History and present state of neutrino oscillation measurements

Stephen Parke Theory

History and present state of neutrino oscillation measurements

Stephen Parke Theory

Takaaki Kajita SuperKamiokaNDE

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Neutrinos are Everywhere!

from Big Bang 300 nus / cm^3

 2 or mere $\mathrm{v} / \mathrm{c} \ll 1$
(except for the highest energy neutrino's)
frermi
therefore in the Universe:

Neutrino Flavor or Interaction States:

$$
W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu} \quad W^{+} \rightarrow \tau^{+} \nu_{\tau}
$$

provided $\boldsymbol{L} / \boldsymbol{E} \ll \mathbf{0 . 5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV}$!!!
~ 1 picosecond in Neutrino rest frame !!!

$$
\approx \text { Age of Universe } / \mathbf{1 0}^{26}
$$

Neutrino Mass EigenStates or Propagation
States:
Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

$\nu_{e}=\square$
Solar Exp, SNO
KamiLAND
Daya Bay, RENO, ...

Interactions:

simple

Rates: $\left|U_{\mu 1}\right|^{2} \&\left|V_{t d}\right|^{2}$

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

by defn $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$
$U_{P M N S}=U_{23}\left(\theta_{23}, 0\right) U_{13}\left(\theta_{13}, \delta\right) U_{12}\left(\theta_{12}, 0\right)$
Why this order ???

$$
\begin{gathered}
=\left(\begin{array}{ccc}
\mathbf{1} & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \boldsymbol{\delta}} \\
-s_{13} e^{+i \delta} & 1 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & \mathbf{1}
\end{array}\right) \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
\end{gathered} \begin{gathered}
\operatorname{ciag}^{2}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{i \frac{\alpha_{31}^{2}}{2}}\right) \\
\left(\begin{array}{ccc}
c_{13} c_{12} & c_{13} s_{12} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-s_{13} s_{23} c_{12} e^{i \delta} & c_{23} c_{12}-s_{13} s_{23} s_{12} e^{i \delta} & c_{13} s_{23} \\
s_{23} s_{12}-s_{13} c_{23} c_{12} e^{i \delta} & -s_{23} c_{12}-s_{13} c_{23} s_{12} e^{i \delta} & c_{13} c_{23}
\end{array}\right)
\end{gathered}
$$

		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^{2}=2.6$)	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$	$0.304_{-0.012}^{+0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12} /^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45{ }_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$
	$\sin ^{2} \theta_{23}$	$0.573_{-0.023}^{+0.018}$	$0.405 \rightarrow 0.620$	$0.578_{-0.021}^{+0.017}$	$0.410 \rightarrow 0.623$
	$\theta_{23}{ }^{\circ}$	$49.22_{-1.3}^{+1.0}$	$39.5 \rightarrow 52.0$	$49.5{ }_{-1.2}^{+1.0}$	$39.8 \rightarrow 52.1$
	$\sin ^{2} \theta_{13}$	$0.02220_{-0.00062}^{+0.00688}$	$0.02034 \rightarrow 0.02430$	$0.022388_{-0.00062}^{+0.00064}$	$0.02053 \rightarrow 0.02434$
	$\theta_{13} /^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.60_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{\mathrm{CP}} /{ }^{\circ}$	$194{ }_{-25}^{+52}$	$105 \rightarrow 405$	287_{-32}^{+27}	$192 \rightarrow 361$
	$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.515_{-0.028}^{+0.028}$	$+2.431 \rightarrow+2.599$	$-2.498_{-0.029}^{+0.028}$	$-2.584 \rightarrow-2.413$
		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^{2}=7.0$)	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.012}$	$0.269 \rightarrow 0.343$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$
	$\theta_{12}{ }^{\circ}$	$33.45{ }_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
	$\sin ^{2} \theta_{23}$	$0.450_{-0.016}^{+0.019}$	$0.408 \rightarrow 0.603$	$0.570_{-0.022}^{+0.016}$	$0.410 \rightarrow 0.613$
	$\theta_{23} /^{\circ}$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0{ }_{-1.3}^{+0.9}$	$39.8 \rightarrow 51.6$
	$\sin ^{2} \theta_{13}$	$0.02246_{-0.00062}^{+0.0062}$	$0.02060 \rightarrow 0.02435$	$0.02241_{-0.00062}^{+0.00074}$	$0.02055 \rightarrow 0.02457$
	$\theta_{13} /^{\circ}$	$8.62_{-0.12}^{+0.12}$	$8.25 \rightarrow 8.98$	$8.61{ }_{-0.12}^{+0.14}$	$8.24 \rightarrow 9.02$
	$\delta_{\mathrm{CP}} /{ }^{\circ}$	230_{-25}^{+36}	$144 \rightarrow 350$	2788_{-30}^{+22}	$194 \rightarrow 345$
	$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.510_{-0.027}^{+0.027}$	$+2.430 \rightarrow+2.593$	$-2.490_{-0.028}^{+0.026}$	$-2.574 \rightarrow-2.410$

