Neutrino-dark matter connections in gauge theories

Alexis Plascencia

with Pavel Fileviez Perez and Clara Murgui

[arXiv: 1905.06344] PRD 100 (2019) 035041 [arXiv: 2008.09116] JHEP 03 (2021) 185

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

"Neutrinos as a Portal to New Physics and Astrophysics" - KITP, March 11, 2022

Aim of the talk

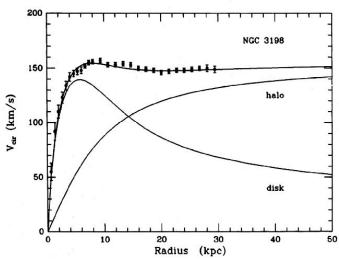
Discuss minimal gauge extensions of the SM that predict dark matter and neutrino masses.

These theories must live at the low scale and can be fully probed in the near future.

Dark Matter

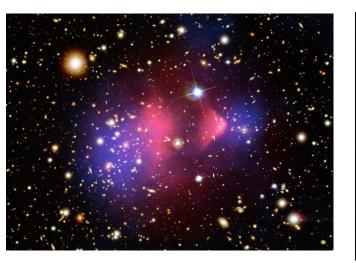
Rotation curves

DISTRIBUTION OF DARK MATTER IN NGC 3198



Bullet cluster

Gravitational lensing

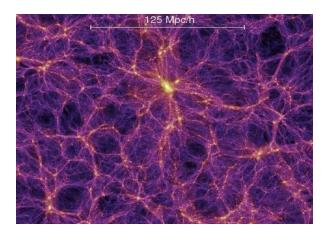


Distant Galaxy Lensed by Cluster Abell 2218 HST+WFPC2+ACS

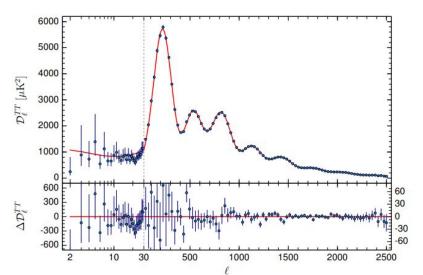
SA, NASA, J.-P. Kneib (Caltech/Observatoire Midi-Pyrénées) and R. Ellis (Caltech)) STScI-PRC04-

3

Structure formation



CMB



Neutrino masses

NuFIT 4.1 (2019)

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.3)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK-atm	$\sin^2 heta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	0.275 ightarrow 0.350
	$ heta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$
	$\sin^2 heta_{23}$	$0.582\substack{+0.015\\-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	$0.433 \rightarrow 0.623$
	$ heta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7_{-1.0}^{+0.9}$	$41.2 \rightarrow 52.1$
	$\sin^2 heta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$
	$\theta_{13}/^{\circ}$	$8.61^{+0.12}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$
	$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512^{+0.034}_{-0.031}$	$-2.606 \rightarrow -2.413$

The Standard Model needs to be extended to account for non-zero neutrino masses $m_
u
eq 0$

New Gauge Symmetries at the Low Scale

- Anomalous symmetries, predict a new sector needed for Anomaly Cancellation
- Predict a DM candidate from Anomaly Cancellation
- The new symmetry breaking scale must be low to be in agreement with Cosmology

New Gauge Symmetries at the Low Scale

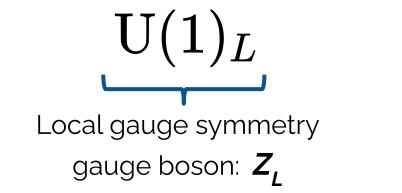
- Anomalous symmetries, predict a new sector needed for Anomaly Cancellation
- Predict a DM candidate from Anomaly Cancellation
- The new symmetry breaking scale must be low to be in agreement with Cosmology
- New gauge boson couples to neutrinos and dark matter
- Predict new CP-violating interactions. Can be complementary tested by CMB data, dark matter and EDM experiments

U(1)_L Dirac neutrinos and Majorana DM

[Fileviez Perez, Murgui, ADP 1905.06344]

Gauging Lepton Number

- Lepton number is an accidental global symmetry in the SM
- Anomalous in the Standard Model



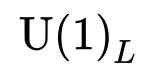
 $\langle S_L
angle
eq 0$

- Spontaneous breaking of lepton number
- Consistent UV completion of leptophilic models of DM

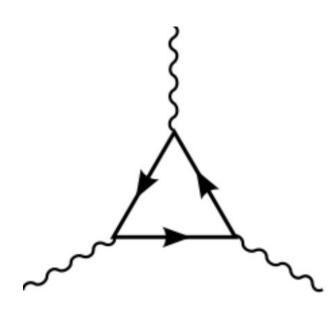
[Pais 1973]

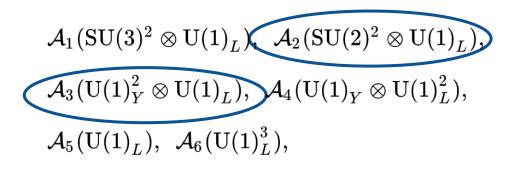
[Fileviez Perez, Wise 2011]

Gauging Lepton Number



- Promote lepton number to a local symmetry
- Need to add new fermions to cancel anomalies





In the SM the non-zero values are:

