
Fast n-n flavor processes in the early universe, 
1 MeV<T< 50 MeV

( with some general comments on the FF formalism )      

Ray Sawyer, UCSB 



Conventional view on early U:    

“It’s very near flavor equilibrium---and      - equilibrium             
…….      So nothing much can happen”

But a lot happens--

1. Each individual  n undergoes full flavor oscillations at a rate 
approx. = GF N/Vol., N =no. of all  n ’s in box.  (”FF” rate)

2. This can have two important cosmological consequences
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A. At around T=5 MeV the electron-photon temp. is getting a little 
higher than the   n temp, but there is some heating of  ne ‘s   

through                                           that puts more energy on the
n side.   Source of the .04 in ”3.04 effective species of  n “      

(Dolgov Phys. Rep. review of 2002).     

.04 will be greatly enhanced due to FF oscillations!

B.  With added heavyish (1KeV ?) sterile coupled weakly 
through a mass-like term…….

It makes an efficient sterile production mechanism.

But first - general methods in the FF business
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The problem is not the equations (??) and (??) themselves, but with the initial conditions. As explained above, a �
operator is built to be applied to composite states built of a narrow-coned swarm of ⌫’s of flavor, say, A , as
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where we explicitly put in the unknowable phase factor that comes with every ⌫. Of course, the formalism has

attached the phase factor to the set momentum states, which do not change during a period of coherent evolution, in

a way that insures that they do not a↵ect results. We deal with the multi-⌫ state as above, just preceeding ??,
with the phase factor harmlessly mutiplying the whole expression. Now suppose, e.g. that the states A and B are

respective flavor choices for a right-moving ⌫e beam where each ⌫ carries �j
3 = 1, and a right-moving ⌫s with �j

3 = �1.

And then someone comes along and says “but now we don’t need so many beams, we can just add the two flavor

variables to get zero and use that as the initial flavor configuration for that part of the wave function”.
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where the range k = 1, ..4 is su�cient to describe
the 1(+)D universe as we construct it. We take an ini-
tial state with separate beams in which the operators
[�3, �̄3, ⌧3, ⌧̄3] take the respective values [±1,±1,±1,±1];
16 beams in all. The solutions that inspired the present
work are those of ref.’s [3],[4] for the processes ⌫e + ⌫̄e !
⌫x + ⌫̄x, in which the initial state is so simple that there
is no need for the four beams indexing with j, k; there is
already an equation for each beam in each of the sets (4)
and (5).

2. A problem with the literature

It appears to be the accepted dictum that early uni-
verse ⌫’s that begin exactly in the equilibrium un-mixed
flavor configuration can su↵er no e↵ects from the fast
⌫ � ⌫ interaction. This in conflict to the basic results of
ref. [1]. Our eqn. (1) is standard, and, appropriately
modified for real 3D, would generate the same general
equations as used by ref.[5] , a recent paper devoted to
looking at the fast flavor e↵ects in the early universe that
could result from introducing ad hoc anisotropic density
variations in the medium. But in our opinion there is a
di�culty in the latter paper, and in a number of others,
that is centered in the understanding of initial conditions.
As explained above, a ~� operator is built to be applied
to composite states built of a very narrow-coned swarm
of N ⌫’s of flavor A, say, as,
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where we explicitly put in the unknowable phase factor
that comes with every ⌫.

We expect this phase factor, which does not change
during a period of coherent evolution, not to a↵ect final
results. When we deal with the collectivization of the
wave-functions within our very narrow cone in the way

that matches the corresponding collectivization, (2), in
He↵ , we must implement the step,
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and the phase factor in (6) then tags along mutiplying
the whole expression. Now suppose, e.g. that the states
A and B are respective flavor choices for a right-moving
⌫e beam where each ⌫ carries �j

3 = 1, and a right-moving
⌫x with �

j
3 = �1, as in the ideal early-universe case.
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Someone comes along and says “but now we don’t need
so many beams, we can just add the two flavor variables
together and use that as the initial flavor configuration
for that part of the wave function.” giving,
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Or perhaps their formalisms do it behind their backs, as
it appears to have done in the case of ref. [5], already in
its eq.2.6. But in view of its dependence on phase factors
that are random, this construction cannot play a role in
a correct calculation. Our initial amplitude must remain
in the form of a product over all 16 of the [flavor]⇥[lepton
number] states, with no superpositions allowed.

