

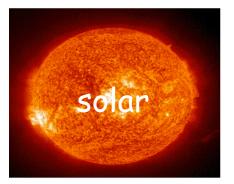
Neutrinos as a Portal to New Physics and Astrophysics

9 March 2022

Zahra Tabrizi

Neutrino Theory Network (NTN) fellow

Northwestern University



Status of Neutrino Physics in 2022

Super-Kamiokande, Borexino, SNO

atmospheric

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

IceCube, Super-Kamiokande

T2K, MINOS, NOvA

 $\Delta m^2_{21} @ 3\% |\Delta m^2_{31}| @ 1\%$

Future: DUNE, T2HK , JUNO

mixing angles:

 $sin^2 \theta_{12} @ 4\%$

 $sin^2\theta_{13} @ 3\%$

 $sin^2\theta_{23} @ 3\%$

mass squared differences:

- -
- Increase the precision
- CP-phase
- Mass hierarchy

Also:

Mass scale? Dirac or Majorana? Sterile?

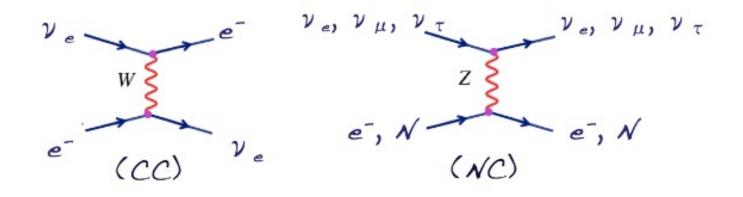
3/9/2022

Zahra Tabrizi, NTN fellow, Northwestern

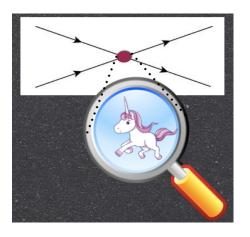
Questions:

- How can we systematically use different neutrino experiments for BSM searches?
- How can we connect results to other particle physics experiments?
- Can neutrino experiments probe reasonable new physics beyond the reach of high energy colliders?

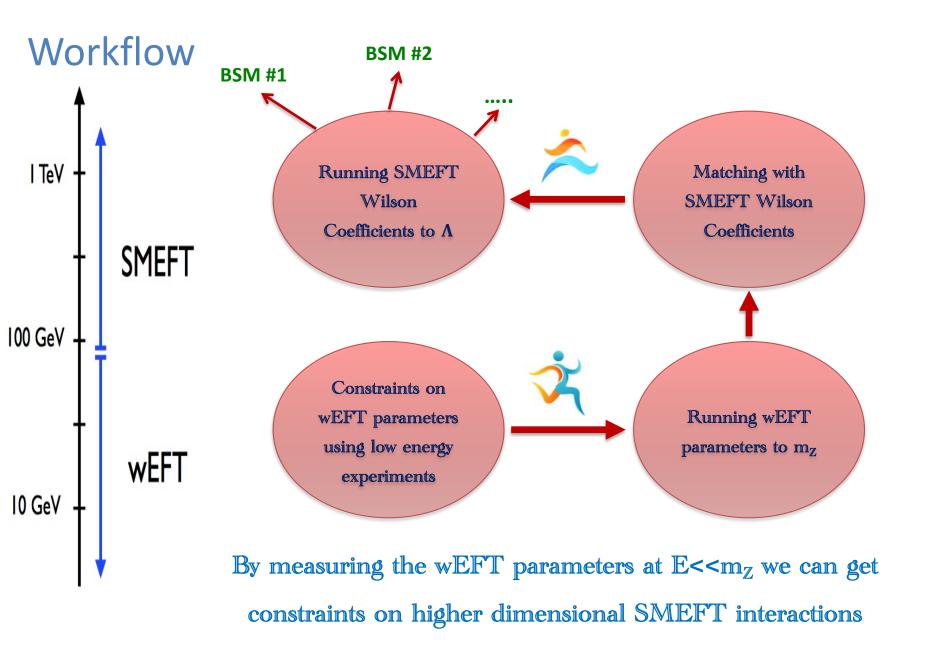
Neutrino experiments can become an ingredient in the broad program of precision measurements • Coherent CC and NC forward scattering of neutrinos



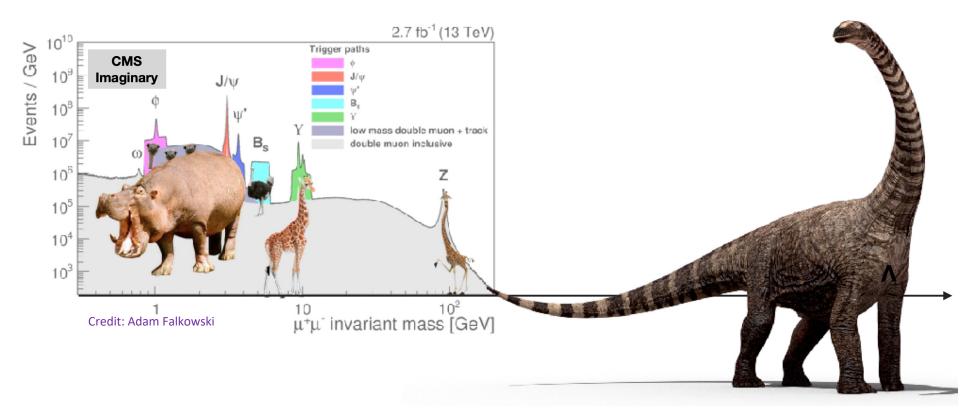
• New 4-fermion interactions



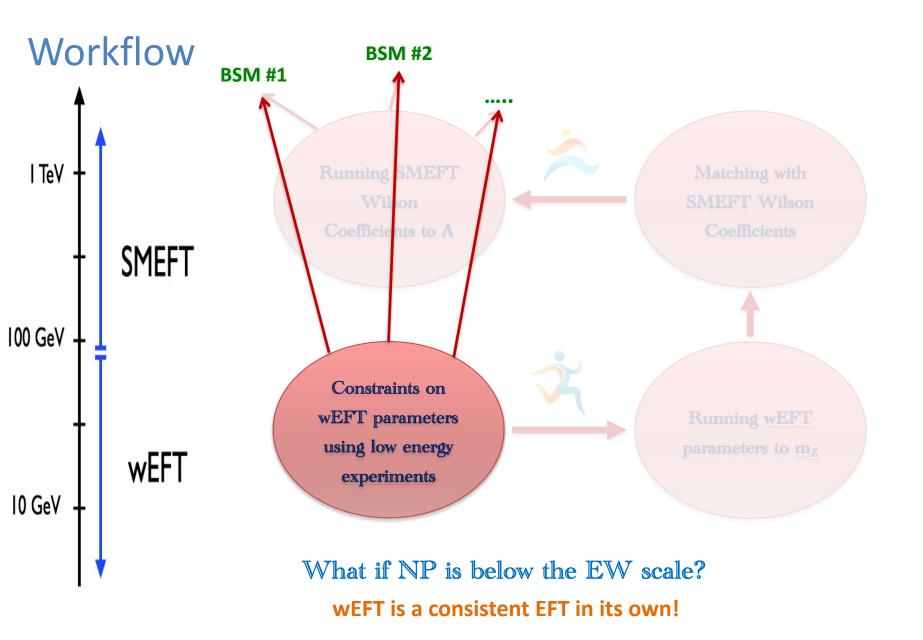
- Observable effects at neutrino production/propagation/detection?
- Using "EFT" formalism to "systematically" explore NP beyond the neutrino masses and mixing

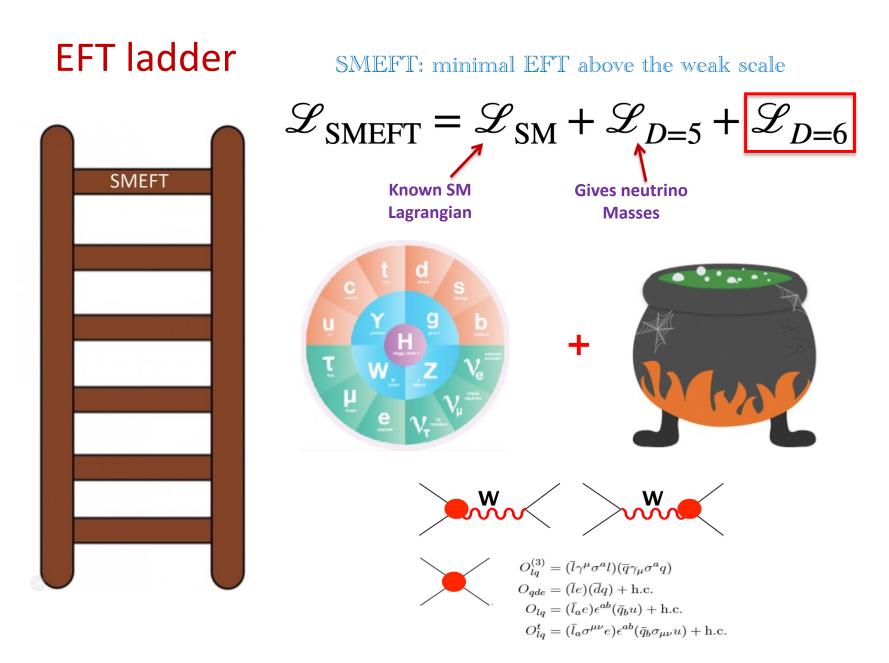


Fantastic Beasts and Where To Find Them

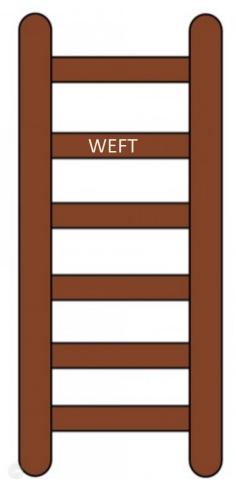


- It is likely the new degrees of freedom beyond the SM may not be directly available at LHC or even future colliders.
- However, even if it's not possible to see the head, perhaps we can see the tail?