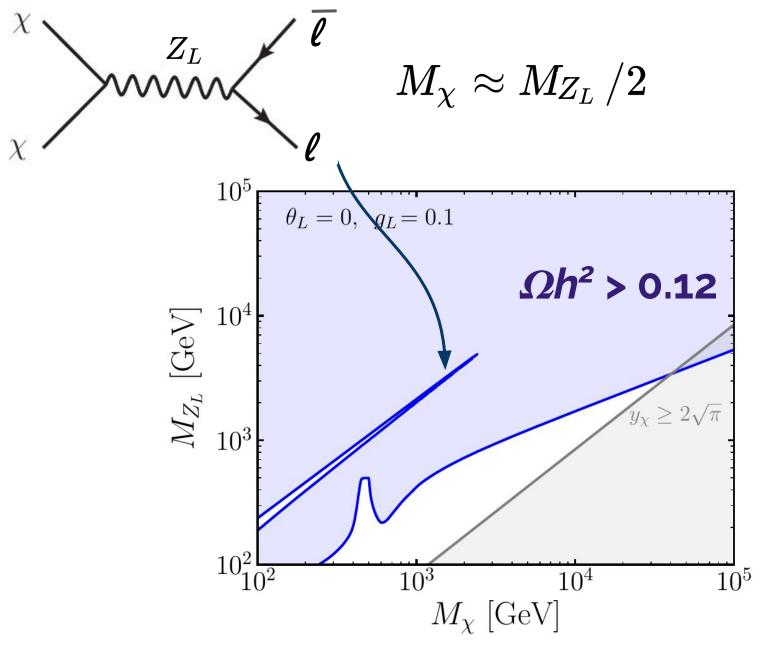
 $\mathcal{A}_2=-\mathcal{A}_3=3/2$

Anomaly-free model

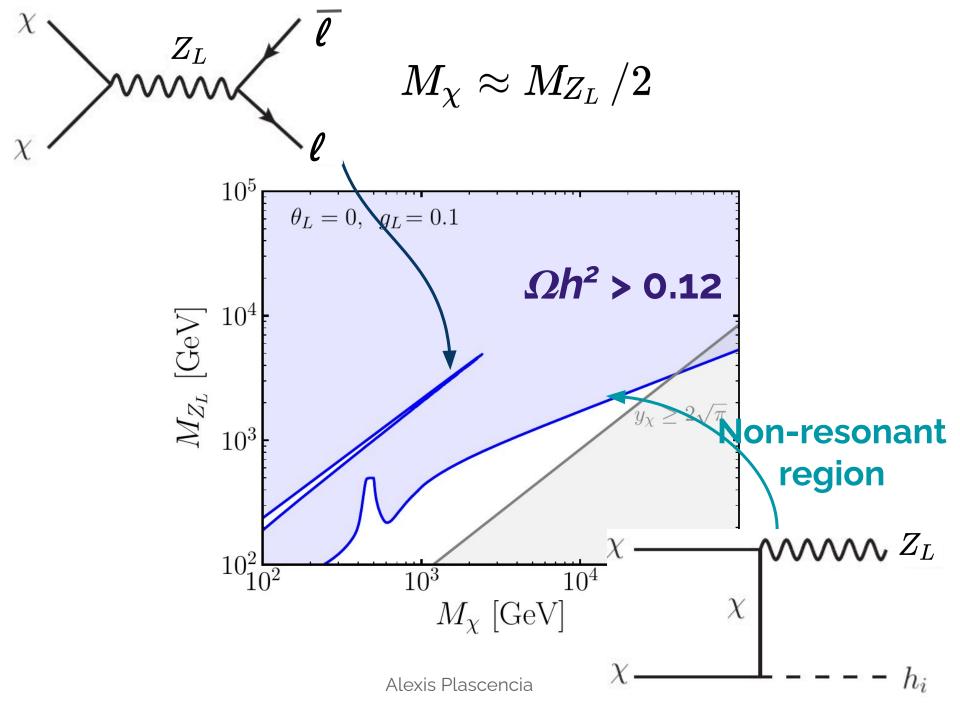
Fields	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_L$
$\Psi_L = egin{pmatrix} \Psi_L^+ \ \Psi_L^0 \ \Psi_L^0 \end{pmatrix}$	1	2	$\frac{1}{2}$	$\frac{3}{2}$
$\Psi_R = egin{pmatrix} \Psi_R^+ \ \Psi_R^0 \end{pmatrix}$	1	2	$\frac{1}{2}$	$-\frac{3}{2}$
$\Sigma_L = \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_L^0 & \sqrt{2}\Sigma_L^+ \\ \sqrt{2}\Sigma_L^- & -\Sigma_L^0 \end{pmatrix}$	1	3	0	$-\frac{3}{2}$
χ^0_L	1	1	0	$-\frac{3}{2}$

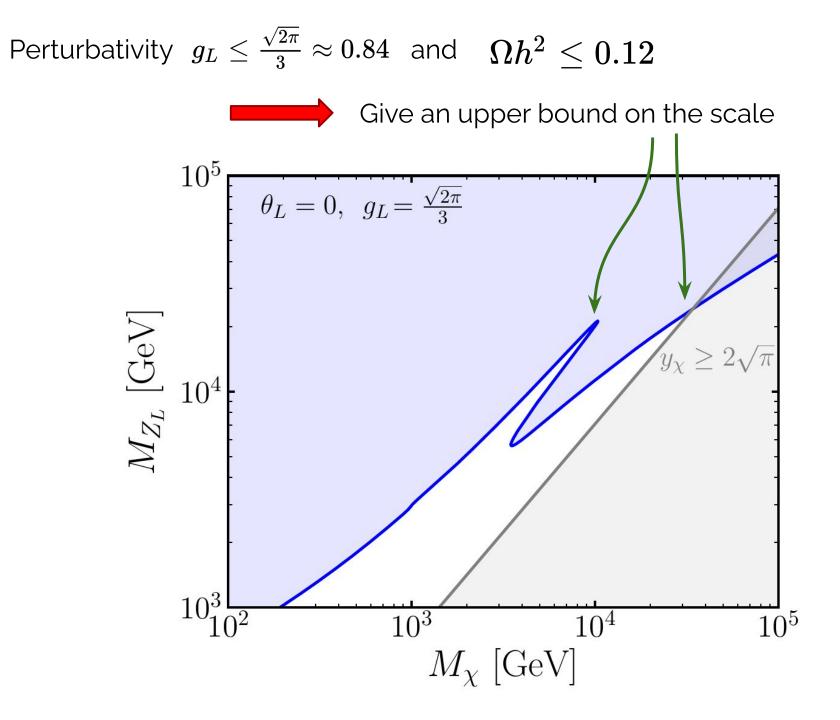
[Fileviez Perez, Ohmer, Patel 1403.8029]

- Neutral fermion required for anomaly cancellation
- Automatically stable from remnant U(1) $\rightarrow Z_2$ symmetry



[Fileviez Perez, Murgui, ADP 1905.06344]

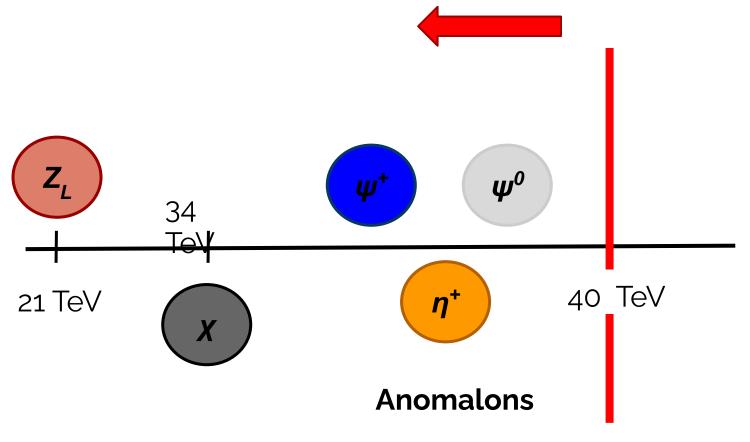




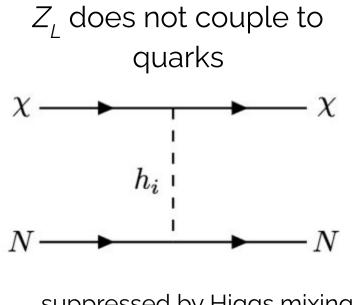
Upper bound on lepton number breaking scale

All masses connected to $\langle v \rangle_L$ and hence there is an upper bound for the full model

There is a *no decoupling* effect within the New Sector



Direct Detection



suppressed by Higgs mixing θ < 0.3 for M_{H_2} > 200 GeV For lighter M_{H_2} stronger bound

Direct detection constraints can be avoided with $\sin \theta < 0.1$

Bounds from cosmology

• In the early Universe, weak interactions keep neutrinos in thermal equilibrium with the plasma

 $u + ar{
u} \leftrightarrow e^- + e^+ \qquad
u + e^\pm \leftrightarrow \nu + e^\pm \qquad
u +
u \leftrightarrow \nu +
u$

• As the rate of these interactions becomes smaller than the Hubble expansion rate, neutrinos decouple and propagate freely in the Universe

Bounds from cosmology

• In the early Universe, weak interactions keep neutrinos in thermal equilibrium with the plasma

 $u + ar{
u} \leftrightarrow e^- + e^+ \qquad
u + e^\pm \leftrightarrow
u + e^\pm \qquad
u +
u \leftrightarrow
u +
u$

