnetic effects.



Dispersion relation
Assumed for the ground state energies in the analysis.

For range of ~p2 of interest, discretisation effects are not significant.

[1911.13150,RQCD]
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Physical point extrapolation
Simultaneous fit to Q2, mq, a and V dependence.

Q2 parameterisation: dipole forms

GA(Q2) =
gA

(1 + Q2/M2
A)2

G̃P (Q2) =
1

Q2 + m2
π

[
g̃ ′p

(1 + Q2/MP̃2 )2

]
mqGP (Q2) =

1
Q2 + m2

π

[
g ′p

(1 + Q2/MP2 )2

]
Also: z−expansion (with PPD prefactors): X (Q2) =

∑N
n=0 aX

n z(Q2),

z =
√

tcut +Q2−
√

tcut−t0√
tcut +Q2+

√
tcut−t0

, t0 = −tphys
cut = −9m2,phys

π .
Using mqGP means all form factors are renormalised with ZA.
Each of the 2-4 fit parameters (for each of the form factors) have
? mass effects, quadratic in the pseudoscalar masses,
? finite volume effects ∝ m2

Pe−mP L/
√

mPL
? lattice spacing effects ∝ a2, ∝ a2(2m2

K + m2
π) and a2(m2

K −m2
π).

The ansätze for the mass and volume dependence are inspired by ChPT but
phenomenological since ChPT does not apply to Q2 � m2

π. Systematics
explored by different excited state fits, cuts on the quark masses and the lattice
spacing.



Results: physical point, continuum limit

[1911.13150,RQCD]

Agreement with expt. for GA(0) and mµG̃P(0.88m2
µ)/(2mN) = g∗P (muon

capture point).

GA: Dipole and z-expansion fits agree well in range Q2 ∼ 0.2− 1.0 GeV2.

Slopes in forward limit differ → axial radius. Reflects lack of data, qmin = 2π/L.
However, not relevant for Q2 range of interest.



Results: PCAC and PPD relations
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Right: PCAC relation is imposed in the fit.

Violations of the pion pole dominance (PPD) relation are rather small.



Summary and outlook
? Lattice QCD provides the most reliable determination of GA.
? Many new lattice studies of the axial form factor, with a focus on

increasing precision and controlling all the main systematics.
? Constraints, such as the PCAC relation on the form factors, provide an

important check on the results.
? The PCAC “puzzle” (the very large violations of the relation seen with

traditional analysis techniques) is largely resolved: due to very significant
excited state contamination of the three-point functions from Nπ states.

? LO ChPT (and data) indicate G̃P and GP are mostly affected, while excited
state contamination in the extraction of GA is “moderate”.

? Size of the excited state contamination when extracting GA depends on
details of the analysis (choice of nucleon interpolator N , source-sink
separations for C3pt , mπ, L, . . .). Still needs to be considered carefully, for
precision results. This is being done in current studies, c.f. agreement
between those reviewed in [2201.01839,Meyer et al.].

? New analysis approaches lead to PCAC relation being satisifed in the
continuum limit. Lattice results now reproduce the expt. value for g∗P . Pion
pole dominance in G̃P is also found to hold on a few percent level.


