MiniBoone, MicroBoone and New Physics

Vedran Brdar

LSND and MiniBooNE

Process	Neutrino Mode	Antineutrino Mode
ν_{μ} & $\bar{\nu}_{\mu}$ CCQE	107.6 ± 28.2	12.9 ± 4.3
NC π^0	732.3 ± 95.5	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	251.9 ± 35.2	34.7 ± 5.4
External Events	109.8 ± 15.9	15.3 ± 2.8
Other ν_{μ} & $\bar{\nu}_{\mu}$	130.8 ± 33.4	22.3 ± 3.5
ν_e & $\bar{\nu}_e$ from μ^{\pm} Decay	621.1 ± 146.3	91.4 ± 27.6
ν_e & $\bar{\nu}_e$ from K^{\pm} Decay	280.7 ± 61.2	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	79.6 ± 29.9	51.4 ± 18.0
Other ν_e & $\bar{\nu}_e$	8.8 ± 4.7	6.7 ± 6.0
Unconstrained Bkgd.	2322.6 ± 258.3	398.2 ± 49.7
Constrained Bkgd.	2309.4 ± 119.6	400.6 ± 28.5
Total Data	2870	478
Excess	560.6 ± 119.6	77.4 ± 28.5

- ► LSND: $\bar{\nu}_e$ in $\bar{\nu}_\mu$ beam from stopped pion source (> 3σ) at $L/E \sim 1$ km GeV⁻¹ (arXiv:hep-ex/0104049)
- MiniBooNE: reports electron-like event excess (4.8σ); in combination with LSND at 6.1σ (arXiv:0812.2243, 1805.12028, 2006.16883)

eV-scale ν_s for LSND and MiniBooNE anomalies?

- Oscillation maxima for standard oscillations expected at
 - $L/E \sim 500 \text{ km/GeV}$ (from $\Delta m_{31}^2 \sim 2.4 \times 10^{-3} \text{eV}^2$)
 - $L/E \sim 15000 \text{ km/GeV} (\text{from } \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{eV}^2)$
- the minimal solution for LSND and MiniBooNE requires an additional mass squared difference Δm²₄₁ ~ 1 eV²; this calls for an introduction of eV-scale sterile neutrino (3+1 scheme)

 while ν_e appearance data supports eV-scale ν_s explanation of LSND and MiniBooNE, ν_μ disappearance data puts such solution in strong tension

Theoretical uncertainties?

arXiv.org > hep-ph > arXiv:2109.08157

High Energy Physics - Phenomenology

Search...

Help | Advance

[Submitted on 16 Sep 2021]

An Altarelli Cocktail for the MiniBooNE Anomaly?

Vedran Brdar (Fermilab and Northwestern U), Joachim Kopp (CERN and JGU Mainz)

We critically examine a number of theoretical uncertainties affecting the MiniBooNE short-baseline neutrino oscillation experiment in an attempt to better understand the observed excess of electron-like vents. We re-examine the impact of fake charged current quasi-elastic (CCQE) events, the background due to neutral current x^0 production, and the single-photon background. For all processes, we compare the predictions of different event generators (GENIE, GIBUU, NUANCE, and NuWro) and, for GENIE, of different tunes. Where MiniBooNE subscriptions background, we emphasize the large uncertainties in the radiative branching radios of hearty hadronic resonances. We find that not even a combination of uncertainties in different to resolve the MiniBooNE subscription background predictions and the single-statisties in the radiative branching radios of news the MiniBooNE and the control sample and the control sample. In the case of the singlephoton background, we emphasize the large uncertainties in the radiative branching radios of newsy hadronic resonances. We find that not even a combination of uncertainties in different to resolve the MiniBooNE subscription background predictions affect the singleand rule rule and the control samples. The case of the single and the control samples. We emphasize that because of the singleneutrino scenario. We carefully account for full four-flavor oscillations not only in the signal, but also in the background and control samples. We emphasize that because of the strong correlation between MiniBooNE's ν_e and ν_e samples, a sterile neutrino mixing only with ν_μ is sufficient to explain the anomaly, even though the well-known tension with external constraints on ν_e datappearence presists.

Comments: 25 pages. 10 fogures, 2 tables, analysis codes available at this https URL
 High Denrgy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex)
Report number: CERN-TH-2021-13, FERMILAB-PU-21-43-07, MITP-21-042, NUHEP-TH/21-14
Cite as: arXiv:2109.00157 [hep-h]
 for arXiv:2109.00157 [hep-h]
 for arXiv:2109.00157 [hep-h]

Employed MC Generators

Generate	or Tune	Ref.	Comments
NUANCE	-	[40]	the generator used by MiniBooNE
GiBUU	_	[42]	theory-driven generator
NuWro	_	[41]	
GENIE	G18_01a_02_11a	[39, 44]	GENIE baseline tune; see [44] for naming conventions
	$G18_01b_02_11a$		different FSI implementation compared to G18_01a_02_11a
	G18_02a_02_11a		updated res./coh. scattering models compared to G18_01a_02_11a
	$G18_02b_02_11a$		updated res./coh. scattering models and different FSI
	G18_10a_02_11a		theory-driven configuration; similar to G18_02a
	$G18_10b_02_11a$		theory-driven configuration; similar to $G18_02b$

- 1. From a Monte Carlo simulation using the NUANCE generator, predict the event sample under consideration.
- 2. The predicted event spectrum is then compared with the corresponding prediction obtained by the MiniBooNE collaboration; the differences are compensated by bin-by-bin tuning.
- 3. Predict the same event sample using GiBUU, NuWro, as well as six different GENIE tunes, using the same cuts and efficiency factors as for NUANCE. Apply the tuning factors determined in previous step.