- As the rate of these interactions becomes smaller than the Hubble expansion rate, neutrinos decouple and propagate freely in the Universe
- After neutrinos decouple, electron-positron annihilation heats up the photon plasma, and hence, the neutrino temperature is a bit smaller than the one of photons

$$T_
u = \left(rac{4}{11}
ight)^{1/3} T_\gamma$$

N_{eff} effective number of relativistic species

$$N_{
m eff} \equiv rac{8}{7} ig(rac{11}{4}ig)^{4/3} ig(rac{
ho_{
m rad}-
ho_{\gamma}}{
ho_{\gamma}}ig) \qquad N_{
m eff} = 3ig(rac{11}{4}ig)^{4/3} ig(rac{T_{
u}}{T_{\gamma}}ig)^4$$

T= 2-3 MeV (t=0.1 s) weak interactions cannot keep neutrinos in thermal equilibrium with electrons and positrons

$$N_{
m eff}^{
m SM}=3.045$$
 [Salas & Pastor 2016]

N_{eff} effective number of relativistic species

$$N_{
m eff} \equiv rac{8}{7} ig(rac{11}{4}ig)^{4/3} ig(rac{
ho_{
m rad}-
ho_{\gamma}}{
ho_{\gamma}}ig) \qquad N_{
m eff} = 3ig(rac{11}{4}ig)^{4/3} ig(rac{T_{
u}}{T_{\gamma}}ig)^4$$

T= 2-3 MeV (t=0.1 s) weak interactions cannot keep neutrinos in thermal equilibrium with electrons and positrons

$$N_{
m eff}^{
m SM}=3.045$$
 [Salas & Pastor 2016]

Deviation from 3 comes from- non-instantaneous decoupling, finite temperature corrections, etc... Review: [Dolgov 2002]

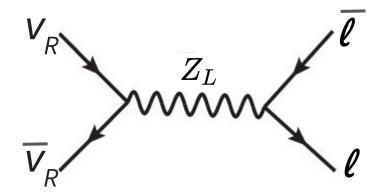
$$N_{\rm eff} = 2.99^{+0.34}_{-0.33} \Rightarrow \Delta N_{\rm eff} < 0.285,$$

[Planck 2018] at 95% CL

N_{eff} effective number of relativistic species

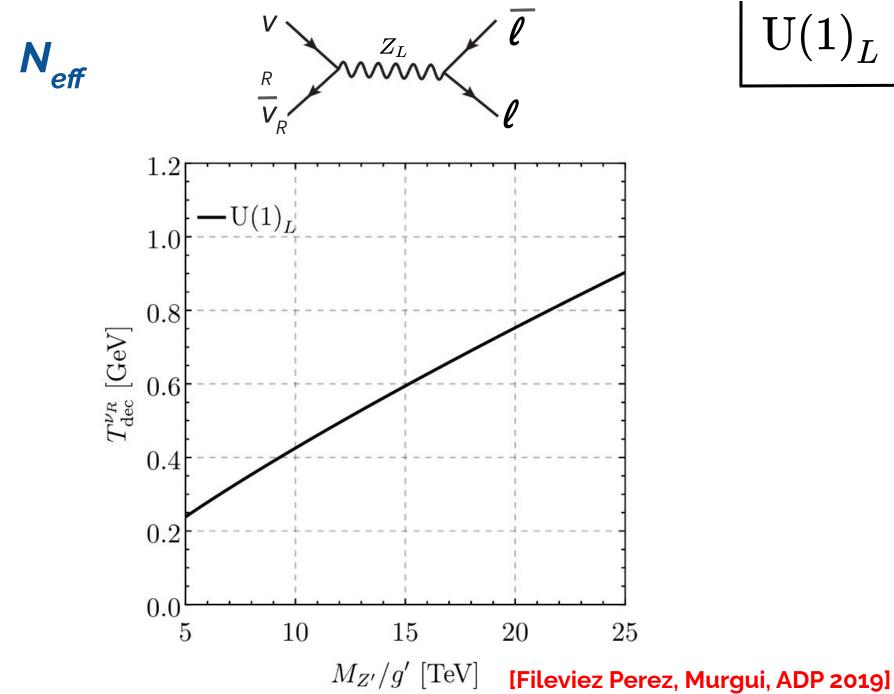
• Lepton number broken by 3 units: $\Delta L = \pm 3$ interactions

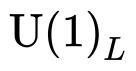
Dirac neutrinos

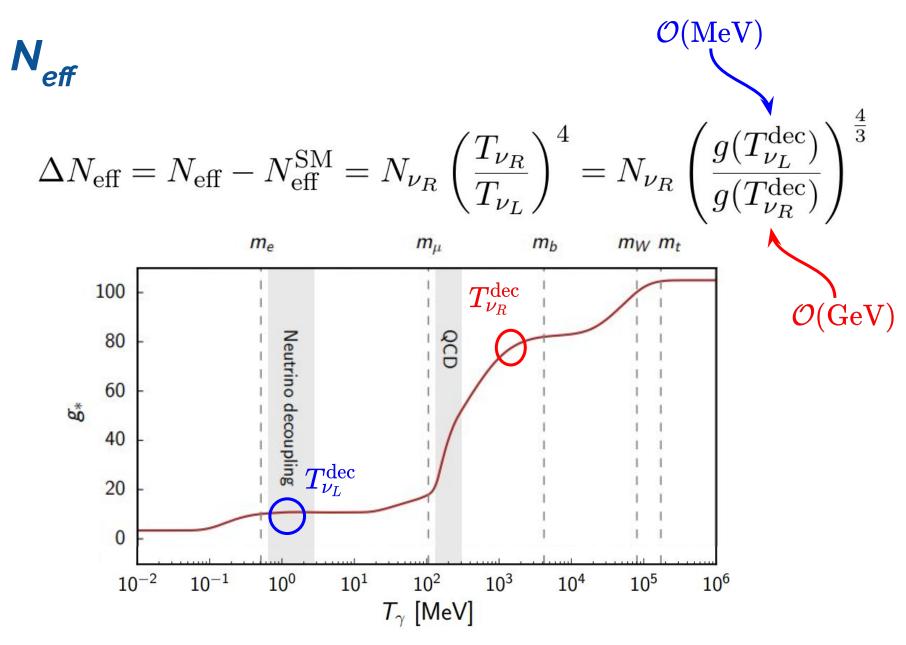


These interactions bring V_R into thermal equilibrium in the early universe and they contribute to N_{eff}

$$\Delta N_{\text{eff}} = N_{\text{eff}} - N_{\text{eff}}^{\text{SM}} = N_{\nu_R} \left(\frac{T_{\nu_R}}{T_{\nu_L}}\right)^4 = N_{\nu_R} \left(\frac{g(T_{\nu_L}^{\text{dec}})}{g(T_{\nu_R}^{\text{dec}})}\right)^{\frac{4}{3}}$$