A larger concern pertains to a genre of publications
that are intended to make di�cult systems like the su-
pernova flow more computable by using some other basis
than plane waves, for example angular moments. But it
would appear that abandoning a basis of plane waves in
favor of one of moments always means additive superpo-
sitions of plane wave states. In normal problems one can
say “If we use a complete set of angular functions that are
best adapted to the geometry of the flow we can always
get the plane-wave behavior back.” In the present situa-
tion, though, we would have created something analogous
to (9) as an admissible state, and it would have the same
fatal flaw. Plane waves are the required basis for “fast”
⌫ work precisely because neutrinos move in straight lines
during these processes, no matter what the angular dis-
tribution might be.

3. The outcome and interpretation of a 16-beam
approach

We take each initial particle to be in a definite flavor
and lepton number state, defined as a simultaneous eigen-
state of the operators [�3, �̄3, ⌧3, ⌧̄3] = [±1,±1,±1,±1],
because of its previous production in some scattering

=
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anglesBeam B

In any of our beams, the angles are all 
different, one from another.              
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‘

None of those lines changes directions, ever !   --------
(“ever” =  “on the 1 cm. scale for fast processes” )

=



Luckily, we can show how

becomes 

when a collective coordinate is introduced. 

In the process the original coupling constant  within our 1 cm. size box,   
GF /Vol. becomes  GF n, and flavor is to be manipulated with  Pauli 
matrices, beam by beam---

--Raffelt-Sigl equations regained.
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There is an accepted approach to calculation of the neutrino flavor density-matrix in the halo of

a supernova, in which neutrino amplitudes, not cross-sections, need to be followed carefully in the

region above the region of frequent scatterings. We apply the same reasoning and techniques to the

evolution of neutrino flavors and energy distributions in the early universe in the era of neutrino

decoupling. It is likely that the resulting changes to the classic numbers that have been used in

cosmology will be significantly greater than the ones that are found in recent updates of the theory

in this region, in which only cross-sections were used. On a closely related issue: predictions for the

production of sterile neutrinos, should they exist, will be changed significantly.
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Colliding beams : 

Nomenclature:   “two beams”.  And, for now , “dead-forward 
case”.  The angle in the display goes to zero.

But -each beam, on a very-very  "ne scale is  
distributed over a very tiny range of angles.

Chakraborty, Hansen, Izaguirre, Ra"elt, arXiv:1602.00698: (CHIR)

Not a “Toy” after all….   —   but not seeded by neutrino masses.
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Colliding beams : 

Nomenclature:   “two beams”.  And, for now , “dead-forward 
case”.  The angle in the display goes to zero.

But -each beam, on a very-very  "ne scale is  
distributed over a very tiny range of angles.

Chakraborty, Hansen, Izaguirre, Ra"elt, arXiv:1602.00698: (CHIR)

Not a “Toy” after all….   —   but not seeded by neutrino masses.

time

Used the equations of Raffelt and Sigl 1990’s

Each of those beams in the diagram above is one of those conglomerates 
of   1010  n’s

Fast  Example 1 (two “flows”)



But now consider an E.U. that is initially in thermal and flavor equilibrium.

One playbook says: 

“Nothing happens on the fast (1 cm. or less) time-scale  because--- Along 
any line in space we have an equal number of each flavor and lepton 
number going in each direction. That is: of some +1 and -1 eigenvalues of 
the flavor-diagonal operators (“s3 ”) that fix the initial flavor. 

Therefore in any particular direction we can take a single beam with 
initial value  s3=0.”

(Also, your formalism might be doing that behind your back}

But …..
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those that come from the usual formalism, going back
to [9] , in the absence of matter potentials and ordinary
neutrino oscillation terms. We have nothing to

A single �3 operator describes the flavor of a cluster of
neutrinos going a very small angular cone around, say, a
line going from -D/2 to D/2 (box size). We characterize
the R or L directions.