EFT ladder WEFT: Effective Lagrangian defined at a low scale $\mu \,{}^{\sim}\,2\,{\rm GeV}$

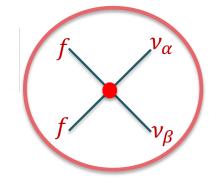


• CC: New left/right handed, (pseudo)scalar and tensor interactions

$$\mathcal{L}_{\text{WEFT}} \supset -\frac{2V_{ud}}{v^2} \{ [\mathbf{1} + \epsilon_L_{\alpha\beta} (\bar{u}\gamma^{\mu} P_L d) (\bar{\ell}_{\alpha}\gamma_{\mu} P_L \nu_{\beta}) + \epsilon_R_{\alpha\beta} (\bar{u}\gamma^{\mu} P_R d) (\bar{\ell}_{\alpha}\gamma_{\mu} P_L \nu_{\beta}) + \frac{1}{2} \epsilon_S_{\alpha\beta} (\bar{u}d) (\bar{\ell}_{\alpha} P_L \nu_{\beta}) - \frac{1}{2} \epsilon_P_{\alpha\beta} (\bar{u}\gamma_5 d) (\bar{\ell}_{\alpha} P_L \nu_{\beta}) + \frac{1}{4} (\hat{\epsilon}_T_{\alpha\beta} (\bar{u}\sigma^{\mu\nu} P_L d) (\bar{\ell}_{\alpha}\sigma_{\mu\nu} P_L \nu_{\beta}) + \text{h.c.} \}$$

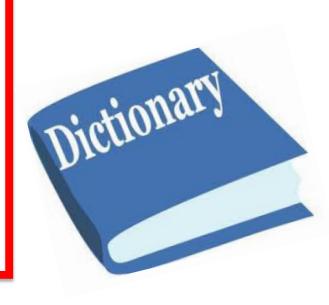
• NC: New left and right handed interactions

$$\mathcal{L}_{ ext{WEFT}} \supset -rac{2}{v^2} \epsilon^{fX}_{lphaeta} \left(ar{
u}_{lpha} \gamma^{\mu} P_L
u_{eta}
ight) \left(ar{f} \gamma_{\mu} P_X f
ight)$$



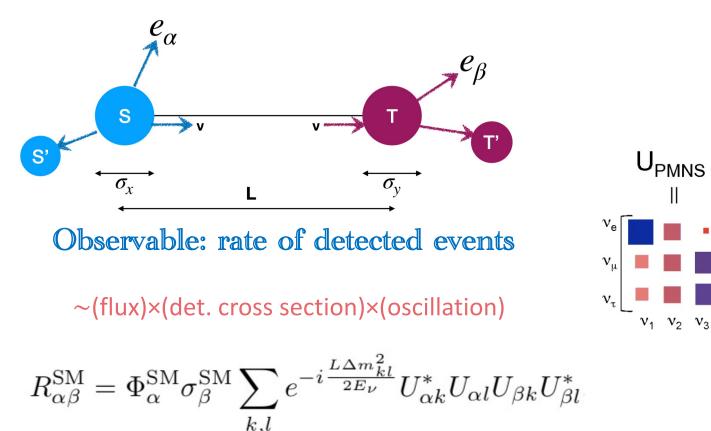
At the scale m_Z WEFT parameters ε_X map to dim-6 operators in SMEFT

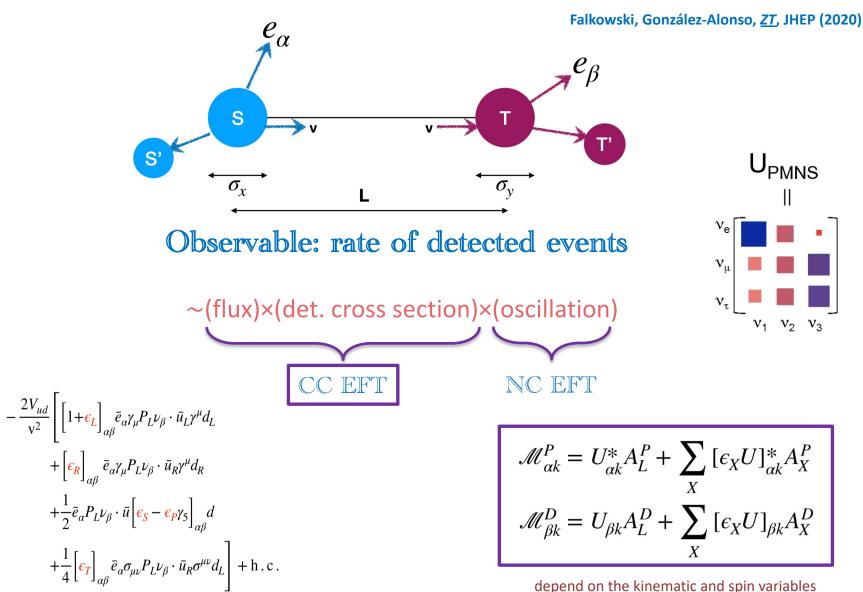
$$\begin{split} [\epsilon_L]_{\alpha\beta} &\approx \frac{v^2}{\Lambda^2 V_{ud}} \left(V_{ud} [c_{Hl}^{(3)}]_{\alpha\beta} + V_{jd} [c_{Hq}^{(3)}]_{1j} \delta_{\alpha\beta} - V_{jd} [c_{lq}^{(3)}]_{\alpha\beta1j} \right. \\ [\epsilon_R]_{\alpha\beta} &\approx \frac{v^2}{2\Lambda^2 V_{ud}} [c_{Hud}]_{11} \delta_{\alpha\beta} \\ [\epsilon_S]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* + [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\epsilon_P]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* - [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\hat{\epsilon}_T]_{\alpha\beta} &\approx -\frac{2v^2}{\Lambda^2 V_{ud}} V_{jd} [c_{lequ}^{(3)}]_{\beta\alphaj1}^* \end{split}$$



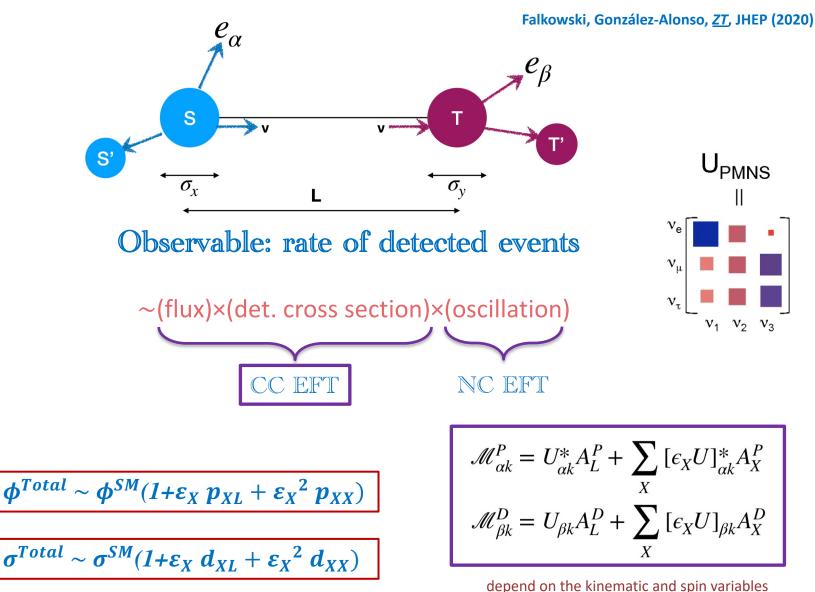
Falkowski, González-Alonso, ZT, JHEP (2019)

- All ε_X arise at O(Λ^{-2}) in the SMEFT, thus they are equally important.
- No off-diagonal right handed interactions in SMEFT.