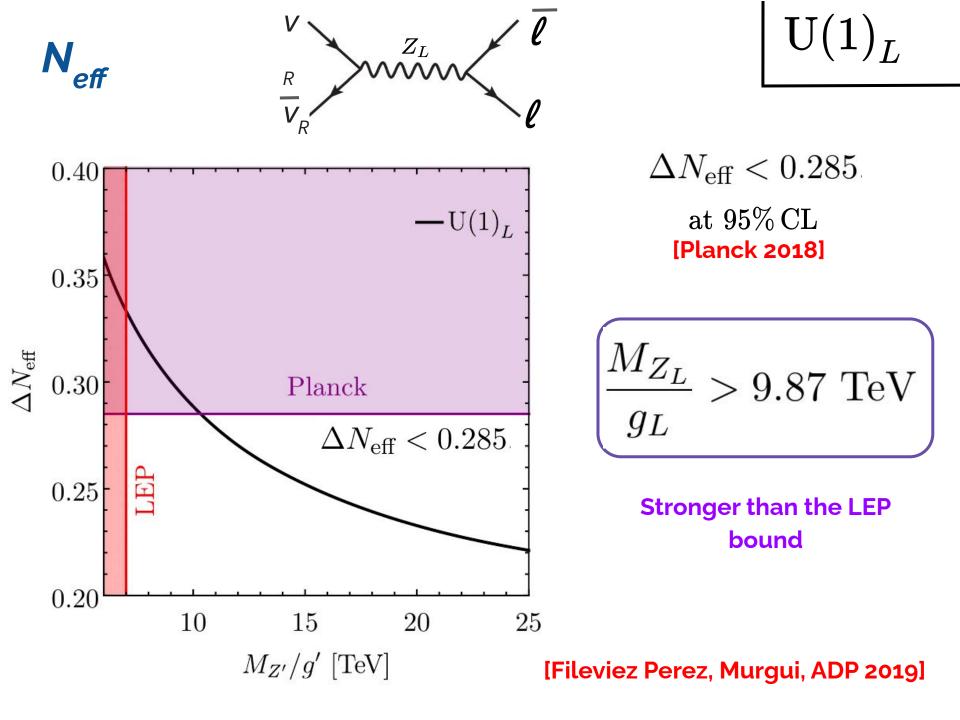


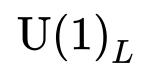




[Simons Observatory: Science Goal and Forecasts 2019]

[Borsany et al 2016]





As long as V_R reached thermal equilibrium in early Universe, ΔN_{eff} goes asymptotically to

$\Delta N_{ m eff} ightarrow 0.021$

In other words, as long as $T_{reheating} > T_{equil}$ there will be a non-zero contribution to ΔN_{eff}

 ΔN_{eff} can be sensitive to a high scale Z_L

Other scenarios that contribute to N_{eff}

For Majorana neutrinos; if very light (*eV*) right-handed neutrinos are thermalized

[Dasgupta, Kopp 1310.6337] [Hannestad, Hansen, Tram 1310.5926] [Mirizzi, Mangano, Pisanti, Saviano 1410.1385] [Cherry, Friedland, Shoemaker 1605.06506] and others...

or for the thermalization of light (*MeV*) dark matter interacting with neutrinos, electrons or photons

[Ho, Scherrer 1208.4347] [Boehm, Dolan, McCabe 1303.6270] [Escudero 1812.05605] and others...

Next generation CMB experiments

- Telescope array in the Atacama Desert, Chile
- Funded
- Observing 2020's

 $\Delta N_{
m eff} < 0.12 ~~{
m at}~95\%\,{
m CL}$

[Simons Observatory: Science Goal and Forecasts 2019]

Next generation CMB experiments

• Telescope array in the Atacama Desert, Chile

- Funded
- Observing 2020's

 $\Delta N_{
m eff} < 0.12 ~~{
m at}~95\% \,{
m CL}$

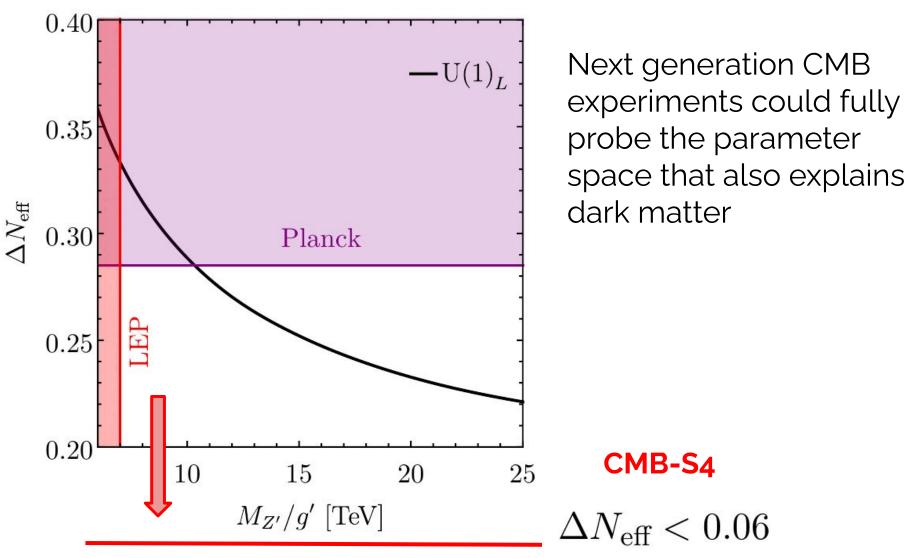
[Simons Observatory: Science Goal and Forecasts 2019]

Projection for CMB Stage-IV: $\Delta N_{
m eff} < 0.06~{
m at}~95\%\,{
m CL}$

[CMB-S4 Science Book 2016]

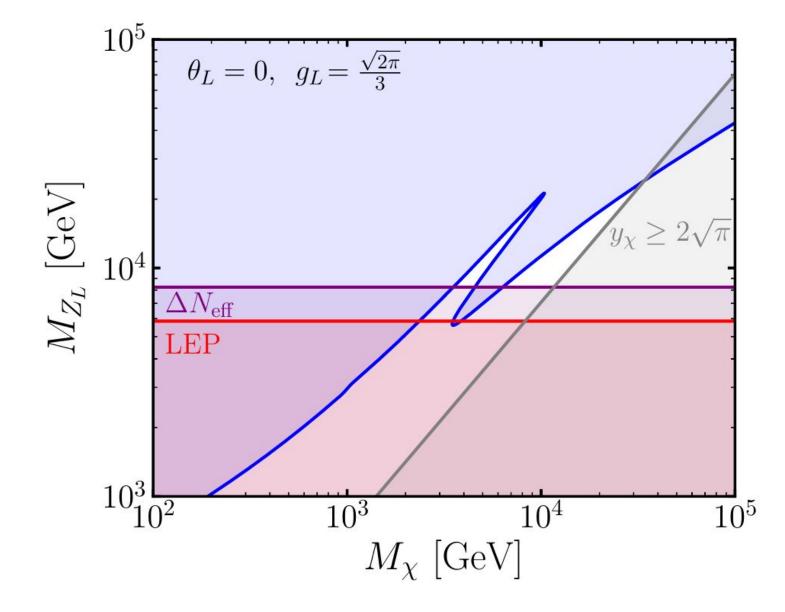
- Array of ground-based telescopes in South Pole and Chile
- Joint NSF and DOE project
- Observing late 2020s

N_{eff} gives strongest bound



Alexis Plascencia

Perturbativity $g_L \leq rac{\sqrt{2\pi}}{3} pprox 0.84$ and $\Omega h^2 \leq 0.12$



CP Violation and Electric Dipole Moments

[Fileviez Perez, ADP 2008.09116]