$\nu_{1}, \quad \nu_{2}$ Mass Ordering:

-solar mass ordering

mass

$\left|\Delta \boldsymbol{m}_{\mathbf{2 1}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{2}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{\mathbf{- 5}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=15 \mathrm{~km} / \mathrm{MeV}=\mathbf{1 5}, 000 \mathrm{~km} / \mathrm{GeV}$

$$
\begin{aligned}
& \nu_{\mu}=0 \\
& \nu_{e}=\square
\end{aligned}
$$

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$\left|\boldsymbol{\Delta} \boldsymbol{m}_{\mathbf{3}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{\mathbf{2}}-\boldsymbol{m}_{\mathbf{1}}^{\mathbf{2}}\right|=\mathbf{2} . \boldsymbol{5} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{eV}^{2} \quad \boldsymbol{L} / \boldsymbol{E}=\mathbf{0} .5 \mathrm{~km} / \mathrm{MeV}=500 \mathrm{~km} / \mathrm{GeV}$
Unknown: NO ν A, JUNO, ICECUBE, DUNE, T2HKK....

Summary:
Octant of θ_{23}

$\sin ^{2} \theta_{23}$	0.40	0.50	0.60

0

ν_{2} variation

$$
\begin{aligned}
& \nu_{e}=\square \\
& \nu_{\mu}=\square \boldsymbol{\pi} \\
& \nu_{\tau}=\square
\end{aligned}
$$

ν_{1} variation

Neutrino Oscillation Amplitudes

 in vacuum:"the billion \$ process"

$$
\begin{aligned}
& \boldsymbol{P}\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|\mathcal{A}_{\mu}\right|^{2} \\
& \begin{array}{r}
\mathcal{A}_{\boldsymbol{\mu} \boldsymbol{e}}=(2 i)\left[(s _ { 2 3 } s _ { 1 3 } c _ { 1 3 }) \left[c_{12}^{2} e^{-i \Delta_{32} \sin \Delta_{31}+s_{12}^{2} e^{\left.-i \Delta_{31} \sin \Delta_{32}\right]}}\right.\right. \\
\left.+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i \delta} \sin \Delta_{21}\right] \\
\text { maintain the symmetry: } m_{1}^{2} \leftrightarrow m_{2}^{2} \text { with } \theta_{12} \rightarrow \theta_{12} \pm \pi / 2 \\
\text { Denton, Minakata, SP arXiv:1604.08167 }
\end{array}
\end{aligned}
$$

$\Delta P_{C P}=\underset{\text { J }}{8\left(s_{23} s_{13} c_{13}\right)\left(c_{23} c_{13} s_{12} c_{12}\right) \sin \delta} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$
$\Delta_{32} \approx \Delta_{31}$
$\mathcal{A}_{\mu e} \approx(2 i)\left[\left(s_{23} s_{13} c_{13}\right) \sin \Delta_{31}+\left(c_{23} c_{13} s_{12} c_{12}\right) e^{i\left(\delta+\Delta_{31}\right)} \sin \Delta_{21}\right]$