Charged Current Events

$$\nu_{e,\mu} + n \to e^{-}/\mu^{-} + p \qquad E_{\nu} = \frac{2m'_{n}E_{\ell} - (m'_{n}^{2} + m_{\ell}^{2} - m_{p}^{2})}{2[m'_{n} - E_{\ell} + \sqrt{E_{\ell}^{2} - m_{\ell}^{2}\cos\theta_{\ell}}]}$$

Neutral Current π^0 Production

MiniBoone, MicroBoone and New Physics

Neutral Current Single γ Production

MiniBoone, MicroBoone and New Physics

3+1 model with eV-scale sterile neutrino

$$U^{4\text{flavor}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \xrightarrow{P_{\mu\mu}} = 1 - 4|U_{\mu4}|^2(1 - |U_{\mu4}|^2) \times \sin^2\left(\frac{(m_4^2 - m_1^2)L}{4E}\right)$$
$$\times \sin^2\left(\frac{(m_4^2 - m_1^2)L}{4E}\right)$$
$$P_{\mu e} = 4|U_{\mu4}U_{e4}|^2 \times \sin^2\left(\frac{(m_4^2 - m_1^2)L}{4E}\right)$$
$$\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu4}|^2$$

MiniBoone, MicroBoone and New Physics

3+1 model with eV-scale sterile neutrino

Monte Carlo-only background predictions

Generator	Tune	Δm_{41}^2	$sin^2 2\theta_{\mu e}$	$ U_{\mu 4} ^2$	χ^2/dof	$\Delta \chi^2_{\text{no osc.}}$	Significance
MB official		0.25	0.01	0.062	12.0	19.1	4.0σ
NUANCE	-	0.32	0.0079	0.051	12.3	19.3	4.0σ
NuWro	-	3.2	0.0016	0.040	13.3	12.7	3.1σ
GENIE	G18 01a 02 11a	0.79	0.00020	0.14	12.2	23.3	4.4σ
	G18 01b 02 11a	0.79	0.0001	0.12	12.2	15.5	3.5σ
	G18_02a_02_11a	0.13	0.063	0.18	12.2	19.2	4.0σ
	G18_02b_02_11a	0.13	0.050	0.20	12.3	16.9	3.7σ
	G18 10a 02 11a	0.25	0.016	0.062	12.3	15.1	3.5σ
	G18 10b 02 11a	0.40	0.013	0.016	12.1	19.5	4.0σ

data-driven backgrounds

Generator	Tune	$\Delta m_{41}^2 [eV^2]$	$sin^2 2\theta_{\mu e}$	$ U_{\mu 4} ^2$	χ^2/dof	$\Delta \chi^2_{no \ cmc.}$	Significance
MB official		0.25	0.01	0.062	12.0	19.1	4.0σ
GiBUU	default	0.25	0.01	0.076	12.0	24.6	4.6σ
	$BR(\Delta \rightarrow \gamma) - 2\sigma$	0.32	0.0063	0.076	12.2	28.5	5.0σ
	$BR(\Delta \rightarrow \gamma) + 2\sigma$	0.25	0.01	0.062	11.9	18.4	3.9σ
NUANCE		0.32	0.0079	0.051	12.3	19.3	4.0σ
NuWro	-	3.2	0.0020	0.040	13.7	15.6	3.5σ
GENIE	G18_01a_02_11a	0.13	0.079	0.16	12.2	21.6	4.3σ
	G18 01b 02 11a	0.79	0.0001	0.12	12.2	16.1	3.6σ
	G18 02a 02 11a	0.13	0.050	0.16	12.0	15.1	3.5σ
	G18_02b_02_11a	0.13	0.050	0.18	12.1	15.0	3.5σ
	G18_10a_02_11a	0.25	0.016	0.051	12.1	11.2	2.9σ
	$G18_10b_02_11a$	0.40	0.013	0.016	12.1	17.9	3.8σ

MicroBooNE

MiniBoone, MicroBoone and New Physics

MicroBooNE

 $\frac{1\gamma 1p}{1\gamma 0p}$

	$1\gamma 1n$	$1\gamma 0n$
Unconstr. blord	$\frac{1}{27.0\pm 9.1}$	$\frac{165.4 \pm 21.7}{165.4 \pm 21.7}$
Constr. bkgd.	21.0 ± 3.1 20.5 ± 3.6	105.4 ± 31.7 145.1 ± 13.8
$\frac{\text{OOISUIT} \text{ Didget.}}{\text{NC} \ \Delta \rightarrow N\gamma}$	20.0 ± 0.0	6 55
LEE $(x_{\rm MB} = 3.18)$	15.5	20.1
Data	16	153

