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Motivation
In NOvA, T2K, DUNE, Hyper-Kamiokande (HK) muon (anti-)neutrinos are/will be
scattered off H2O, 12C or 40Ar targets.
Clearly, nuclear effects play a role (except for H)
→ interaction between QCD and nuclear physics communities is needed.
Here we address (quasi-)elastic scattering ν̄`p → `+n, ν`n→ `−p via charged
current interactions.
Flavour separation (talk by C Alexandrou) is interesting too, for νN → νN,
N ∈ {n, p}.
Present constraints suggest that there is maximum oscillation νµ → νe , ντ for
L/E ≈ 500 km/GeV.
NOvA: 810 km/2GeV
T2K & HK: 295 km/0.6GeV
DUNE: 1300 km/2.5GeV
Aims: resolving the neutrino mass hierarchy, constraining elements of the PMNS
(Pontecorvo-Maki-Nakagawa-Sakata) matrix, in particular the CP violating
phase(s), BSM physics.
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Experiments
T2K: Tokai to Super-Kamiokande,

E = 0.6 GeV, L/E ≈ 500 km/GeV.

Also NOvA, L/E ≈ 400 km/GeV, DUNE L/E ≈ 520 km/GeV.

Muon neutrino beam: proton on nucleus → pions and kaons → µ+νµ or µ−ν̄µ.

Near and far detectors.

Nµ
far(Eν) = Nµ

near(Eν)× [flux(L)]× [detector]× [1−
∑
β

Pµ→β(Eν)]

Eν has to be reconstructed from the momentum of the detected charged lepton.

Trivial for νµ + n→ µ− + p if the initial momenta of n and of νµ are known.
But. . .
The neutrino beam is not monochromatic but has a momentum distribution.
The nucleon is bound in a nucleus and has |pFermi| ∼ 200MeV.
The lepton momentum reconstruction is often incomplete.
Misidentification of inelastic scattering as elastic scattering.
Monte-Carlo simulation needs input regarding the differential cross section.
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Form factors (FFs)
ν`n→ `−p goes via the V −A current. The non-perturbative matrix elements that
enter dσ/dΩ can be decomposed in terms of four FFs.
Kinematics: qµ = p′µ − pµ, Q2 = −qµqµ ≥ 0, p′2 = p2 = m2

N ≈ m2
n ≈ m2

p.

〈p(p′)|ūγµd(0)|n(p)〉 = ūp(p′)
[
F1(Q2)γµ + F2(Q2)

2mN
σµνqµ

]
un(p),

〈p(p′)|ūγµγ5d(0)|n(p)〉 = ūp(p′)
[
GA(Q2)γµ + GP̃(Q2)

2mN
qµ
]
γ5un(p).

Note that 〈p|ūΓd |n〉 = 〈p|(ūΓu − d̄Γd)|p〉 if mu = md , eu = ed (isospin limit).

Dirac (vector) FF F1, Pauli FF F2, axial FF GA, induced pseudoscalar FF GP̃ .

F1 and F2 are relatively well-known (using isospin symmetry) from lepton-proton
and lepton-neutron/deuteron scattering (but not their slope at Q2 = 0!).

gA = GA(0) is well determined from β-decay. GA(Q2) information from neutrino
scattering and (indirectly) through exclusive pion electroproduction e−p → π−νp.

Using GA ≈ gA, F1 and F2 as input, GP̃(0.88m2
µ) can be determined from muon

capture µ−p → νµn in muonic hydrogen.
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PCAC and PPD relations
The impact of GP̃(Q2) on the cross section is suppressed by a factor
m2
`/m2

N ≈ 0.01 for ` = µ. Therefore, it is only relevant for small Q2, where this
form factor is large (e.g., at the muon capture point).

We define the pseudoscalar FF:
〈p(p′)|ūiγ5d(0)|n(p)〉 = ūp(p′)GP(Q2)iγ5un(p).

Abbreviations to be used: Aµ = ūγµγ5d , P = ūiγ5d .

Consequence of the PCAC relation, i.e. the axial Ward-Takahashi identity
(∂µAµ = 2mudP and ūNγµγ5uN = 2mN ūN iγ5uN):

2mNGA(Q2) = 2mudGP(Q2)− Q2

2mN
GP̃(Q2).

With complete non-perturbative order-a improvement, this relation will receive
O(a2Λ2, a2Q2, a2mud Λ, . . .) lattice spacing corrections.

Current algebra gives the Pion pole dominance (PPD) relation

GP̃(Q2) ≈ 4m2
N

M2
π + Q2 GA(Q2).

Unless M2
π = 0, also in the continuum this relation is only approximate. 5 / 21



Lattice calculation

Ideally, one would compute the FFs directly from QCD via lattice simulation,
without additional assumptions.