CP violation and electron EDM

$-\mathcal{L} \supset y_1 \bar{\Psi}_R H \chi_L + y_2 H^{\dagger} \Psi_L \chi_L + y_3 H^{\dagger} \Sigma_L \Psi_L + y_4 \bar{\Psi}_R \Sigma_L H$

+
$$y_{\Psi} \bar{\Psi}_R \Psi_L S_L^* + \frac{y_{\chi}}{\sqrt{2}} \chi_L \chi_L S_L + y_{\Sigma} \operatorname{Tr}(\Sigma_L \Sigma_L) S_L + \text{h.c.}$$

$$-\mathcal{L} \supset \left(\overline{\Sigma_R^+} \quad \overline{\Psi_{2R}^+}\right) \mathcal{M}_C \begin{pmatrix} \Sigma_L^+ \\ \Psi_{1L}^+ \end{pmatrix} + ext{h.c.}$$

$$\mathcal{M}_C = \begin{pmatrix} \sqrt{2}y_{\Sigma}v_L & \frac{y_3v}{\sqrt{2}} \\ \frac{y_4v}{\sqrt{2}} & \frac{y_{\Psi}v_L}{\sqrt{2}} \end{pmatrix}$$

$$\phi = \arg(y_3^* y_4^* \mu_\Sigma \mu_\Psi)$$

[Fileviez Perez, ADP 2008.09116]

CP violation and electron EDM

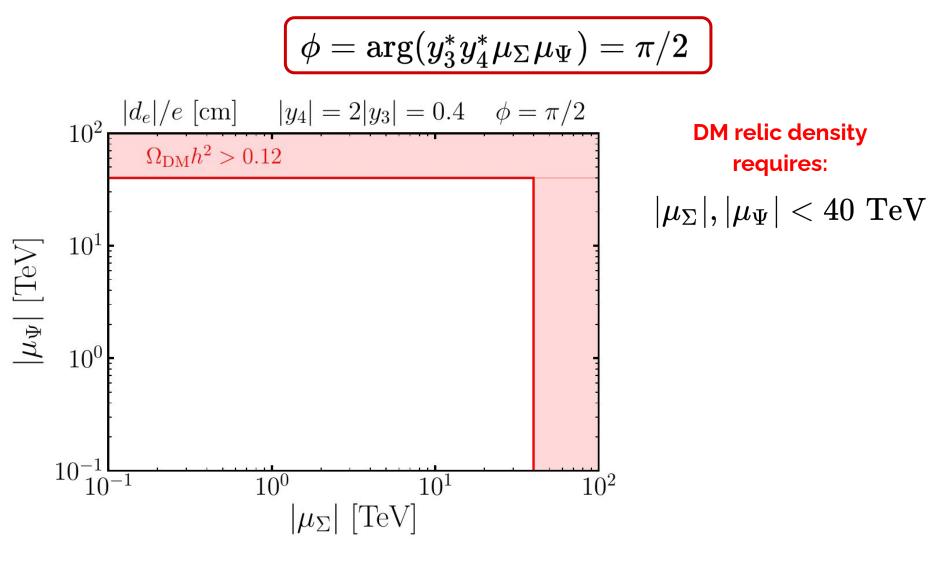
Two-loop **Barr-Zee** diagrams with the charged anomaly-canceling fermions in the loop

$$\begin{aligned} d_{e}^{\gamma h} &= \frac{\alpha^{2} \cos \theta_{B} \, Q_{e} \, m_{e}}{8\pi^{2} s_{W} \, m_{h}^{2} \, m_{W}} \sum_{i=1}^{2} M_{\chi_{i}^{\pm}} \operatorname{Im}[C_{h}^{ii}] \, I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) \\ C_{h}^{ij} &= \frac{1}{\sqrt{2}} \cos \theta_{B} \left[y_{3}(V_{R}^{1i})^{*} V_{L}^{2j} + y_{4}(V_{R}^{2i})^{*} V_{L}^{1j} \right] \\ &+ \frac{1}{\sqrt{2}} \sin \theta_{B} \left[y_{\Psi}(V_{R}^{2i})^{*} V_{L}^{2j} + 2y_{\Sigma}(V_{R}^{1i})^{*} V_{L}^{1j} \right] \\ &+ \frac{1}{\sqrt{2}} \sin \theta_{B} \left[y_{\Psi}(V_{R}^{2i})^{*} V_{L}^{2j} + 2y_{\Sigma}(V_{R}^{1i})^{*} V_{L}^{1j} \right] \\ &+ \frac{1}{\sqrt{2}} \left\{ I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}^{2}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \right\} \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}^{2}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}^{2}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{\pm}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{\pm}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i}}) = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i})} = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i})} = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i})} = \int_{0}^{1} \frac{dx}{x} j \left(0, \frac{M_{\chi_{i}^{i}}}{m_{h}^{2}} \frac{1}{x(1-x)} \right) \\ & \underbrace{ I_{\gamma h}^{i}(M_{\chi_{i}^{i})} = \int_{0}^{1} \frac{dx}{x}$$

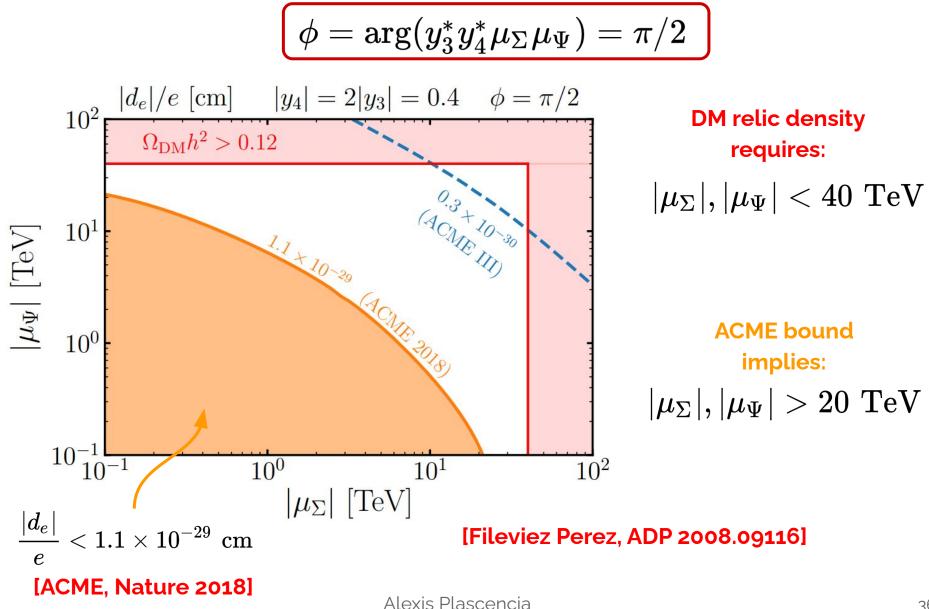
[Fileviez Perez, ADP 2008.09116]

[Barr, Zee 1990] [Nakai, Reece 1612.08090]

