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Aim of the talk

Discuss minimal gauge extensions of the SM that predict 
dark matter and neutrino masses.

These theories must live at the low scale and can be 
fully probed in the near future. 
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Dark Matter
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Rotation curves Bullet cluster Gravitational lensing

Structure formation
CMB
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The Standard Model needs to be extended to account for 
non-zero neutrino masses

Neutrino masses
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New Gauge Symmetries at the Low Scale
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● Anomalous symmetries, predict a new sector needed for 
Anomaly Cancellation

● Predict a DM candidate from Anomaly Cancellation 

● The new symmetry breaking scale must be low to be in 
agreement with Cosmology
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New Gauge Symmetries at the Low Scale
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● Anomalous symmetries, predict a new sector needed for 
Anomaly Cancellation

● Predict a DM candidate from Anomaly Cancellation 

● The new symmetry breaking scale must be low to be in 
agreement with Cosmology

● New gauge boson couples to neutrinos and dark matter

● Predict new CP-violating interactions. Can be 
complementary tested by CMB data, dark matter and 
EDM experiments
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U(1)L 
Dirac neutrinos and Majorana DM
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[Fileviez Perez, Murgui, ADP  1905.06344]
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Gauging Lepton Number
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● Lepton number is an accidental global symmetry in the SM

● Anomalous in the Standard Model

[Pais 1973]

[Fileviez Perez, Wise 2011]

Local gauge symmetry 
gauge boson:  ZL   

● Spontaneous breaking of lepton number

● Consistent UV completion of leptophilic models of DM
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Gauging Lepton Number
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● Promote lepton number to a local symmetry

● Need to add new fermions to cancel anomalies

In the SM the non-zero 
values are:
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Anomaly-free model
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● Neutral fermion required for anomaly cancellation
● Automatically stable from remnant U(1)→Z2 symmetry  

                            DM Candidate 

[Fileviez Perez, Ohmer, Patel 1403.8029]

https://arxiv.org/abs/1403.8029
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Ωh2 > 0.12

[Fileviez Perez, Murgui, ADP  1905.06344]

l

l

https://arxiv.org/abs/1905.06344
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Ωh2 > 0.12

Non-resonant 
region

l

l
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Perturbativity                                   and 

Give an upper bound on the scale
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Upper bound on lepton number breaking scale

ZL

All masses connected to <v>L and hence there is an upper bound for 
the full model

There is a no decoupling effect within the New Sector

χ
η+

ψ+

21 TeV

34 
TeV

ψ0

Anomalons

40  TeV
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Direct Detection

suppressed by Higgs mixing
  θ  < 0.3   for  MH2  > 200 GeV

For lighter MH2  stronger bound

ZL does not couple to 
quarks

Direct detection constraints can be avoided  
with  sin θ  < 0.1
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Bounds from cosmology   

● In the early Universe, weak interactions keep neutrinos in thermal 
equilibrium with the plasma

● As the rate of these interactions becomes smaller than the Hubble 
expansion rate, neutrinos decouple and propagate freely in the 
Universe
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Bounds from cosmology   

● In the early Universe, weak interactions keep neutrinos in thermal 
equilibrium with the plasma

● As the rate of these interactions becomes smaller than the Hubble 
expansion rate, neutrinos decouple and propagate freely in the 
Universe

● After neutrinos decouple, electron-positron annihilation heats up 
the photon plasma, and hence, the neutrino temperature is a bit 
smaller than the one of photons
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[Salas & Pastor 2016]

T= 2-3 MeV (t=0.1 s) weak interactions cannot keep neutrinos 
in thermal equilibrium with electrons and positrons

Neff   effective number of relativistic species
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[Salas & Pastor 2016]

T= 2-3 MeV (t=0.1 s) weak interactions cannot keep neutrinos 
in thermal equilibrium with electrons and positrons

Deviation from 3 comes from- non-instantaneous decoupling, 
finite temperature corrections, etc... Review: [Dolgov 2002]

[Planck 2018]

Neff   effective number of relativistic species
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Neff   effective number of relativistic species
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These interactions bring νR into thermal equilibrium in the 
early universe and they contribute to Neff

νR

νR

l

l

● Lepton number broken by 3 units:  ΔL=±3 interactions
                              Dirac neutrinos 
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Neff
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νR

νR

l

l
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Neff

22

νR

νR

l

l
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Neff    

ν

R

νR

f

fl

l

[Fileviez Perez, Murgui, ADP 2019]

https://arxiv.org/abs/1905.06344
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Neff   
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[Simons Observatory: Science Goal and Forecasts 2019]      [Borsany et al 2016]
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Neff    

Stronger than the LEP  
bound

ν

R

νR

f

fl

l

[Fileviez Perez, Murgui, ADP 2019]

[Planck 2018]

https://arxiv.org/abs/1905.06344
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Neff    

As long as νR  reached thermal equilibrium in early Universe, 
ΔNeff  goes asymptotically to 

In other words, as long as Treheating > Tequil there will be a 
non-zero contribution to ΔNeff  

ΔNeff  can be sensitive to a high scale ZL !
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Other scenarios that contribute to Neff    
For Majorana neutrinos; if very light (eV) right-handed neutrinos 
are thermalized