2. A major problem in the literature.

There is a serious mistake in some prevailing practices
for the 3D case that can already be explained in (1+)
dimension. They are are also behind what seems to be
the accepted dictum that early universe ⌫’s that begin
exactly in the equilibrium un-mixed flavor configuration
can su↵er no e↵ects from the fast ⌫ � ⌫ interaction, in
conflict to the basic results of ref. (??). The problem is
not the equations (2) and (3) themselves, but with the
initial conditions. As explained above, a � operator is
built to be applied to composite states built of a narrow-
coned swarm of ⌫’s of flavor, say, A , as

| Ai = e
i
P

j
�j

NY

j=1

|flavAj i (4)

where we explicitly put in the unknowable phase factor
that comes with every ⌫. Of course, the formalism has
attached the phase factor to the set momentum states,
which do not change during a period of coherent evolu-
tion, in a way that insures that they do not a↵ect results.
We deal with the multi-⌫ state as above, just preceeding
2,

NY

j=1

|flavAj i ! |flavAi (5)

with the phase factor harmlessly mutiplying the whole
expression. Now suppose, e.g. that the states A and B
are respective flavor choices for a right-moving ⌫e beam
where each ⌫ carries �j

3 = 1, and a right-moving ⌫s with
�
j
3 = �1. And then someone comes along and says “but

now we don’t need so many beams, we can just add the
two flavor variables to get zero and use that as the initial
flavor configuration for that part of the wave function”.

| Ai+ | Bi = e
i
P

j
�j |flavAi+ e

i
P

j
�0
j |flavBi (6)

This speaks for itself, as long as we realize that in any
cast of the dice, in choosing our incoming state from the
statistical ensemble implied by [chemical potential =0,
Fermi distribution, temperature =arbitrary], the proba-
bility of any overlap in the states is essentially nil.

However it appears that the argument “add the two fla-
vor vectors..etc.” is what underlies the profession’s iron-
clad belief that nothing at all (that’s fast) happens in the

usual equilibrium state of the neutrinos. A recent exam-
ple that I have seen quoted already multiple times is S.
Bhattacharyya and B. Dasgupta 2101.01226, which ad-
dresses ⌫�⌫ interactions in the early universe but only in
terms of dubious imposed density fluctuations as a driver,
and in any case, obtaining nearly zero.

Our greater point pertains to a larger group of publi-
cations that are intended to make di�cult systems like
the supernova flow more computable by using some other
basis than plane waves, for example angular moments. It
appears to me that this inevitably violates the criterion
that the unknowable phase factors remain multiplicative
of the entire amplitude up to the time that one decides
to calculate expectation values.

Indeed, we should go back to the formulation stage, at
the level of ref. [9], to discuss the

3. The outcome and interpretation of a 16-beam
approach

It should be clear from the remarks above that we must
use some care with the initial states in the use of the
standard evolution equations. Each initial beam must
be taken to be in a definite flavor and lepton number
state, defined as a simultaneous eigenstate of the op-
erators [�3, �̄3, ⌧3, ⌧̄3] = [±1,±1,±1,±1] . What is not
allowed are any other values than ±1. These would al-
ways land us in the pit exemplified in (6) in which the
phase factor intervenes to destroy all value, rather than
as an innocuous multiplicative phase factor multiplying
the entire amplitude.

We plot here some of the results coming from the 1D+
simplifications of the computational programs developed
there for general angles of incidence. We show in fig.
1 the results for the case in which we begin from what
would have been an exact equilibrium configuration, in
the absence of coherent e↵ects: equal numbers of each
of the four species in both the R and L beams. Indeed
if we just asked for the expectation value of any of the
operators �3, �̄3, ⌧3, ⌧̄3, they each would still remain zero.
But we wish to look deeper, and examine instead the fla-
vor density of each of eight beams individually. And the
reader must keep in mind that a beam is a set of mo-
menta; it is alternatively defined by flavor, alternatively,
only at the single initial time. Also, going back to our
insistence on a tiny angular spread in our 1D+ model, we
remark that in each component pair of directions in the
draw for the big sum over momenta there are really four
directions, R and L. This fits well with our mission to
spread the assignments [�3, �̄3, ⌧3, ⌧̄3] = [±1,±1,±1,±1]
over the momenta in an unbiased way.

Fig. 1 shows results for two of the eight beams. All of
the remaining ones are indentical to one or the other.

=

On the RHS the red and blue direction sets are completely disjoint.

In an initial condition the above addition is clear nonsense .  

The whole point of beams to replace individual particles was that the product of 
the unknowable phase factors remains as a multiplicative factor in the entire 
wave function.