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: } \quad \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00
$$

T2K/HK

$\propto \rho L \sin ^{2} \theta_{23}$

NOvA

DUNE

$$
\sin \delta_{N O}-\sin \delta_{I O}=\tan \theta_{23} \times \begin{cases}0.48 & \text { T2K } \\ 1.62 & \text { NO } \nu \mathrm{A} \\ 2.60 & \text { DUNE }\end{cases}
$$

O. Mena \& SP hep-ph/0408070

T2K \& NOvA

Number of Events proportional to Oscillation Probability

SK event samples

- $\mathrm{O}(45 \%)$ change in electron-like event rate between $\delta_{\mathrm{CP}}=+\pi / 2$ and $\delta_{\mathrm{CP}}=-\pi / 2$

$-\sin ^{2} \theta_{23}=0.45,0.50,0.55,0.60$
$-\Delta \mathrm{m}_{32}^{2}=2.49 \times 10^{-3} \mathrm{eV}^{2}$
$-\Delta \mathrm{V}^{2}=2.46 \times 10^{-3} \mathrm{eV}^{2}$
- $\delta_{\mathrm{CP}}=\pi$
- $\delta_{\mathrm{CP}}=+\pi / 2$
- $\delta_{\mathrm{CP}}=-\pi / 2$

68\% syst err. at best-fit
v Best-fit
\rightarrow Data (68\% stat err.)

NOvA Preliminary

Comparison to T2K

NOvA Preliminary

- Clear tension with T2K's preferred region.
\longrightarrow bsm papers

Leptons:

Quarks:

$0.08<\left|U_{\mu 1}\right|^{2}<0.24$
variation in δ only !
$\left|V_{i j}\right|^{2}$ essentially independent of δ_{q} !

$$
\begin{gathered}
V_{t d} \approx A \lambda^{3}\left(1-0.37 e^{i \delta_{q}}\right) \\
\left|V_{t d}\right|^{2} \approx 10^{-4}
\end{gathered}
$$

factor of 3 diff.

$\begin{aligned}\left|U_{\mu 3}\right|^{2} & =0.4-0.6 \\ \left|U_{\mu 2}\right|^{2} & =0.26-0.41 \\ \left|U_{\mu 1}\right|^{2} & =0.08-0.24\end{aligned}$

$$
\begin{aligned}
\left|V_{t b}\right|^{2} & \approx 1 \\
\left|V_{t s}\right|^{2} & \sim \lambda^{4} \approx 2 \times 10^{-3} \\
\delta_{q}>\left|V_{t d}\right|^{2} & \sim \lambda^{6} \approx 8 \times 10^{-5}
\end{aligned}
$$

$\delta \& \theta_{23}$ uncertainty

Bustamante, Beacom, Winter PRL 2015 [arXiv:1506.02645]
no θ_{23} uncertainty

Determine flavor

fractions of neutrino

WHY?

 mass statesPrecision
Neutrino
Measurements:

To discover neutrino BSM,
 one needs precision predictions for nuSM

Determine flavor fractions of neutrino mass states

Precision
Predictions for flavor ratios at ICECUBE.

M. Ross-Lonergan + SP arXiv:1508.05095

Stress Test Neutrino paradigm search for new physics

Determine flavor fractions of neutrino mass states

Precision

Neutrino

Measurements:

WHY?

Stress Test
Neutrino paradigm
search for new physics

Connection to Leptogenesis
Understanding Universe

- θ_{13}
$\square \Delta m_{21}^{2}$
- $\Delta \mathrm{m}_{31}^{2}$

Determine flavor fractions of neutrino mass states

Test Theoretical
Neutrino Models

WHY?