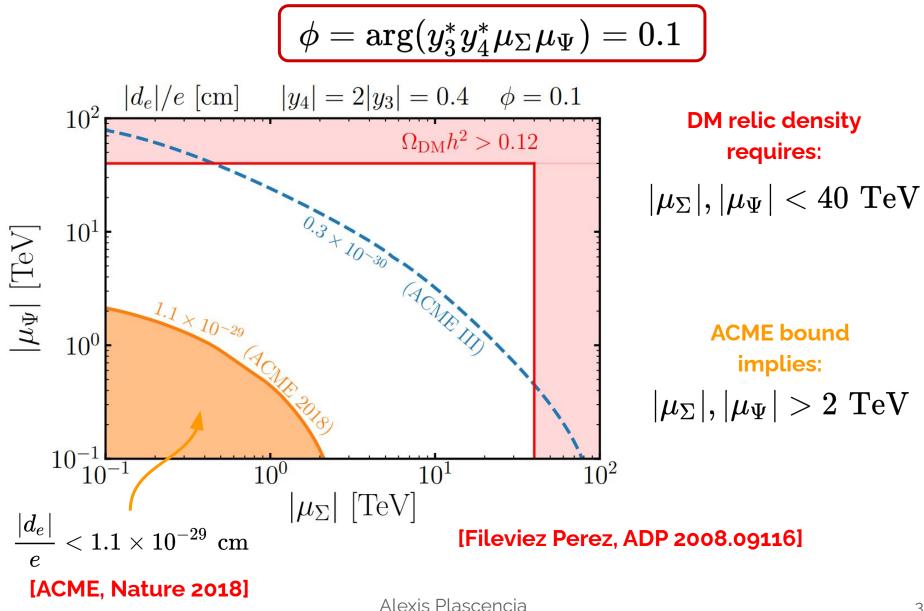
Electron EDM



Electron EDM



Electron EDM



Unbroken U(1)_{B-L}

Dirac neutrinos and Dirac DM

[Fileviez Perez, Murgui, ADP 1905.06344]

Dirac Neutrinos Anomaly cancellation: $3\nu_R$ $U(1)_{B-L}$

If *B-L* is conserved, then, the Majorana mass term is forbidden

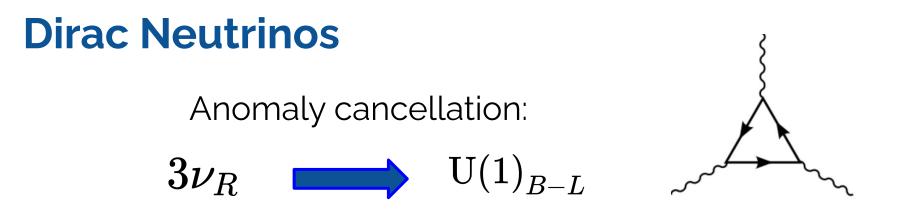
In order to give mass to the *B-L* gauge boson we can :

- 1) Unbroken *B-L*: Stueckelberg mechanism Z_{BI}
- 2) Spontaneous symmetry breaking of *B-L* Z_{BL}

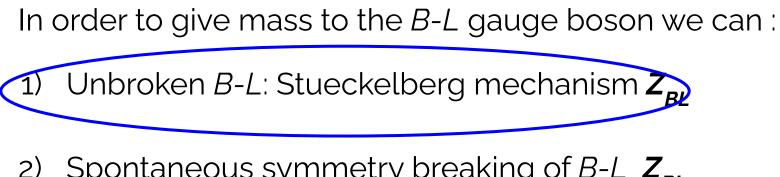
$$S_{BL} \sim (1,1,0,q_{BL})$$

$$ert q_{BL} ert > 2$$

To forbid Majorana mass term



If *B-L* is conserved, then, the Majorana mass term is forbidden

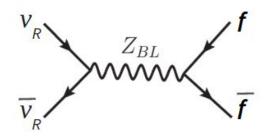


) Spontaneous symmetry breaking of *B-L*
$$Z_{BL}$$

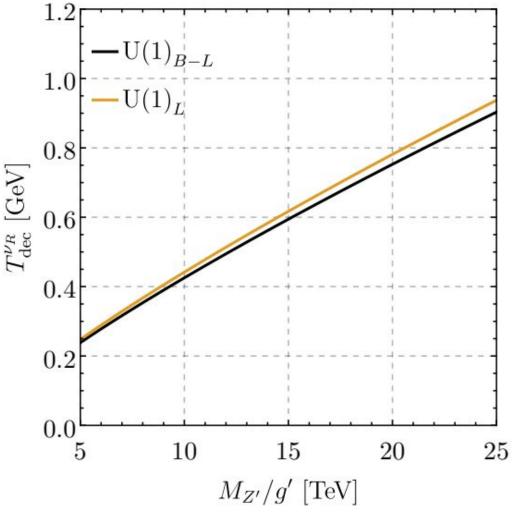
$$S_{BL} \sim (1,1,0,q_{BL}) ~~ |q_{BL}| > 2$$

Decoupling T for V_R

U(1) B-L

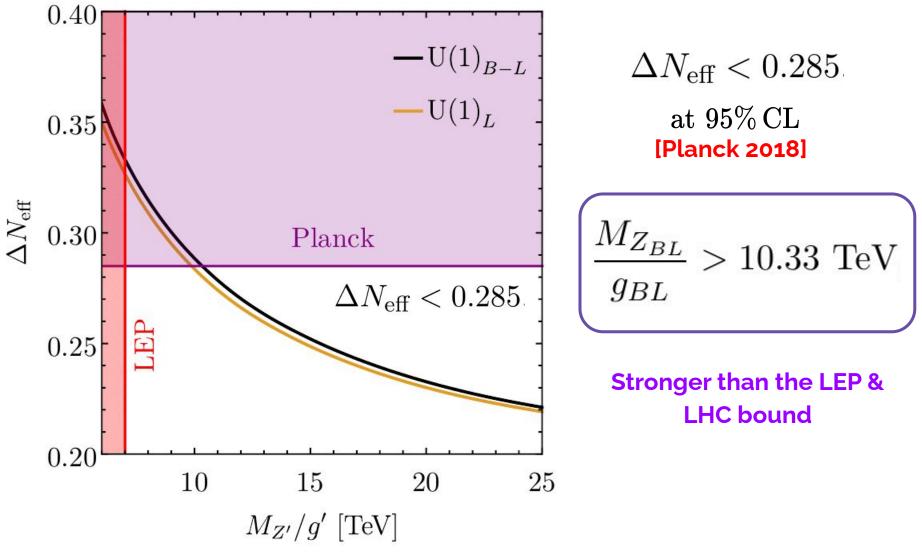


Thermalizes the right-handed neutrinos in the Early Universe



Alexis Plasce

[Fileviez Perez, Murgui, ADP 2019]



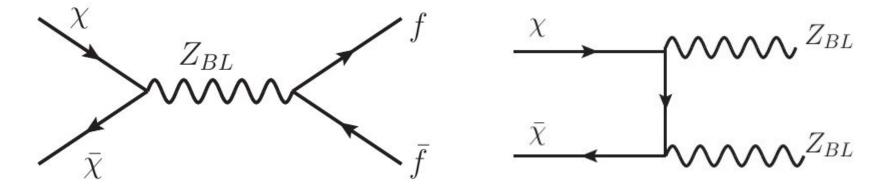
[Fileviez Perez, Murgui, ADP 2019]