Apart from attaining a meaningful statistical error, this requires taking the
following limits:
I Continuum limit: a2 → 0.
I Infinite volume limit: L = Nsa→∞. Due to the mass gap, these effects are

exponential ∼ exp(−LMπ), however, large Ns become necessary at small Mπ

and at small a. ChPT → FVE are most relevant at small Q2 (which is why we
do not divide by GA(0)).

I Physical point: Results must be extra-/interpolated to physical quark masses
or, equivalently, physical pion and kaon masses.

I Extrapolation to infinite Euclidean time separations, where the ground state
dominates.
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Spectral decomposition

In our case Wick contractions give only
connected diagrams (isospin limit).

if

t it =0τ

pp =0

C2pt(p, t) = (Z p
0 )2 e−EN (p)t

[
1 +

∑
k>0

(
Z p

k
Z p

0

)2

e−∆Ek (p)t

]
,

C3pt(p′ = p, τ, t) = (Z p
0 )2 〈0|A|0〉e−EN (p)t

[
1 +

∑
k>0

Z p
k

Z p
0

〈k|A|N〉
〈0|A|0〉

(
e−∆Ek (p)(t−τ) + e−∆Ek (p)τ)

+
(

Z p
k

Z p
0

)2 〈k|A|k〉
〈0|A|0〉 e

−∆Ek (p)t

]
.

For simplicity, above q = 0.
〈0|A|0〉 is the (purely real or imaginary) Euclidean matrix element of interest for the
nucleon ground state |0〉 = |N〉, Zk ∝ 〈Ω|N |k〉 = Z∗k are the so-called overlap factors and
∆Ek = Ek − EN with E0 = EN .
2pt-function: excited state suppression with δ2

k = Z 2
k /Z 2

0 .
3pt-function: suppression only with δk〈k|A|0〉/〈0|A|0〉. What if a 〈k|A|0〉 is large?
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Excited state pollution
The signal decreases exponentially, noise/signal increases exponentially with the
source-sink separation time. So one cannot achieve arbitrary large separations
between source, current and sink.

“Smearing” enables the construction of an “interpolator” N that creates a
combination of energy eigenstates, N|Ω〉 = c0|N〉+ c1|N ′〉+ · · · , with
|c0| � |ck | ∀ k > 0. Then all δk are small.
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Problem with the axial current: It couples well to pions since
〈Ω|Aµ|π+(q)〉 = i

√
2Fπqµ. Matrix elements “〈Nπ|Aµ|N〉” may be enhanced!
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Neutrino-nucleus scattering
This also happens in experiment. Our interpolators do not couple to ∆, i.e. Nπ
with spin 3/2, but they couple to P-wave Nπ with spin 1/2.
Current project (L Barca): Compute axial N → Nπ transition form factors.

07/07/16

Minerba Betancourt

Quasi-elastic scattering (QE)

Resonance production (RES)

Deep Inelastic scattering (DIS) 

14

neutrino 

J. A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

T2K NOvA

DUNE
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Coordinated Lattice Simulations (CLS)
CLS members/groups at

I HU Berlin
I CERN
I TC Dublin
I Mainz
I UA Madrid
I Milano Bicocca

I Münster
I Odense/CP3 Origins
I Regensburg
I Roma I + II
I Wuppertal
I DESY/Zeuthen

Coordinated generation of gauge ensembles using openQCD
https://luscher.web.cern.ch/luscher/openQCD/
[M Lüscher, S Schaefer, 1206.2809].
Nf = 2 + 1 flavours of non-perturbatively order-a improved Wilson fermions on tree
level Symanzik improved glue.
Complete non-perturbative (NP) O(a) improvement of action and operators.
NP renormalization.
Keep it simple and local: no smeared action etc.
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Simulation strategy

Simulate along ms + 2m` = const [QCDSF+UKQCD: W Bietenholz et al,
1003.1114], and m̂s ≈ const [G Bali et al, 1606.09039; 1702.01035], enabling
Gell-Mann–Okubo/SU(3) and SU(2) ChPT extrapolations.
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Analysed ensembles

The number of lattice points varies from 243 · 128 to 963 · 192.

For all the a < 0.06 fm ensembles and many of the other ensembles, we use open
boundary conditions in time.
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Checking dispersion relation for the nucleon
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Physical point extrapolation
The Q2 values differ, depending on the volume, the lattice spacing and the quark
masses: to carry out the continuum limit, an interpolation is required.
Within global fits we use the dipole ansatz as well as z-expansions to parameterize
GA(Q2), (Q2 + M2

π)GP̃(Q2) and (Q2 + M2
π)GP(Q2) in the continuum limit.

We also carry out fits, imposing the PCAC relation in the continuum limit.
Each of the 2–4 fit parameters (for each of the form factors) have
I mass effects, quadratic in the pseudoscalar masses,
I finite volume effects ∝ M2

Pe−MP L/
√

MPL,
I lattice spacing effects ∝ a2/t0, ∝ a2(2M2

K + M2
π) and ∝ a2(M2

K −M2
π).