Precision
Neutrino
Measurements:

Leptogenesis
Understanding Universe

Predictions of flavor symmetry forms with projected measurement precision

Girardi, Petcov, Titov, arXiv:I4I0.8056
Nucl. Phys. B, Vol. 894, 733-768 (2015)

Predictions of flavor symmetry forms with projected measurement precision

$\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

V
$\Delta m_{e e}^{2} \& \Delta m_{\mu \mu}^{2}$

Channel Dependent:

$$
\begin{aligned}
\Delta m_{e e}^{2} & \equiv m_{3}^{2}-\left(c_{12}^{2} m_{1}^{2}+s_{12}^{2} m_{2}^{2}\right) \\
& =c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2} \\
\mathbf{1}-\boldsymbol{P}\left(\nu_{e} \rightarrow \nu_{e}\right) & \approx 4\left|\boldsymbol{U}_{e 3}\right|^{2}\left(\mathbf{1}-\left|\boldsymbol{U}_{e 3}\right|^{2}\right) \sin ^{2} \boldsymbol{\Delta}_{e e}
\end{aligned}
$$

Daya Bay and RENO.
(...) is ν_{μ} average of $1 \& 2$

$$
\begin{aligned}
\Delta m_{\mu \mu}^{2} & \equiv m_{3}^{2}-\left(s_{12}^{2} m_{1}^{2}+c_{12}^{2} m_{2}^{2}\right) \\
& =s_{12}^{2} \Delta m_{31}^{2}+c_{12}^{2} \Delta m_{32}^{2}
\end{aligned}
$$

$$
1-P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \approx 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right) \sin ^{2} \Delta_{\mu \mu}
$$

T2K, NOvA,
Nunokawa, SP, Zukanovich hep/0503283

Mass Ordering:

Fractional Flavor Content
Normal Ordering: $\left|\Delta m_{e e}^{2}(N O)\right|>\left|\Delta m_{\mu \mu}^{2}(N O)\right|$
Inverted Ordering: $\left|\Delta m_{e e}^{2}(I O)\right|<\left|\Delta m_{\mu \mu}^{2}(I O)\right|$

Difference is $\cos 2 \theta_{12} \Delta m_{21}^{2} \approx 1.2 \%$

How does this come about?

Hamiltonian in flavor basis $=\frac{1}{2 E} U_{23} U_{13} U_{12} M^{2} U_{12}^{\dagger} U_{13}^{\dagger} U_{23}^{\dagger}$

For ν_{e} disappearance U_{13} is most important:

$$
m_{3}^{2}-\left(c_{12}^{2} m_{1}^{2}+s_{12}^{2} m_{2}^{2}\right) \equiv \Delta m_{e e}^{2}
$$

For ν_{μ} disappearance U_{23} is most important:

$$
m_{3}^{2}-\left(s_{12}^{2} m_{1}^{2}+c_{12}^{2} m_{2}^{2}\right) \equiv \Delta m_{\mu \mu}^{2}
$$

Even in Matter $\Delta m_{e e}^{2}$ is useful:

Defn $a \equiv 2 \sqrt{2} G_{F} N_{e} E_{\nu}$, the Wolfenstein Matter Potential
Solar Resonance:

$$
\begin{aligned}
a_{R}^{\odot} & \approx \Delta m_{21}^{2} \cos 2 \theta_{12} / c_{13}^{2} \\
\operatorname{Min} \Delta \widehat{m^{2}}{ }_{21} & \approx \Delta m_{21}^{2} \sin 2 \theta_{12}
\end{aligned}
$$

accuracy: $\mathcal{O}\left(10^{-4}\right)$

Atmospheric Resonance:

$$
\begin{aligned}
a_{R}^{\oplus} & \approx \Delta m_{? ?}^{2} \cos 2 \theta_{13} \\
\operatorname{Min} \Delta \widehat{m^{2}}{ }_{32} & \approx \Delta m_{? ?}^{2} \sin 2 \theta_{13}
\end{aligned}
$$