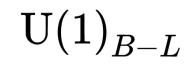
Dirac fermion as dark matter

Introduce vector-like fermion with B-L charge

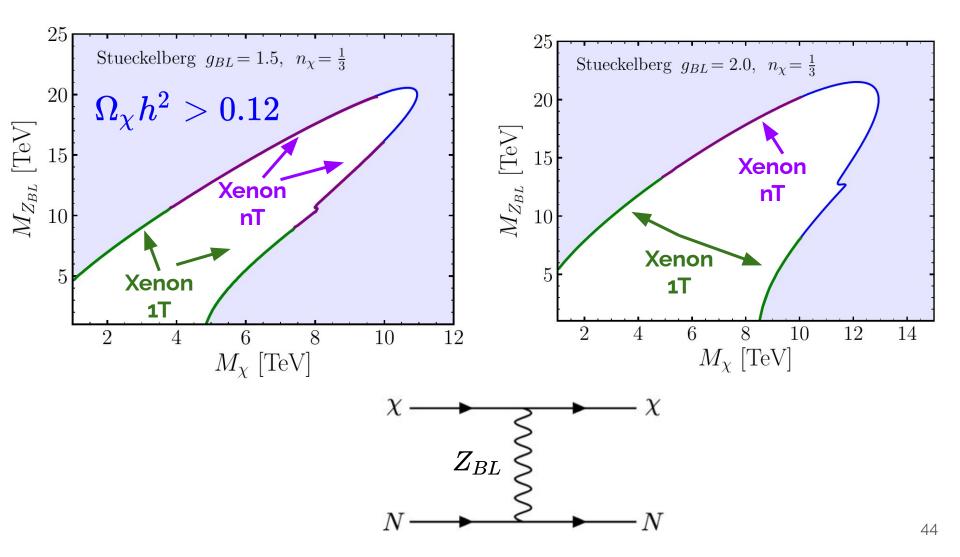
 $\chi \sim (1,1,0,\dot{n})$

n ≠ 1 since n=1 allows mixing with neutrinos and decay
Non-renormalizable operators forbid n odd

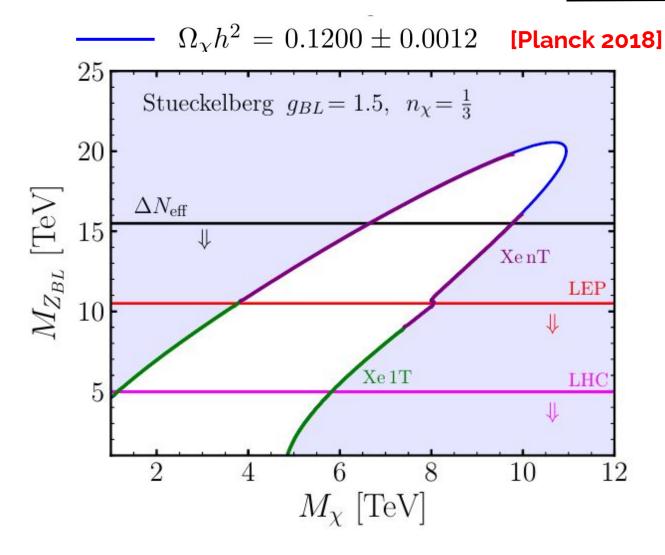






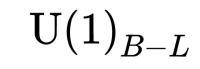


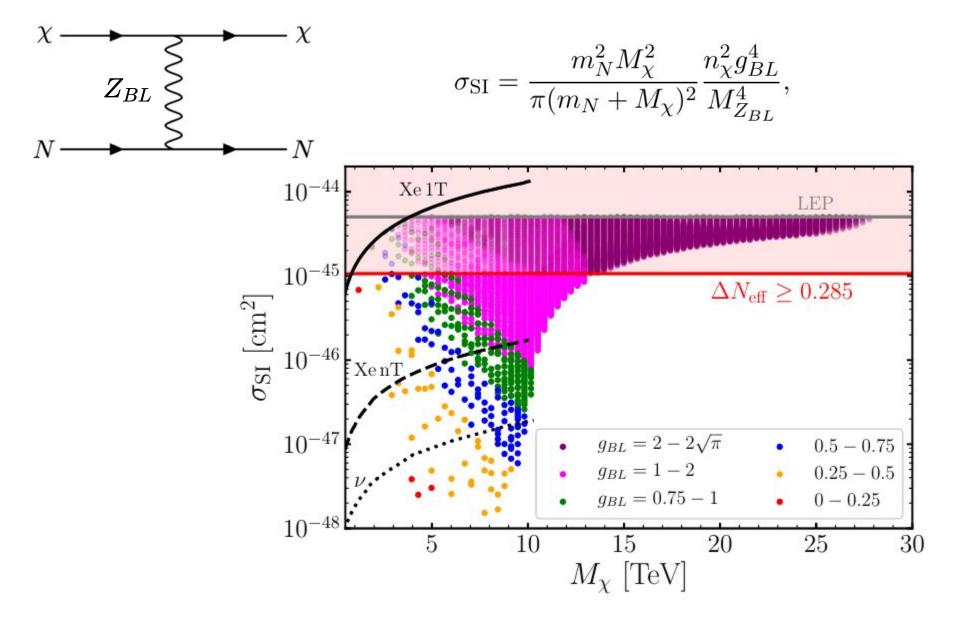
 ${
m U(1)}_{B-L}$



 ΔN_{eff} < 0.285 gives the strongest bound

Dark Matter - direct detection





Conclusions

- In U(1)_L and dark matter is predicted from gauge anomaly cancellation
- Not overproducing dark matter implies an upper bound on all new states < 40 TeV
- In U(1)_L, neutrinos are Dirac. Next generation CMB will fully test these theories (with DM) using ΔN_{eff} . Same holds for unbroken local *B L*
- New sources of CP violation lead to a large electron EDM and can be tested at experiments such as ACME

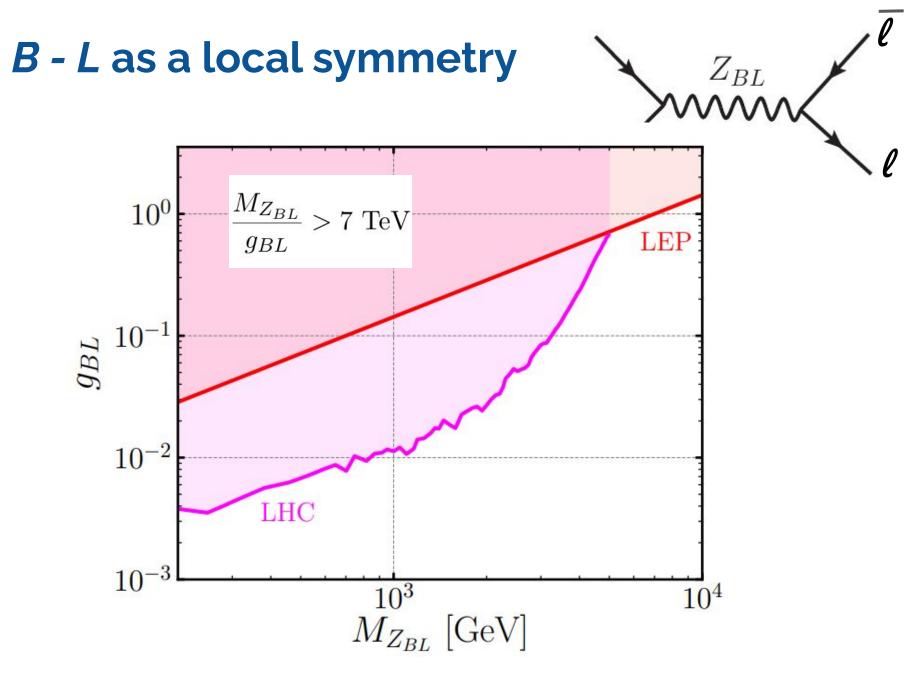
Thank you!