The ansätze for the mass and volume dependence are inspired by ChPT but
phenomenological since ChPT does not apply to Q2 � M2

π. Systematics explored
by different excited state fits, cuts on the quark masses and the lattice spacing.

Details can be found in RQCD: G Bali, L Barca, S Collins, P Wein, S Weishäupl, T
Wurm et al, 1911.13150.

Since the continuum fit parameters are correlated and the fit function is somewhat
involved for the z-expansion, data files can be found in the arXiv submission.
Please use them! All systematics are included.
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Results: physical point, continuum limit
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Black points are experimental values for gA = GA(0) and
gP = mµ/(2mN)GP̃(0.88m2

µ) at the muon capture point.

Straight lines are the slopes at Q2 = 0: the axial radius is very parametrization
dependent and smaller for dipole fits.

The axial radius is not at all important for neutrino scattering! Even the electric
charge radius of the proton is not too well known from charged lepton scattering!

∃ als work by Mainz on CLS ensembles: D Djukanovic et al, 2112.00127
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Results: PCAC and PPD relations in the continuum limit
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rPCAC =
2mudGP(Q2) + Q2

2mN
GP̃(Q2)

2mNGA(Q2) = 1, rPPD = M2
π + Q2

4m2
N

GP̃(Q2)
GA(Q2) ≈ 1.

Violations of the pion pole dominance relation are very small.
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Discussion of N → Nπ pollution
Chiral perturbation theory (ChPT) Tree-level diagrams:

O

O O O

Top diagram:
∼ GA for O = Aµ
= 0 for O = P

Bottom centre diagram:
∼ GP̃ + excited states for O = A4
∼ GP + excited states for O = P

Other diagrams: only contribute to the excited states.

In ChPT these contributions are enhanced by a factor mN/Mπ in A4 with respect
to the ground state but also present in Aj .

ChPT predicts the Nπ energy level (all momentum transferred to π at tree-level)
and the coupling. 17 / 21



Nπ excited state contributions
[Bär,1906.03652,1812.09191]: Nπ contributions to a combination R4 of CO

3pt and
C2pt for O = A4 in leading one-loop order of SU(2) covariant ChPT.

[Bär,1907.03284]

R4 vs. τ/a − tf /(2a)

tf →∞: R4 → const..

Data: [RQCD,1810.05569]:
Mπ ∼ 150 MeV, a = 0.07 fm,
tf = 1.06 fm, p′ = 0,
|q| = 2π/(64a)

Nπ contamination
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Bali et. al.,  
arXiv:1810.05569

 from

ChPT ( no fit ! )

‣ ChPT reproduces the almost linear time dependence

‣  Very good agreement for all times !  
Expected: Reproduce the slope in the middle of the plot (if at all…)

ChPT works much better than expected.  Why ???

CA4
3pt(p′=0,p=−q, tf , τ) = CA4

3pt,N(q, tf , τ) + CA4
3pt,Nπ(q, tf , τ) = O

(
Mπ

mN

)
+O (1)

In this channel N(0)π(−q)→ N(0) is enhanced, relative to N(−q)→ N(0).

Maybe correct lattice data by subtracting the expectation? Problem: systematics.
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Instead: simultaneous fit to different channels
D200 CLS ensemble: Mπ ∼ 200 MeV, a = 0.064 fm.
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PCAC and PPD relations at a non-vanishing lattice spacing
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Crosses: taking the excited state gap from the two-point function.

Circles: simultaneous fit to all 3pt-functions, including A4.

The simultaneous fit was carried out with a free second excited state gap on either
side and
I fixing ∆ENπ and ∆E ′Nπ from the non-interacting levels,
I fitting these energies from the 3pt-function data.

The difference is included in the systematic error of the final result.
Note that GA(Q2), extracted from Ai alone via a naive fit, is only marginally
different. However, the effect on GP̃ and GP is huge at small Q2 and M2

π.
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Summary

I We have determined the axial form factor in the range of momentum transfers
that is relevant for long baseline neutrino experiments.

I Using this could improve our understanding of nuclear effects, and help to
entangle different processes, ultimately leading to higher precision.

I A problem in the determination of the induced pseudoscalar and pseudoscalar
form factors is the enhancement of Nπ states. This cannot be eliminated by
“smearing”: also the most ideal nucleon interpolator will couple to these!
Once this was understood, also these form factors could be determined reliably.

I The PCAC relation between the form factors is satisfied in the continuum
limit. It is still slightly violated at a > 0. Violations of pion pole dominance
are found to be just a few per cent at physical quark masses.

I It would be nice to further confirm this picture by explicitly computing axial
N → Nπ matrix elements, also using five-quark interpolators. This (and the
determination of transition form factors) is in progress (L Barca).
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