?
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The product of unknowable phases remains:

a multiplicative factor in the entire wave function.

two more

Should Have Been

X X X
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In the end we find that each beam pictured in the initial flows, 
and at each angle, must be replaced by a set…..
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There is an accepted approach to calculation of the neutrino flavor density-matrix in the halo of

a supernova, in which neutrino amplitudes, not cross-sections, need to be followed carefully in the

region above the region of frequent scatterings. We apply the same reasoning and techniques to the

evolution of neutrino flavors and energy distributions in the early universe in the era of neutrino

decoupling. It is likely that the resulting changes to the classic numbers that have been used in

cosmology will be significantly greater than the ones that are found in recent updates of the theory

in this region, in which only cross-sections were used. On a closely related issue: predictions for the

production of sterile neutrinos, should they exist, will be changed significantly.
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of four separate beams,
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The problem is not the equations (??) and (??) themselves, but with the initial conditions. As explained above, a �
operator is built to be applied to composite states built of a narrow-coned swarm of ⌫’s of flavor, say, A , as
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where we explicitly put in the unknowable phase factor that comes with every ⌫. Of course, the formalism has

attached the phase factor to the set momentum states, which do not change during a period of coherent evolution, in

a way that insures that they do not a↵ect results. We deal with the multi-⌫ state as above, just preceeding ??,
with the phase factor harmlessly mutiplying the whole expression. Now suppose, e.g. that the states A and B are

respective flavor choices for a right-moving ⌫e beam where each ⌫ carries �j
3 = 1, and a right-moving ⌫s with �j

3 = �1.

And then someone comes along and says “but now we don’t need so many beams, we can just add the two flavor

variables to get zero and use that as the initial flavor configuration for that part of the wave function”.

| Ai = e
i
P

j
�j |flavAi (7)



So , just to simulate the evolution of these two flows, at an angle, one to another, 

I need 16 beams interacting mutually with each other, with their 
separate initial pure flavors.  Equations of evolution are standard .

Outcome:  Look at the whole system’s expectation value of the number operator
for any one of the four species --you find that it is constant in time—of course.

So nothing happened ? 
Look at the expectation within one beam with an initial flavor of say,       .    

That is: following exactly the directional lines of any of the pictured 1010 beam 
constituents.

And it shows instanton-like breaks.
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with the phase factor harmlessly mutiplying the whole expression. Now suppose, e.g. that the states A and B are

respective flavor choices for a right-moving ⌫e beam where each ⌫ carries �j
3 = 1, and a right-moving ⌫s with �j

3 = �1.

And then someone comes along and says “but now we don’t need so many beams, we can just add the two flavor

variables to get zero and use that as the initial flavor configuration for that part of the wave function”.
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Shapes: Jacobean Elliptic

Single Beam Plots

See Coleman lecture:

“The double well done doubly well.”

Dives=instantons
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The length of the plateaus between instantons is proportional to
Log N –where N is  n number in box.

The constant of proportionality is calculable, as in refs.
arXiv 2111.07204, and previously. 

It is:
higher order in hbar but it is  not “vacuum fluctuations”



Physical consequences for E.U.

A.  Dodelson-Widrow –like mechanism for a sterile ns .          

mass=1KeV……weakly coupled to active . 

Nonlinear oscillation  with 1 mm.  period ……is magic 
at  freeing a tiny virtual component. 

As compared with waiting 1010 cm. for a collision.

B. Reworking  Dolgov’s 1997 review article on small corrections to
the neutrino physics in the period just before decoupling. 



There is all kinds of fun to be had there.

But first  some major misery…..

Bad superpositions: In the near-equilibrium EU problem I emphasized the necessity of 
using separate beams for each flavor in the initial state.

Formulating an initial condition as a set of angular moments violates 
that precept in supernova simulations.  It is an additive  superposition of beams that 

individually have random phase factors. 

Plane waves are the required basis for ``fast" $\nu$ work precisely because 
neutrinos move in exact straight lines during these processes…. 

whatever  their angular distribution might be.



How much will this matter in the S-N problem?