Process	$1\gamma 1p$	$1\gamma 0p$
NC $1\pi^0$ Non-Coherent	24.0	68.1
NC $1\pi^0$ Coherent	0.0	7.6
$CC \nu_{\mu} 1\pi^{0}$	0.5	14.0
CC ν_e and $\bar{\nu}_e$	0.4	11.1
BNB Other	2.1	18.1
Dirt (outside TPC)	0.0	36.4
Cosmic Ray Data	0.0	10.0
Total Background (Unconstr.)	27.0	165.4
NC $\Delta \rightarrow N\gamma$	4.88	6.55

MiniBoone, MicroBoone and New Physics

Coming back to MiniBooNE...

 $8~{\rm GeV}$ protons from Booster hit the Beryllium target producing secondary particles. The 818 ton detector observes single shower events

 $p + A \text{ [target]} \rightarrow [X] \rightarrow 1 sh \text{ events [detector]}$

 X_s can be produced

 X_d

- on target in pA collisions
- from charged particles produced in the pA-collisions
- from ν_{μ} in the detector

Charged Mana local Institutions

١	VB, Fischer, Smirnov, 2007.14411						
	Model	Scenario	LSND				
	[6]	$M_N D_{\gamma}$	X				
	[5]	$U_N D_\gamma$	X				
	[7-9]	$U_N D_{ee}$	X				
	[10-12]	$U_N D_B D_{ee}$	X				
	[13]	$U_N D_B D_{ee}$	1				
	[14-17]	$M_N D_\nu U_e$	1				
	[18]	$U_B D_{ee}$	X				
	-	$M_N D_B D_{\xi}$					
	_	$U_N D_\nu U_e$					

- $\blacktriangleright \ \textit{N} \rightarrow \nu + \gamma, \ \textit{N} \rightarrow \nu + \textit{e}^+ + \textit{e}^-$
- $\blacktriangleright N \to \nu + B, \ B \to e^+ + e^- \text{ or } B \to \gamma + \gamma$
- ▶ $N \rightarrow ...\nu_{e}...$ where ν_{e} scatters in detector
- ► N can also scatter → additional smallness

$U_N D_B D_{\xi}$, Upscattering - double decay scenario

Bertuzzo et al. (1807.09877) Arguelles et al. (1812.08768) Datta et al. (2005.08920) Dutta et al. (2006.01319) Abdallah et al. (2006.01948)

MiniBoone, MicroBoone and New Physics

$M_N D_{\xi}$, Mixing - Decay scenario

Fischer et al. (arXiv:1909.09561)

$$P_{dec}pprox rac{d}{\lambda_N} \; e^{-I/\lambda_N}$$

MiniBoone, MicroBoone and New Physics

$M_N D_\nu U_e$, Mixing - Decay into ν_e scenario

$U_N D_{\xi}$, Upscattering - decay scenario

Vergani et al. 2105.06470 see also Gninenko 0902.3802. Ballett et al. 1808.02915

Evolving Theory Landscape

· Decay of O(keV) Sterile Neutrinos to active neutrinos

- [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020)
- [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141
- · New resonance matter effects
 - [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018)
- Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay
 - [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470
- · Decay of heavy sterile neutrinos produced in beam
 - _ [4] Gninenko, Phys.Rev.D83:015015,2011
 - [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020)
 - [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018)
 - [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020)
- Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors
 - [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018)
 - [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531
 - [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019)
 - [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020)
 - _ [6] Abdallah, Gandhi, Roy, Phys. Rev. D 104, 055028 (2021)
- · Decay of axion-like particles
 - [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021)
- · A model-independent approach to any new particle
 - [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)

taken from MicroBooNE talks

Where do we go from here?

- MicroBooNE is finished with data taking. ν_e and $\Delta \rightarrow \gamma$ analyses used data collected by July 2018
- \blacktriangleright π^0 and e^+e^- analyses under way
- eV-scale steriles

MiniBoone, MicroBoone and New Physics

MiniBooNE anomaly has been a mystery for over a decade

MiniBooNE anomaly has been a mystery for over a decade

Recent background re-evaluations as well as MicroBooNE data did not unravel it

MiniBooNE anomaly has been a mystery for over a decade

Recent background re-evaluations as well as MicroBooNE data did not unravel it

Light eV-scale sterile neutrino hypothesis is disfavored

MiniBooNE anomaly has been a mystery for over a decade

Recent background re-evaluations as well as MicroBooNE data did not unravel it

Light eV-scale sterile neutrino hypothesis is disfavored

Alternative models with heavier sub-GeV new physics?

MiniBooNE anomaly has been a mystery for over a decade

Recent background re-evaluations as well as MicroBooNE data did not unravel it

Light eV-scale sterile neutrino hypothesis is disfavored

Alternative models with heavier sub-GeV new physics?

Short-Baseline Neutrino Program at Fermilab

MiniBoone, MicroBoone and New Physics