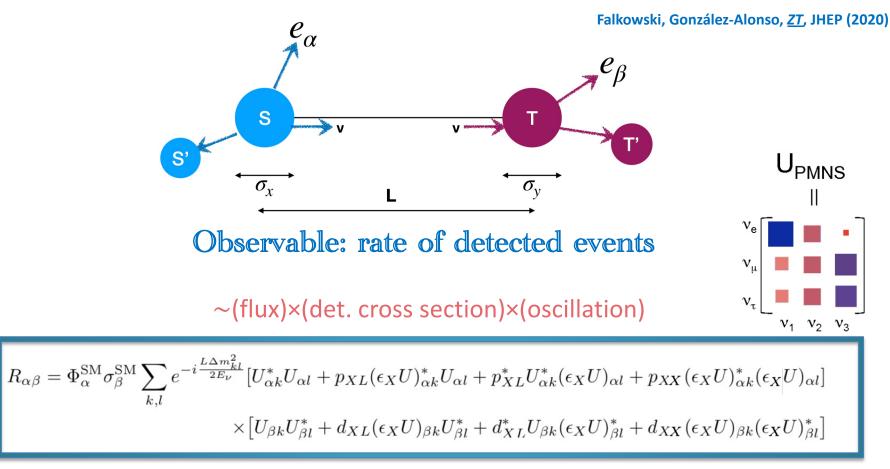




3/9/2022



3/9/2022



 $\phi^{Total} \sim \phi^{SM}(1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$

$$\sigma^{Total} \sim \sigma^{SM} (1 + \varepsilon_X \ d_{XL} + \varepsilon_X^2 \ d_{XX})$$

Pion decay

EFT at Production

Falkowski, González-Alonso, ZT, JHEP (2020)

Due to the pseudoscalar nature of the pion, it is sensitive only to axial $(\epsilon_L - \epsilon_R)$ and pseudo-scalar (ϵ_P) interactions.

$$p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = -\frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)^2},$$
$$p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}^2(m_u + m_d)^2}.$$

$$\pi^{-} \begin{cases} d & \bigvee^{-} \\ \bar{u} & \downarrow^{-} \\ \pi^{-} (d\bar{u}) \rightarrow \mu^{-} + \bar{v}_{\mu} \end{cases}$$

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

 $\phi^{Total} \sim \phi^{SM}(1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$

Pion decay

EFT at Production

Falkowski, González-Alonso, ZT, JHEP (2020)

Due to the pseudoscalar nature of the pion, it is sensitive only to axial $(\epsilon_L - \epsilon_R)$ and pseudo-scalar (ϵ_P) interactions.

$$p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = -\frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},$$
$$p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}^2(m_u + m_d)^2}.$$
~700!

$$\pi^{-} \begin{cases} \mathbf{d} & \overset{\mathsf{W}^{-}}{\underset{\mathbf{u}}{\overset{}}} & \overset{\mathsf{\overline{v}}_{\mu}}{\overset{}} \\ \pi^{-}(\mathbf{d}\overline{\mathbf{u}}) \rightarrow \mu^{-} + \overline{\mathbf{v}}_{\mu} \end{cases}$$

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

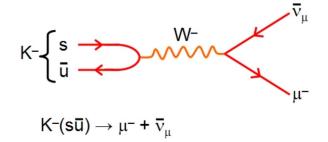
$$\boldsymbol{\phi}^{Total} \sim \boldsymbol{\phi}^{SM}(1 + \boldsymbol{\varepsilon}_X \ \boldsymbol{p}_{XL} + \boldsymbol{\varepsilon}_X^2 \ \boldsymbol{p}_{XX})$$

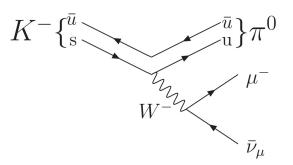
 ε_X and ε_X^2 are equally important!

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Both 2-body and 3-body kaon decays contribute:

$$p_{XY,\alpha}^{S,jk} \equiv \frac{\int dE_S \frac{\phi_S(E_S)}{E_S} \sum_i \beta_i^S(E_S) \int d\Pi_{P'_i} A_{X,\alpha}^{S_i,jk} A_{Y,\alpha}^{S_i,jk*}}{\int dE_S \frac{\phi_S(E_S)}{E_S} \sum_{i'j'k'} \beta_{i'}^S(E_S) \int d\Pi_{P'_{i'}} |A_{L,\alpha}^{S_i,j'k'}|^2}$$



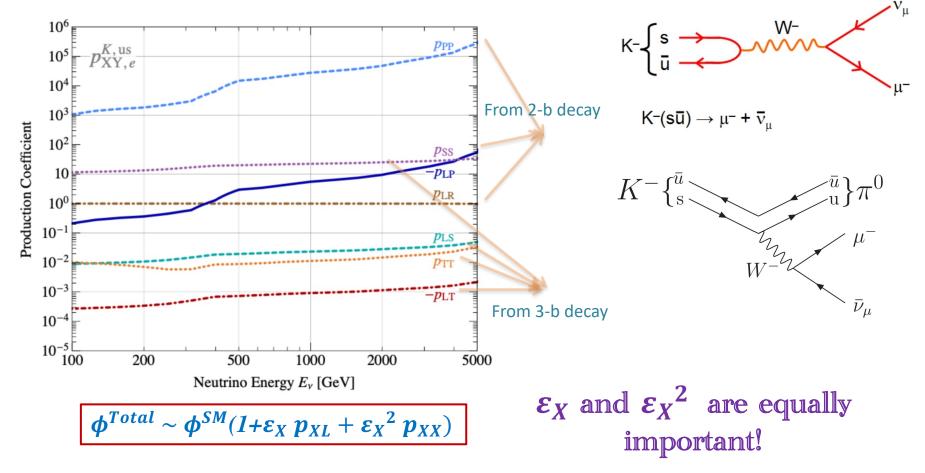


Energy distribution of K^{\pm} , K_L or K_S

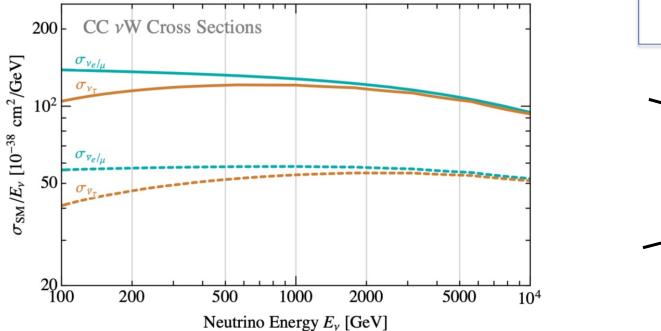
Depends on the experimental details

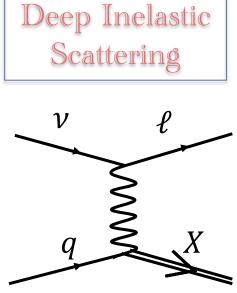
kaon decay EFT at Production

Falkowski, González-Alonso, Kopp, Soreq, <u>ZT</u>, JHEP (2021)