Consider the dictum: “if angular distributions are independent of 
azimuthal angle, then we can average over  f and write  equations with 
only polar angle.”                            Step 1 of rebuttal: “stay in 2-D. Calculate 
fate of an isotropic distribution of initial:                                  “ 
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⌫ (4)

The problem is not the equations (??) and (??) themselves, but with the initial conditions. As explained above, a �
operator is built to be applied to composite states built of a narrow-coned swarm of ⌫’s of flavor, say, A , as
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where we explicitly put in the unknowable phase factor that comes with every ⌫. Of course, the formalism has

attached the phase factor to the set momentum states, which do not change during a period of coherent evolution, in

a way that insures that they do not a↵ect results. We deal with the multi-⌫ state as above, just preceeding ??,
with the phase factor harmlessly mutiplying the whole expression. Now suppose, e.g. that the states A and B are

respective flavor choices for a right-moving ⌫e beam where each ⌫ carries �j
3 = 1, and a right-moving ⌫s with �j

3 = �1.

And then someone comes along and says “but now we don’t need so many beams, we can just add the two flavor

variables to get zero and use that as the initial flavor configuration for that part of the wave function”.
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Each beam contains
1010 neutrinos



Outcome:

Just as in my quasi-1D case, the flavor of each beam will mix 
at the fast rate  n GF as time progresses. If I take 200 beams
these rates are proportional to  N GF/vol.  

where N =200 x 1010

”So what? “, they will say. “It all averages to zero”.

Go figure 
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[⌫e]
Right + [⌫̄e]

Left ! [⌫x]
Right + [⌫̄x]

Left

(1)

⌫ (2)

⌫̄ (3)

� (4)
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triplet surely belongs in the picture when one extends to
three flavors. The e↵ective Hamiltonian, an SU3 invari-
ant, then is expressed in terms of the eight 3⇥3 matrices
�j for the R direction, and a second set, �̂j commuting
with the first, for the L direction. The internal commu-
tation rules for both sets are as defined in the Wikipedia
article, “Clebsch-Gordan coe�cients for SU3”. The ~� · ~⌧
form in our work gets replaced by

P8
i=1 �i�̂i. Everything

is parallel to the SU2 case except that now there will be
four times as many equations in the analogues to (3), (4).

5. Calculation of the modified Dodelson-Widrow
process.

A heavy (say mass=ms=1 KeV) sterile ⌫s that mixes
with an active flavor through a small o↵-diagonal element
in the ⌫s mass matrix is a long-standing contender as a
dark matter candidate. We show here that the behavior
of our individual beams, in our new construction of the
amplitudes for the universe at 5 MeV < T < 10 MeV,
drastically a↵ects the previous results with respect to
allowed parameter space for this process. We shall deal
now with a single mode, ~q, of the neutrino. For this mode
we introduce annihilation operators a and b for the two
flavors (e, and x) of active ⌫’s, and also introduce s as
the annihilation operator for the sterile,

⌫e ! (a†, a) , ⌫x ! (b†, b) , ⌫s ! (s†, s) . (9)

The basic active-sterile coupling is,

HA�S = �(a†s+ s
†
a) +mss

†
s , (10)

and an ordinary active neutrino oscillation term is ob-
tained by setting g(t) = 1 in,

H⌫e,⌫x = �
0
g(t)(a†b+ ab

†) . (11)

To be consistent with data from other venues we are
limited to active-sterile oscillations with an amplitude of
about .01. And at a temperature of 10 MeV a ⌫ has only
a few collisions left in the time remaining before ⌫ decou-
pling. So collisional liberation cannot liberate many real
steriles, when the mixing is as small as .01.

Now we temporarily set � = 0 in (10), and look for
a function g(t) which, when placed in (11), describing
oscillation in the e-x sector, produces a �3(t) that is a
fit to the one of the plots of fig.1. We find a function
g(t) that produces the plots of fig. 2, and judge that this
function will su�ce.

Using this function g(t) we look afresh at the produc-
tion of the sterile ⌫ where the instanton interruption re-
places scattering as the liberation mechanism. We restore
the constant � = .1 eV in (10). We calculate the flavor
evolution for the single momentum, three flavor system

FIG. 2:
Plot of function “�3(t)”, that approximates that shown in
fig.1. But it is now produced by solving the equation for
�3(t) generated from (11) in the case of no active-sterile

coupling. Taking a particular g(t) it produces curves of the
form shown in fig. 1, with their alternate plateaus and

plunges, showing how the instanton plunges and ascents can
be mocked-up in a one body simulation.

fueled by (10) and (11 ) and over a time range that cor-
responds to what would be six (tiny) active-sterile oscil-
lations in the absence of the surrounding medium. The
results for the combined interactions are shown in fig. 3.,
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FIG. 3:
A time plot of the cumulative probability of the conversion
of a single ⌫e to a ⌫s through the agencies discussed in text.