Δm_{32}^{2} gives 2% accuracy Δm_{31}^{2} gives 1% accuracy $\Delta m_{e e}^{2}$ gives $\mathcal{O}\left(10^{-4}\right)$ accuracy SP 2012.07186 (hep-ph)

CPViolation

At oscillation maximum in vacuum:

$$
P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)-P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\pi J_{0}\left(\frac{\Delta m_{21}^{2}}{\Delta m_{e e}^{2}}\right)
$$

where J_{0} is Jarlskog Invariant (I986):

$$
J=\sin 2 \theta_{12} \sin 2 \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin \delta \approx 0.3 \sin \delta
$$

Jarlskog Invariant in Matter

$$
\begin{aligned}
\widehat{J} & =J_{0} \frac{\Pi \Delta m_{i j}^{2}}{\Pi m^{2}{ }_{i j}} \approx \frac{J_{0}}{R_{\odot} R_{\oplus}} \\
R_{\odot} & =\sqrt{\left(\cos 2 \theta_{12}-a c_{12}^{2} / \Delta m_{21}^{2}\right)^{2}+\sin ^{2} 2 \theta_{12}} \\
R_{\oplus} & =\sqrt{\left(\cos 2 \theta_{13}-a / \Delta m_{e e}^{2}\right)^{2}+\sin ^{2} 2 \theta_{13}}
\end{aligned}
$$

$\mathcal{O}\left(10^{-3}\right)$ accuracy !

Denton, SP 1902.07I85 (hep-ph)

JUNO by Nu2024 or Nu2026

Best measurements of $\Delta m_{21}^{2}, \sin ^{2} \theta_{12}$ and $\Delta m_{e e}^{2}$: accuracy $\Rightarrow \sim 0.5 \%$ (JUNO value of $\sin ^{2} \theta_{13}$ will not be more accurate than Daya Bay)

$$
1-P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=4 c_{13}^{4} s_{12}^{2} c_{12}^{2} \sin ^{2} \Delta_{21}
$$

$$
+2 s_{13}^{2} c_{13}^{2}\left(1-\sqrt{1-\sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}} \cos \left[2\left|\Delta_{e e}\right| \pm \Phi\left(\Delta_{21}\right)\right]\right)
$$

Amplitude modulation
Phase advance(NO)/retardation(IO)

$$
\begin{aligned}
& \Phi\left(\Delta_{21}\right)=\arctan \left(\cos 2 \theta_{12} \tan \Delta_{21}\right)-\cos 2 \theta_{12} \Delta_{21}=\mathcal{O}\left(\Delta_{21}^{3}\right) \\
& \Phi\left(\Delta_{21}=\pi / 2\right)=\pi \sin ^{2} \theta_{12}
\end{aligned}
$$

Minakata, Nunokawa, SP, Zukanovich hep/070 I I 5 I

JUNO Events Spectra

8 years,
26.6 GW_th
52.5 km , baseline 3% resolution

No backgrounds No Systematics

Forero, SP, Ternes, Zukanovich 2I07.124IO

Real Baseline Distribution + Backgrounds

Parameter Sensitivity:

Non-linear Energy Response

JUNO probability of determining Mass Ordering

GLOBAL DATA:

GLOBAL FIT: with 2 years of JUNO data

Summary:

- from Nu1998 to now, tremendous exp. progress on Neutrino SM: more at Nu2022. May 31-June 4, 2022
- LSND Sterile Nu's neither confirmed or ruled out at acceptable CL: - ultra short baseline reactor exp:
-microBooNE
- Great Theoretical progress on understand many aspects of Quantum Neutrino Physics: - Oscillations, Decoherence, Osc. Probabilities in Matter, Leptogenesis,
- Still searching for convincing model of Neutrino masses and mixings: with testable and confirmed predictions !