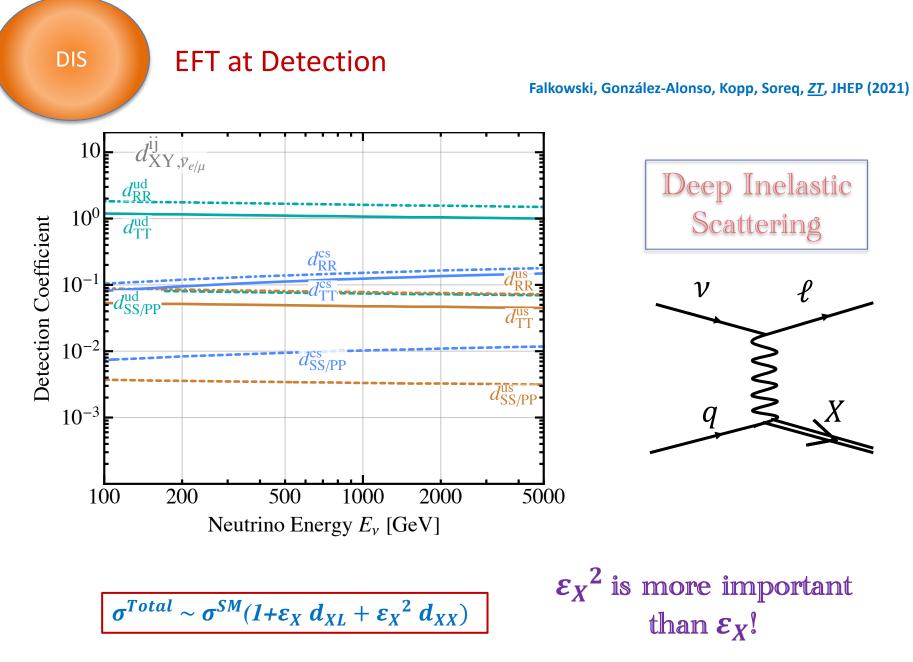


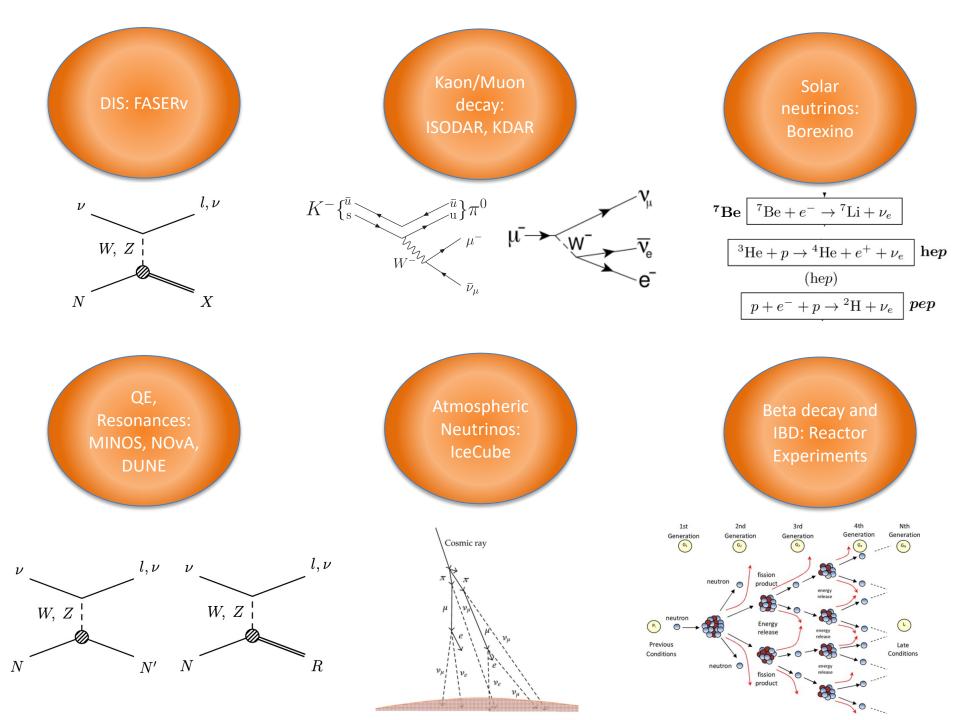
Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

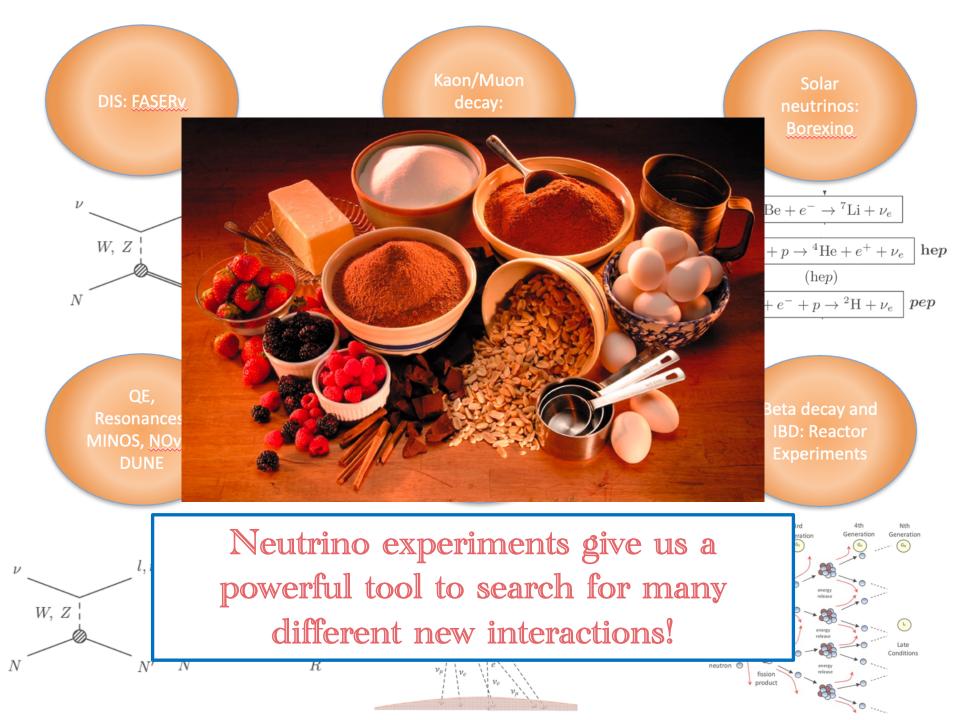




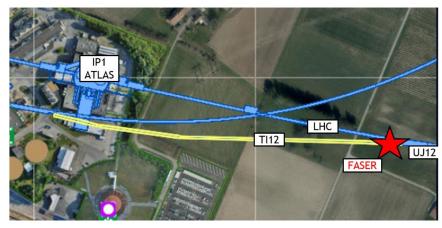
DIS detection, easy to include NP (compared to QE and Resonances)

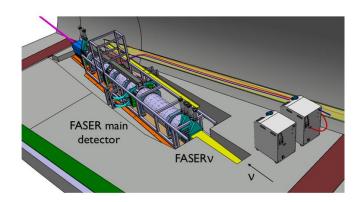


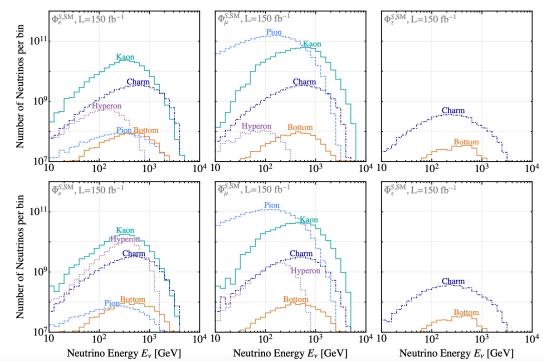


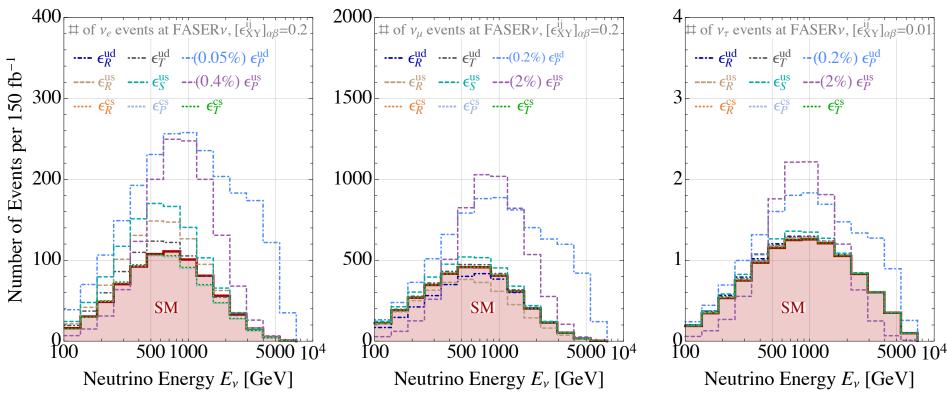


- Downstream of ATLAS at of 480 m;
- Ideal for detecting high-energy neutrinos at LHC;
- 1.2-t of tungsten material;
- Several production modes;
- Pion and Kaon decays are the dominant ones;
- All (anti)neutrino flavors are available;





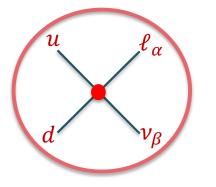




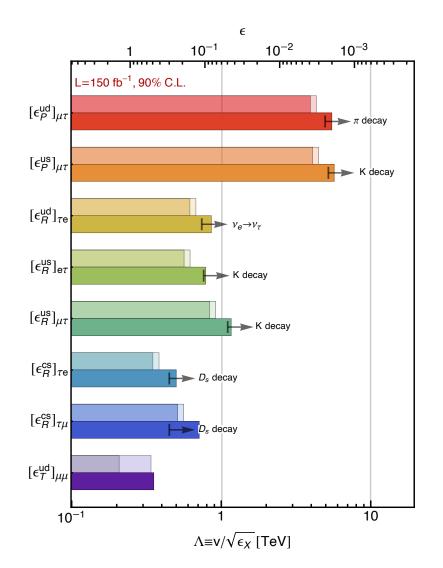
Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