The units of time are the same as in the plot of fig.1

The successive narrow major peaks in the above plot
more or less coincide in time with the broad peaks in
the instigating disturbance g(t). Does the rise of the
minima go on forever? Our numerical experiments tend
to fall apart for times larger that those shown. But as
to possible importance, we should bear in mind that at a
temperature of 5 Mev the time scale for our entire plot is
of order 109 faster than the collision time of these ⌫’s with
other ⌫’s. Thus the way that we envision producing large
numbers of steriles with small coupling � = 10�3

ms is
through a number NI of repeated short interactions. The
probabilty of creation of a real sterile, is now of order
NI⇥ 10�6, rather than 10�6, Therefore copious sterile
production appears to be predicted.
In apology for the crudity of the above model, we

should say that a better approach would be letting our
basic He↵ from (1) contain a modest addition that has all
modes of the ⌫s canonically coupled to the ⌫e field (and
⌫̄s to ⌫̄e). We get just four more equations of motion, for

Sterile production from a ne

First peak, more or less ---e-s oscillation in vacuum.
Later peaks : from the turmoil in the medium, as seen 
by  single ne



8 Equations of 
development

2

He↵ =

h
�+⌧� + ��⌧+ +

1
2�3⌧+ + �̄+⌧̄� + �̄�⌧̄+

+
1
2 �̄3⌧̄3 � �̄+⌧� � �̄�⌧+ � �+⌧̄� � ��⌧̄+

�(�̄3⌧3 + �3⌧̄3/2)

i
(1� cos ✓)

(10)

In the sum over modes the (j,k) index both the individual particle momenta and their flavors. But the whole point

of the “beams” discussion above is to now sum over the momentum states, so that

�j = N
1/2

P
q �

q,j
. ’s now obey the commutation rules of Pauli matrices, and the index j just runs over the two

flavor states. Doing the same for ⌧, �̄, ⌧̄ , and setting cos ✓ = �1 we have times a factor N but we immediately restore

the original Pauli commutators by rescaling each � and ⌧ by
p
N so that the factor N is absorbed in N/Vol. = n⌫

the particle number density. We show here the form for our 1+ D case where the angles

�i
d
dt�+ = [�+, H] , � i

d
dt�3 = [�3, H].......

� i
d
dt ⌧̄ + = [⌧̄+, H] , � i

d
dt ⌧̄3 = [⌧̄3, H] (11)

Etc.
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The problem is not the equations (??) and (??) themselves, but with the initial conditions. As explained above, a �

operator is built to be applied to composite states built of a narrow-coned swarm of ⌫’s of flavor, say, A , as
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where we explicitly put in the unknowable phase factor that comes with every ⌫. Of course, the formalism has

attached the phase factor to the set momentum states, which do not change during a period of coherent evolution, in

a way that insures that they do not a↵ect results. We deal with the multi-⌫ state as above, just preceeding ??,
with the phase factor harmlessly mutiplying the whole expression. Now suppose, e.g. that the states A and B are

respective flavor choices for a right-moving ⌫e beam where each ⌫ carries �
j
3 = 1, and a right-moving ⌫s with �

j
3 = �1.

And then someone comes along and says “but now we don’t need so many beams, we can just add the two flavor

variables to get zero and use that as the initial flavor configuration for that part of the wave function”.

| Ai = e
i
P

j
�j |flavAi (7)

e
+
+ e

� $ ⌫e + ⌫̄e (8)

This speaks for itself, as long as we realize that in any cast of the dice, in choosing our incoming state from the

statistical ensemble implied by [chemical potential =0, Fermi distribution, temperature =arbitrary], the probability

of any overlap in the states is essentially nil.

He↵ =

h
�+⌧� + ��⌧+ +

1
2�3⌧3 + �̄+⌧̄� + �̄�⌧̄+ +

1
2 �̄3⌧̄3

��̄+⌧� � �̄�⌧+ � 1
2 �̄3⌧3 � �+⌧̄� � ��⌧̄+ � 1

2�3⌧̄3)

i

⇥(1� cos ✓)

(9)