[Dasgupta, Kopp 1310.6337]
[Hannestad, Hansen, Tram 1310.5926]

[Mirizzi, Mangano, Pisanti, Saviano 1410.1385]
[Cherry, Friedland, Shoemaker 1605.06506]

and others…

[Ho, Scherrer 1208.4347]
[Boehm, Dolan, McCabe 1303.6270]

[Escudero 1812.05605]
and others…

or  for the  thermalization of light (MeV) dark matter interacting 
with neutrinos, electrons or photons
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Next generation CMB experiments
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● Telescope array in the Atacama 
Desert, Chile

● Funded
● Observing  2020’s

 
[Simons Observatory: Science Goal and Forecasts 2019]
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Next generation CMB experiments
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● Telescope array in the Atacama 
Desert, Chile

● Funded
● Observing  2020’s

 
[Simons Observatory: Science Goal and Forecasts 2019]

Projection for CMB Stage-IV:

[CMB-S4 Science Book 2016]

● Array of ground-based telescopes in South Pole and Chile
● Joint NSF and DOE project
● Observing late 2020s
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Next generation CMB 
experiments could fully 
probe the parameter 
space that also explains 
dark matter
 

Neff gives strongest bound

CMB-S4



Alexis Plascencia 31

Perturbativity                                   and 
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CP Violation and Electric Dipole 
Moments

[Fileviez Perez, ADP  2008.09116]

https://arxiv.org/abs/2008.09116
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CP violation and electron EDM

33[Fileviez Perez, ADP 2008.09116]

https://arxiv.org/abs/2008.09116
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CP violation and electron EDM
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[Fileviez Perez, ADP  2008.09116] [Barr, Zee  1990]
[Nakai, Reece 1612.08090]

Two-loop Barr-Zee diagrams with the charged 
anomaly-canceling fermions in the loop

https://arxiv.org/abs/2008.09116
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.65.21
https://arxiv.org/abs/1612.08090
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Electron EDM
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DM relic density 
requires:
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Electron EDM
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[ACME, Nature 2018]

ACME bound 
implies:

DM relic density 
requires:

[Fileviez Perez, ADP 2008.09116]

https://arxiv.org/abs/2008.09116
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Electron EDM
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[ACME, Nature 2018]

ACME bound 
implies:

DM relic density 
requires:

[Fileviez Perez, ADP 2008.09116]

https://arxiv.org/abs/2008.09116
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Unbroken U(1)B-L

Dirac neutrinos and Dirac DM
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[Fileviez Perez, Murgui, ADP  1905.06344]
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Dirac Neutrinos
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In order to give mass to the B-L gauge boson we can :

1) Unbroken B-L: Stueckelberg mechanism ZBL

2) Spontaneous symmetry breaking of B-L  ZBL

To forbid 
Majorana 

mass term

If B-L is conserved, then, the Majorana mass term is forbidden

Anomaly cancellation:
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Dirac Neutrinos
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In order to give mass to the B-L gauge boson we can :

1) Unbroken B-L: Stueckelberg mechanism ZBL

2) Spontaneous symmetry breaking of B-L  ZBL

Anomaly cancellation:

If B-L is conserved, then, the Majorana mass term is forbidden
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Decoupling T for νR

  [Fileviez Perez, Murgui, ADP 2019]

 Thermalizes the 
right-handed 

neutrinos in the Early 
Universe

https://arxiv.org/abs/1905.06344
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Neff    

[Planck 2018]

Stronger than the LEP & 
LHC bound

                      [Fileviez Perez, Murgui, ADP 2019]

https://arxiv.org/abs/1905.06344
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Dirac fermion as dark matter
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Introduce vector-like fermion with B-L charge

n ≠ 1  since n=1 allows mixing with neutrinos and decay
Non-renormalizable operators forbid n odd
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[Planck 2018]

Dark Matter

Xenon 
1T

Xenon 
nT

Xenon 
1T

Xenon 
nT
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[Planck 2018]

Dark Matter

ΔNeff < 0.285   gives the strongest bound
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Dark Matter - direct detection
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Conclusions

● In U(1)L and dark matter is predicted from gauge anomaly 
cancellation

● Not overproducing dark matter implies an upper bound on all 
new states < 40 TeV

● In U(1)L , neutrinos are Dirac. Next generation CMB will fully test 
these theories (with DM) using ΔNeff  . Same holds for unbroken 
local B - L 

● New sources of CP violation lead to a large electron EDM and 
can be tested at experiments such as ACME

aaa       
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Thank you!
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Back-up

49

Model II

                 [Duerr, Fileviez Perez, Wise 1304.0576]
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B - L as a local symmetry
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l

l

[ATLAS 2017]       [Alioli, Farina, Pappadopulo, and Ruderman 2018]
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Neff   
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[Planck 2018]

Projection for CMB Stage-IV:

[CMB-S4 Science Book 2016]
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Neff   

[Hu et al 1995]
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Stueckelberg scenario
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The above Lagrangian is invariant under gauge transformations: 

Massive gauge boson and σ field decouples from the theory

For Abelian theories renormalizable and unitary. 
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Ωh2 > 0.12

Non-resonant 
region

l

l
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ACME experiment
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[ACME collaboration]

● Measures the electron EDM
● Beam of thorium monoxide molecule
● ThO has a strong internal electric field