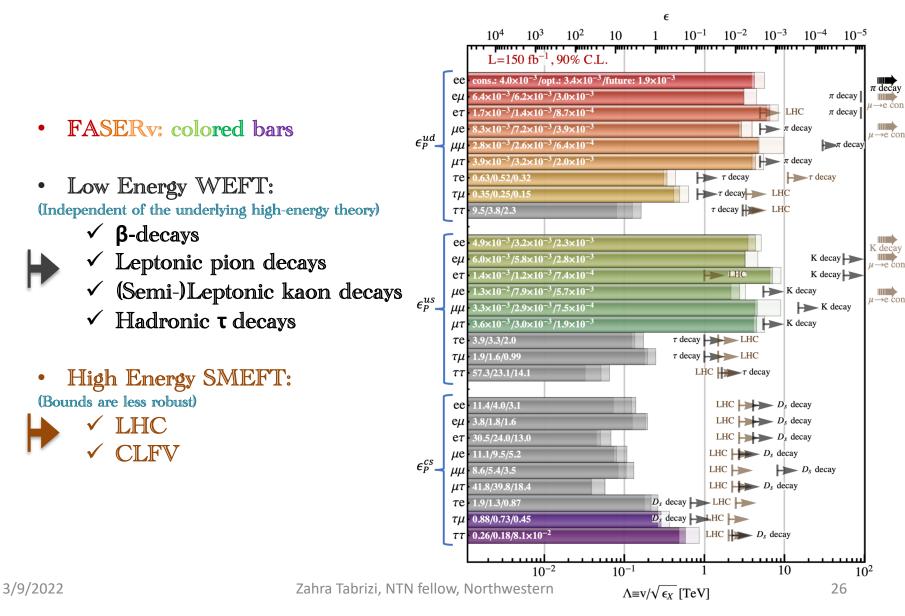
- FASERv: colored bars
- Top: Pessimistic/Optimistic flux uncertainties
- Bottom: High luminosity LHC



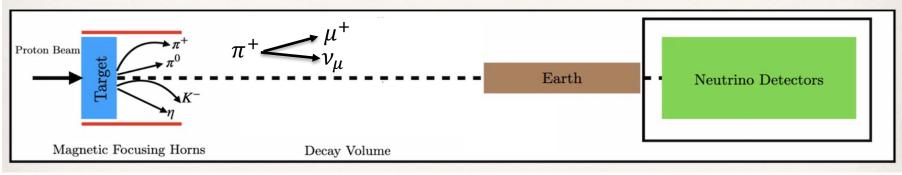
- Neutrino detectors can identify flavor: 81 operators at FASERv
- New physics reach at multi-TeV
- Complementary or dominant constraints



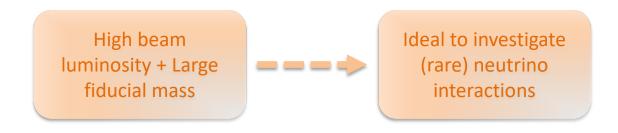
Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)



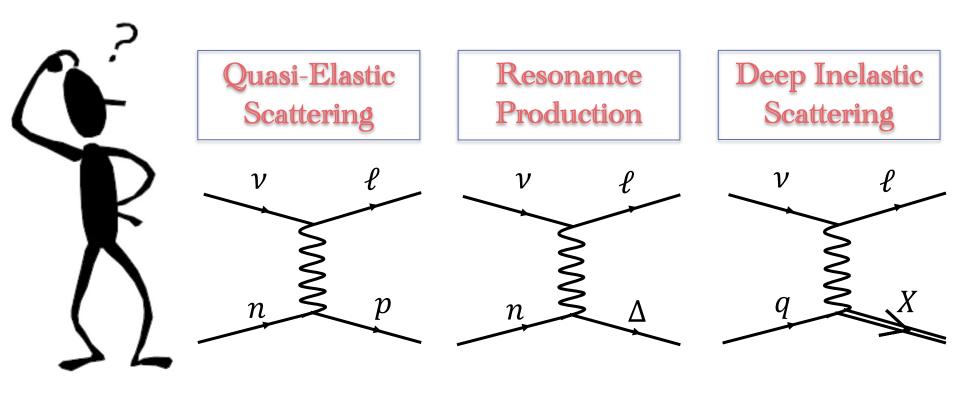
Accelerator Neutrino Experiments



Credit: Kevin Kelly

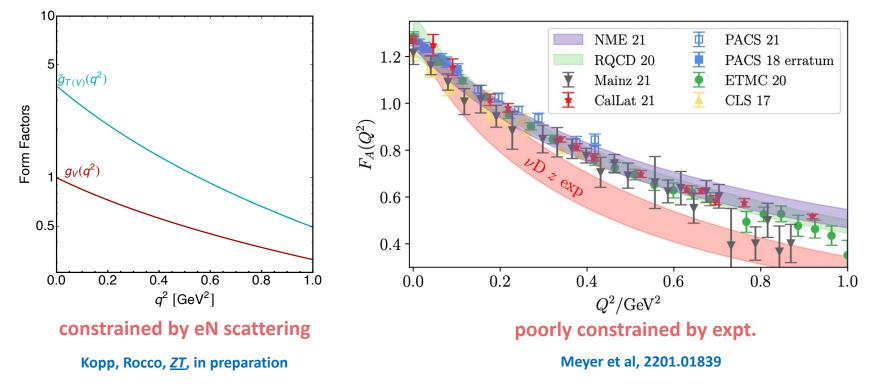


0.5-5 GeV energy range: QE, resonances, DIS



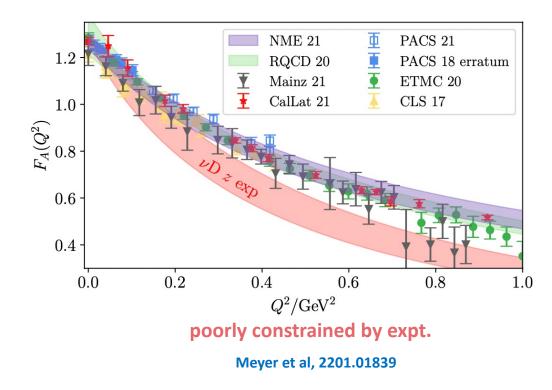
QE matrix elements at the nucleon level

$$\begin{split} \langle p(p_p) | \ \bar{u}\gamma_{\mu}d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_V(q^2) \gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N} q_{\mu} \right] u_n(p_n) \\ \langle p(p_p) | \ \bar{u}\gamma_{\mu}\gamma_5 d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_A(q^2)\gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_P(q^2)}{2M_N} q_{\mu} \right] \gamma_5 u_n(p_n) \end{split}$$



QE matrix elements at the nucleon level

$$\begin{split} \langle p(p_p) | \ \bar{u}\gamma_{\mu}d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_V(q^2) \gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N} q_{\mu} \right] u_n(p_n) \\ \langle p(p_p) | \ \bar{u}\gamma_{\mu}\gamma_5 d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_A(q^2)\gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_P(q^2)}{2M_N} q_{\mu} \right] \gamma_5 u_n(p_n) \end{split}$$



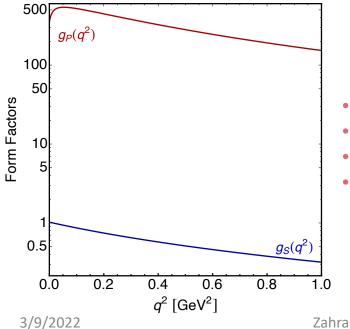
QE matrix elements at the nucleon level

$$\begin{aligned} \langle p(p_p) | \ \bar{u} \ d | n(p_n) \rangle &= g_S(q^2) \ \bar{u}_p(p_p) \ u_n(p_n) \\ \langle p(p_p) | \ \bar{u} \ \gamma_5 \ d | n(p_n) \rangle &= g_P(q^2) \ \bar{u}_p(p_p) \ \gamma_5 \ u_n(p_n) \\ \langle p(p_p) | \ \bar{u} \ \sigma_{\mu\nu} \ d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_T(q^2) \ \sigma_{\mu\nu} + g_T^{(1)}(q^2) \ (q_\mu \gamma_\nu - q_\nu \gamma_\mu) \right. \\ &+ \ g_T^{(2)}(q^2) \ (q_\mu P_\nu - q_\nu P_\mu) + g_T^{(3)}(q^2) \ (\gamma_\mu \not q \gamma_\nu - \gamma_\nu \not q \gamma_\mu) \right] u_n(p_n) \end{aligned}$$

conservation of the vector current (CVC):

$$g_S(q^2) = rac{\delta M_N^{ ext{QCD}}}{\delta m_q} g_V(q^2) + rac{q^2/2 \overline{M}_N}{\delta m_q} ilde{g}_S(q^2)$$