Back-up

Model II

Fields	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_B$
$\Psi_L = \begin{pmatrix} \Psi_L^0 \\ \Psi_L^- \end{pmatrix} $	1	2	$-\frac{1}{2}$	B_1
$\Psi_R = egin{pmatrix} \Psi_R^0 \ \Psi_R^- \ \Psi_R^- \end{pmatrix}$	1	2	$-\frac{1}{2}$	B_2
η_R	1	1	-1	B_1
η_L	1	1	-1	B_2
χ_R	1	1	0	B_1
χ_L	1	1	0	B_2

[Duerr, Fileviez Perez, Wise 1304.0576]



[ATLAS 2017] [Alioli, Farina, Pappadopulo, and Ruderman 2018]

50

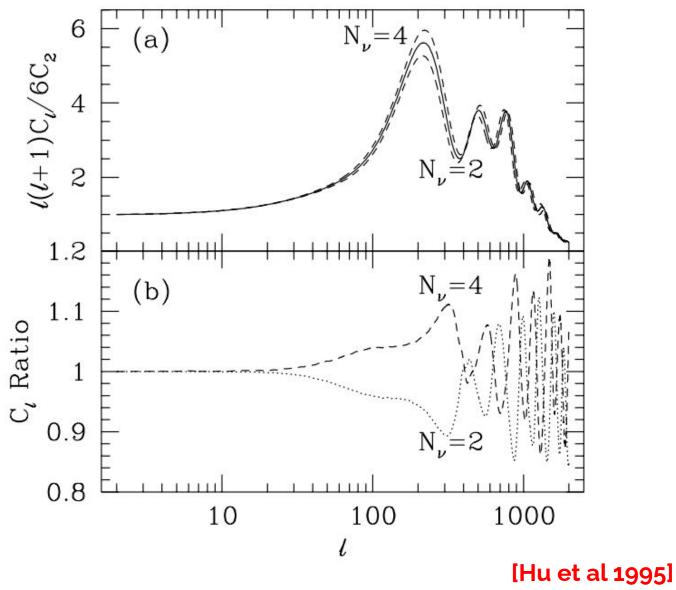
$N_{\rm eff} = 2.99^{+0.34}_{-0.33} \Rightarrow \Delta N_{\rm eff} < 0.285,$ [Planck 2018] at 95% CL

Projection for CMB Stage-IV:

$\Delta N_{ m eff} < 0.06$ at 95% CL

[CMB-S4 Science Book 2016]

N_{eff}



Stueckelberg scenario

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}(mZ^{BL}_{\mu}+\partial_{\mu}\sigma)(mZ^{\mu}_{BL}+\partial^{\mu}\sigma)$$

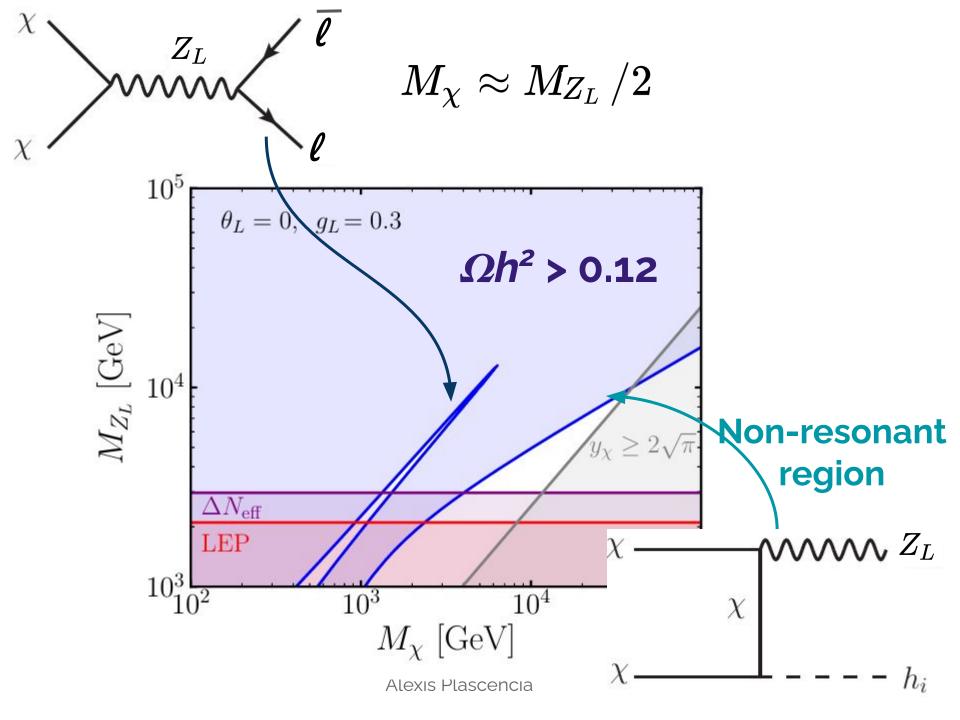
The above Lagrangian is invariant under gauge transformations:

$$\delta Z^{\mu}_{BL} = \partial^{\mu}\lambda(x) \hspace{0.5cm} ext{and} \hspace{0.5cm} \delta\sigma = -M_{Z_{BL}}\lambda(x)$$

Massive gauge boson and σ field decouples from the theory

$$egin{aligned} \mathcal{L} &= -rac{1}{4}F_{\mu
u}F^{\mu
u} - rac{m^2}{2}Z^{BL}_{\mu}Z^{\mu}_{BL} - rac{1}{2\xi}(\partial_{\mu}Z^{\mu}_{BL})^2 \ &- rac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \xirac{m^2}{2}\sigma^2 \end{aligned}$$

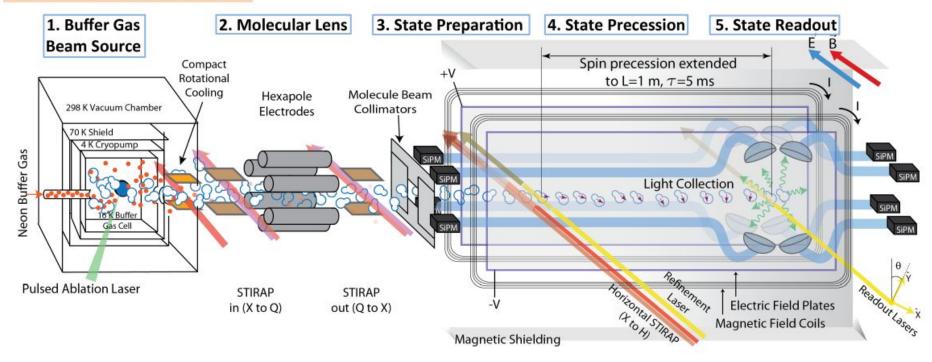
For Abelian theories renormalizable and unitary.



ACME experiment

- Measures the electron EDM
- Beam of thorium monoxide molecule
- ThO has a strong internal electric field

ACME III Apparatus



[ACME collaboration]