• partial conservation of the axial current (PCAC):



$$g_P(q^2) = rac{\overline{M}_N}{\overline{m}_q} g_A(q^2) + rac{q^2/2\overline{M}_N}{(2\overline{m}_q)} \tilde{g}_P(q^2)$$

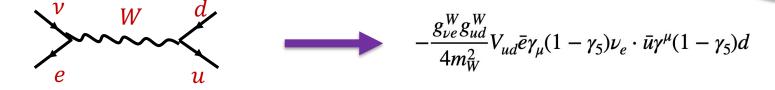
- We need axial form factor for NP as well
- Much larger statistics
- Large pseudo-scalar form factor (no q/M suppression)
- Different energy scale compare to beta decay experiments

Kopp, Rocco, ZT, in preparation

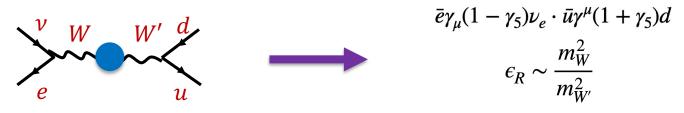
Zahra Tabrizi, NTN fellow, Northwestern

Specific New Physics Models

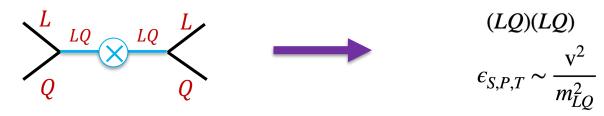
ε_L: measures deviations of the W boson to quarks and leptons, compared to the SM prediction



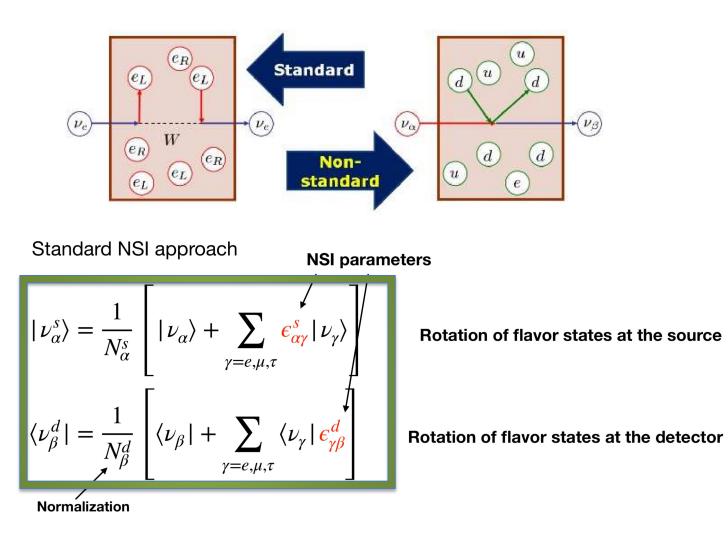
 ϵ_R : left-right symmetric SU(3)_CxSU(2)_LxSU(2)_RxU(1)_X models introduce new charged vector bosons W' coupling to right-handed quarks



 $\epsilon_{s,P,T}$: In leptoquark models, new scalar particles couple to both quarks and leptons



Neutrinos are not pure flavor states:



Neutrinos are not pure flavor states:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle \ , \ \ \langle\nu_{\beta}^{d}| = \langle\nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R^{\text{QM}}_{\alpha\beta} = \Phi^{\text{SM}}_{\alpha} \sigma^{\text{SM}}_{\beta} \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]^*_{\alpha l} [x_d]_{\beta k} [x_d]^*_{\beta l}$$

$$x_s \equiv (1 + \epsilon^s) U^* \& x_d \equiv (1 + \epsilon^d)^T U$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

- Can one "validate" QM-NSI approach from the QFT results? Yes...
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No...

Observable is the same, we can match the two (only at the linear level)

$$\epsilon^s_{\alpha\beta} = \sum_X p_{XL}[\epsilon_X]^*_{\alpha\beta}, \quad \epsilon^d_{\beta\alpha} = \sum_X d_{XL}[\epsilon_X]_{\alpha\beta}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

Only at the linear order:

Falkowski, González-Alonso, ZT, JHEP (2019)

Neutrino Process	NSI Matching with EFT	
ν_e produced in beta decay	$\epsilon_{e\beta}^{s} = [\epsilon_{L}]_{e\beta}^{*} - [\epsilon_{R}]_{e\beta}^{*} - \frac{g_{T}}{g_{A}} \frac{m_{e}}{f_{T}(E_{\nu})} [\epsilon_{T}]_{e\beta}^{*}$	
ν_e detected in inverse beta decay	$\epsilon_{\beta e}^{d} = [\epsilon_{L}]_{e\beta} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} [\epsilon_{R}]_{e\beta} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} [\epsilon_{S}]_{e\beta} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} [\epsilon_{T}]_{e\beta} \right)$	
$ u_{\mu} $ produced in pion decay	$\epsilon^s_{\mu\beta} = [\epsilon_L]^*_{\mu\beta} - [\epsilon_R]^*_{\mu\beta} - \frac{m_\pi^2}{m_\mu(m_u + m_d)} [\epsilon_P]^*_{\mu\beta}$	

- Different NP interactions appear at the source or detection simultaneously
- Some of the p_{XL}/d_{XL} coefficients depend on the neutrino energy
- There are chiral enhancements in some cases

These correlations, energy dependence etc. cannot be

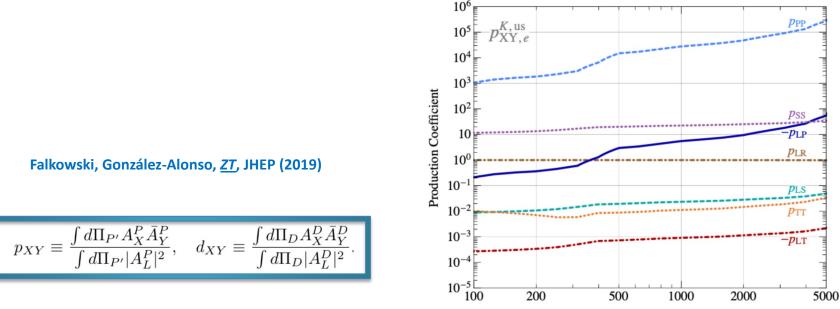
seen in the traditional QM approach.

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

$$p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}$$

This is always satisfied for new physics correcting V-A interactions only as p_{LL} = d_{LL} = 1 by definition

However for non-V-A new physics the consistency condition is not satisfied in general



Zahra Tabrizi, NTN fellow, Northwestern Neutrino Energy E_v [GeV]

Conclusion:

- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables using the EFT formalism.
- We have proposed a systematic approach to neutrino experiments in the SMEFT framework.
- Unlike other probes (meson decays, ATLAS and CMS analyses, etc.) neutrino experiments have the unique capability to identify the neutrino flavor. This is crucial complementary information in case excesses are found elsewhere in the future.
- Future directions: Systematic model-independent global analyses of new physics in neutrino oscillation experiments with:
 - i) Power counting of EFT effects;
 - ii) Extraction of oscillation parameters in presence of general new physics;
 - iii) Comparison between the sensitivity of oscillation and other experiments.

Thanks for your attention

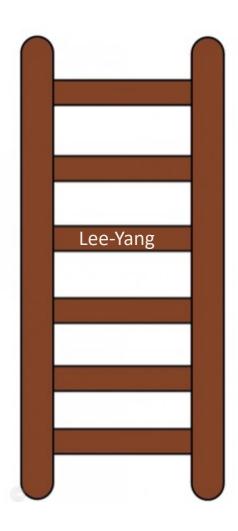
Back up Slides

WEFT Power Counting

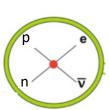
• Dim-6:
$$\frac{\Delta R}{R_{SM}} = c \ \epsilon_X^2$$

- Dim-7: Cannot interfere with the SM amplitudes, suppressed! Liao et al, JHEP 08 (2020) 162
- Dim-8: $\frac{\Delta R}{R_{SM}} = \sqrt{c} \epsilon_8 E^2 / v^2$

EFT ladder



 At the energy scale of reactor neutrino experiments the relevant degrees of freedom are not quarks, but nucleons and nuclei. Matching this EFT to the WEFT Lagrangian we obtain the Lee-Yang Lagrangian:



 $E \ll m_7$

$$\mathcal{L}_{\mathrm{LY}} \supset -\frac{V_{ud}}{v^2} \{ g_V [\mathbf{1} + \epsilon_L + \epsilon_R]_{\alpha\beta} (\bar{p}\gamma^{\mu}n) (\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) \\ - g_A [\mathbf{1} + \epsilon_L - \epsilon_R]_{\alpha\beta} (\bar{p}\gamma^{\mu}\gamma_5 n) (\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) \\ + g_S [\epsilon_S]_{\alpha\beta} (\bar{p}n) (\bar{\ell}_{\alpha}P_L\nu_{\beta}) - g_P [\epsilon_P]_{\alpha\beta} (\bar{p}\gamma_5 n) (\bar{\ell}_{\alpha}P_L\nu_{\beta}) \\ + \frac{1}{2} g_T [\hat{\epsilon}_T]_{\alpha\beta} (\bar{p}\sigma^{\mu\nu}P_L n) (\bar{\ell}_{\alpha}\sigma_{\mu\nu}P_L\nu_{\beta}) + \mathrm{h.c.} \},$$

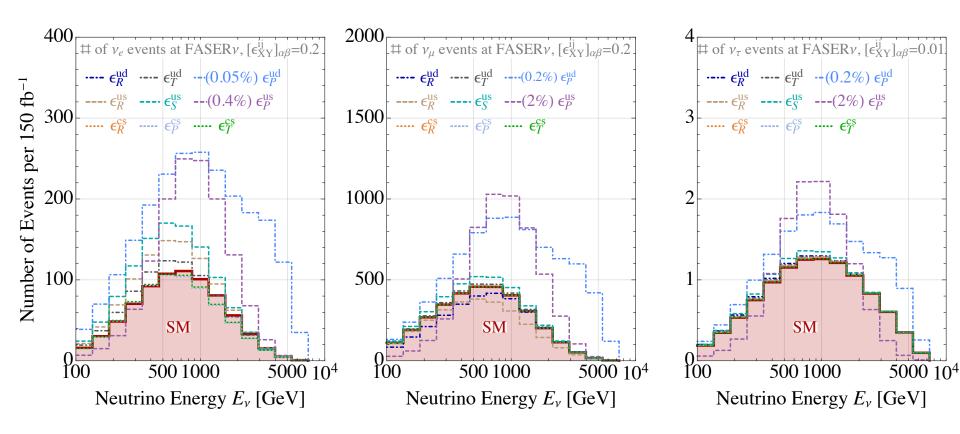
• Lattice+theory fix the non-perturbative parameters with good precision

 $g_A = 1.2728 \pm 0.0017$, $g_S = 1.02 \pm 0.11$, $g_P = 349 \pm 9$, $g_T = 0.987 \pm 0.055$.

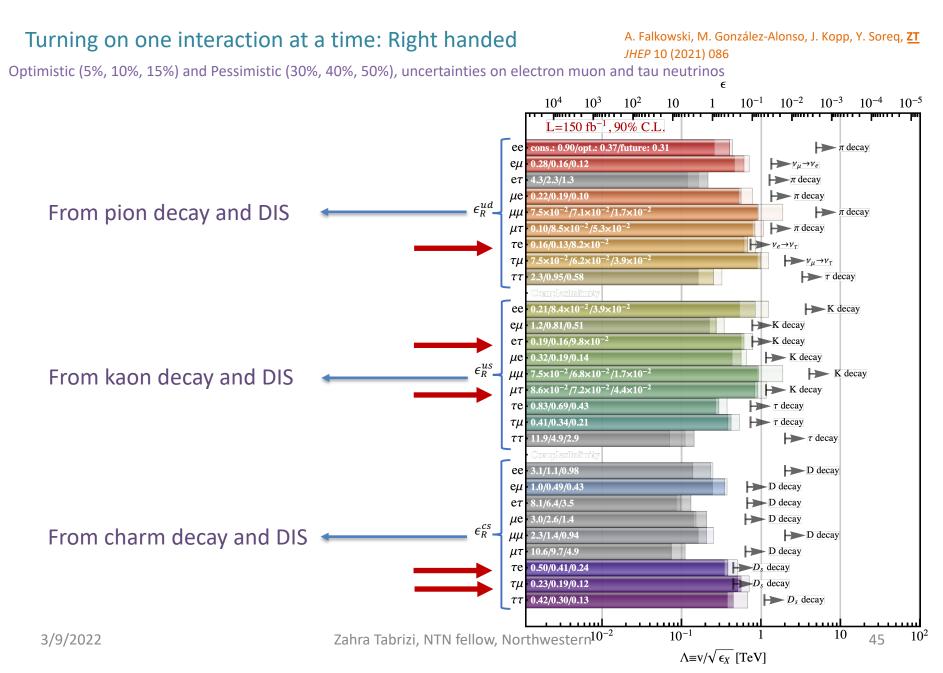
- T. Bhattacharya et al, Phys. Rev. D94 (2016), no. 5 054508
- M. Gonzalez-Alonso and J. Martin Camalich, Phys. Rev. Lett. 112 (2014), no. 4 042501
- M. Gonzalez-Alonso et al, Prog. Part. Nucl. Phys. 104 (2019) 165–223

EFT at FASERv

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, <u>**ZT**</u> JHEP 10 (2021) 086



RESULTS

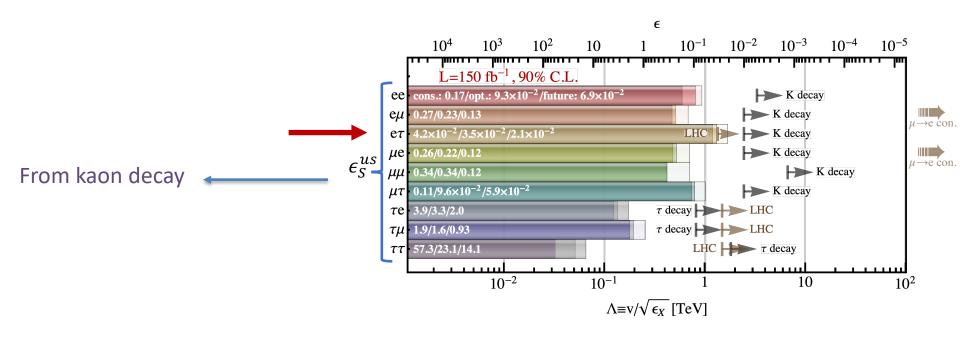


RESULTS

Turning on one interaction at a time: Scalar

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, ZT JHEP 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

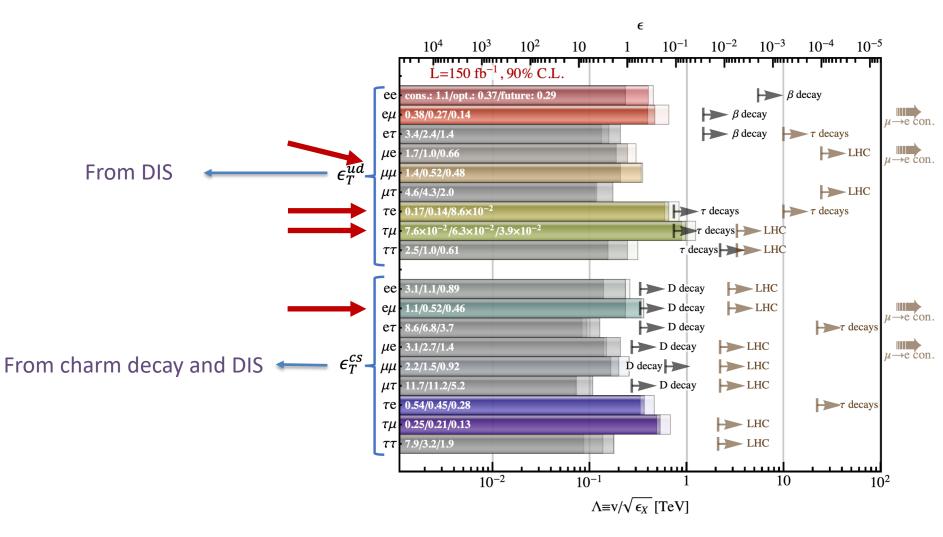


RESULTS

Turning on one interaction at a time: Tensor

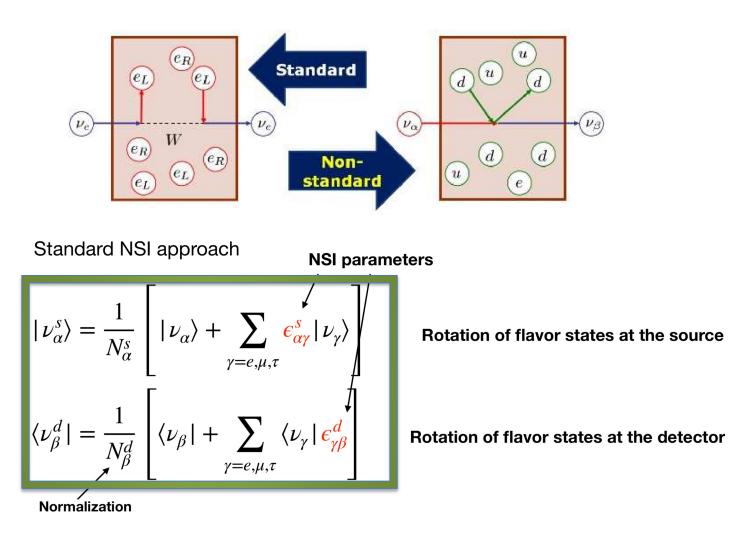
A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, ZT JHEP 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos



QM-NSI Description

Neutrinos are not pure flavor states:



QM-NSI Description

Neutrinos are not pure flavor states:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle \ , \ \ \langle\nu_{\beta}^{d}| = \langle\nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R^{\text{QM}}_{\alpha\beta} = \Phi^{\text{SM}}_{\alpha} \sigma^{\text{SM}}_{\beta} \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]^*_{\alpha l} [x_d]_{\beta k} [x_d]^*_{\beta l}$$

$$x_s \equiv (1 + \epsilon^s) U^* \& x_d \equiv (1 + \epsilon^d)^T U_s$$

QFT vs QM-NSI

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

QFT vs QM-NSI

- Can one "validate" QM-NSI approach from the QFT results? Yes...
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No...

Observable is the same, we can match the two (only at the linear level)

$$\epsilon^s_{\alpha\beta} = \sum_X p_{XL}[\epsilon_X]^*_{\alpha\beta}, \quad \epsilon^d_{\beta\alpha} = \sum_X d_{XL}[\epsilon_X]_{\alpha\beta}$$

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **<u>ZT</u>** *JHEP* 11 (2020) 048

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** JHEP 11 (2020) 048

At the linear order we have:

Neutrino Process	NSI Matching with EFT	
ν_e produced in beta decay	$\epsilon_{e\beta}^{s} = [\epsilon_{L}]_{e\beta}^{*} - [\epsilon_{R}]_{e\beta}^{*} - \frac{g_{T}}{g_{A}} \frac{m_{e}}{f_{T}(E_{\nu})} [\epsilon_{T}]_{e\beta}^{*}$	
ν_e detected in inverse beta decay	$\epsilon_{\beta e}^{d} = [\epsilon_{L}]_{e\beta} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} [\epsilon_{R}]_{e\beta} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} [\epsilon_{S}]_{e\beta} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} [\epsilon_{T}]_{e\beta} \right)$	
$ u_{\mu} $ produced in pion decay	$\epsilon^s_{\mu\beta} = [\epsilon_L]^*_{\mu\beta} - [\epsilon_R]^*_{\mu\beta} - \frac{m_\pi^2}{m_\mu(m_u + m_d)} [\epsilon_P]^*_{\mu\beta}$	

- Different NP interactions appear at the source or detection simultaneously.
- Some of the p/d coefficients depend on the neutrino energy.
- There are chiral enhancements in some cases.

These correlations, energy dependence etc. cannot be seen in the traditional QM approach.

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** *JHEP* 11 (2020) 048

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

$$p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}$$

This is always satisfied for new physics correcting V-A interactions only as pLL = dLL = 1 by definition

However for non-V-A new physics the consistency condition is not satisfied in general

$$p_{XY} \equiv \frac{\int d\Pi_{P'} A_X^P \bar{A}_Y^P}{\int d\Pi_{P'} |A_L^P|^2}, \quad d_{XY} \equiv \frac{\int d\Pi_D A_X^D \bar{A}_Y^D}{\int d\Pi_D |A_L^P|^2}.$$

Zahra Tabrizi, NTN fellow, Northwestern Neutrino Energy E_v [GeV]

EFT at FASERv

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **<u>ZT</u>** *JHEP* 10 (2021) 086

FASERv Flavor Experiments

Colliders

Neutrino experiments:

Many more operators can be probed (81 at FASERv)

Low energy:

 Independent of the underlying high-energy theory

High-Energy:

- SMEFT is the underlying theory
- Bounds are less robust

Bounds shown in bold face have been calculated in this work

!:			TT: 1	
Coupling			• •	/ CLFV (SMEFT)
	90% CL bound	process	90% CL bound	process
$[\epsilon_P^{ud}]_{ee}$	$4.6 imes10^{-7}$	$\mathbf{\Gamma}_{\pi ightarrow \mathbf{e} u}/\mathbf{\Gamma}_{\pi ightarrow \mu u}$		
$[\epsilon_P^{ud}]_{e\mu}$	$7.3 imes10^{-6}$	$\Gamma_{\pi \to e\nu} / \Gamma_{\pi \to \mu\nu}$ [7]	$2.0 imes10^{-8}$	$\mu ightarrow e$ conversion
$[\epsilon_P^{ud}]_{e au}$	$7.3 imes10^{-6}$	$\Gamma_{\pi \to e\nu} / \Gamma_{\pi \to \mu\nu}$ [7]	$2.5 imes 10^{-3}$	LHC [64]
$[\epsilon_P^{ud}]_{\mu e}$	$2.6 imes10^{-3}$	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$	$2.0 imes10^{-8}$	$\mu ightarrow e$ conversion
$[\epsilon_P^{ud}]_{\mu\mu}$	$9.4 imes10^{-5}$	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$		
$[\epsilon_P^{ud}]_{\mu au}$	$2.6 imes10^{-3}$	$\mathbf{\Gamma}_{\pi ightarrow \mathbf{e} u}/\mathbf{\Gamma}_{\pi ightarrow \mu u}$		
$[\epsilon_P^{ud}]_{ au e}$	$9.0 imes10^{-2}$	$\Gamma_{ au ightarrow \pi u}$	$5.8 imes 10^{-3(*)}/4.4 imes 10^{-4}$	LHC [65] / $ au$ decay [64]
$[\epsilon_P^{ud}]_{ au\mu}$	$9.0 imes10^{-2}$	$\Gamma_{ au ightarrow \pi u}$	$5.8 imes 10^{-3(*)}$	LHC [65]
$[\epsilon_P^{ud}]_{ au au}$	$8.4 imes 10^{-3}$	τ -decay [65]	$5.8 imes 10^{-3(*)}$	LHC [65]
$[\epsilon_P^{us}]_{ee}$	$1.1 imes 10^{-6}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$		
$[\epsilon^{us}_P]_{e\mu}$	$2.1 imes10^{-5}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$6.2 imes10^{-7}$	$\mu ightarrow e {f conversion}$
$[\epsilon_P^{us}]_{e au}$	$2.1 imes10^{-5}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$7.1 imes 10^{-2}$	LHC [64]
$[\epsilon_P^{us}]_{\mu e}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$6.2 imes10^{-7}$	$\mu ightarrow e {f conversion}$
$[\epsilon_P^{us}]_{\mu\mu}$	$2.2 imes10^{-4}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$		
$[\epsilon_P^{us}]_{\mu au}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$		
$[\epsilon_P^{us}]_{ au e}$	$6.4 imes10^{-2}$	$\Gamma_{ au ightarrow {f K} u} / \Gamma_{{f K} ightarrow \mu u}$	$3.1 imes 10^{-2(*)} / 8.1 imes 10^{-2}$	LHC (data [66])/ τ -decay [64]
$[\epsilon_P^{us}]_{ au\mu}$	$6.4 imes10^{-2}$	$\Gamma_{ au ightarrow {f K} u} / \Gamma_{{f K} ightarrow \mu u}$	$3.1 imes 10^{-2(*)}$	LHC (data [66])
$[\epsilon_P^{us}]_{ au au}$	$1.3 imes 10^{-2}$	τ -decay [67]	$3.1 imes 10^{-2(*)}$	LHC (data [66])
$[\epsilon_P^{cs}]_{ee}$	$4.8 imes10^{-3}$	$\Gamma_{{ m D}_{ m s} ightarrow { m e} u}$	$1.3 imes 10^{-2}$	LHC [68]
$[\epsilon_P^{cs}]_{e\mu}$	$4.6 imes10^{-3}$	$\Gamma_{\mathbf{D_s} ightarrow \mathbf{e} u}$	$1.3 imes 10^{-2}$ / $2.7 imes 10^{-6}$	LHC [68] / $\mu \rightarrow e$ conversion
$[\epsilon_P^{cs}]_{e au}$	$4.6 imes10^{-3}$	$\Gamma_{{f D}_{f s} ightarrow {f e} u}$	$1.3 imes 10^{-2} \ / \ 1.9 imes 10^{-2}$	LHC / τ -decays [64, 68]
$[\epsilon_P^{cs}]_{\mu e}$	$\mathbf{8.9 imes 10^{-3}}$	$\Gamma_{\mathbf{D_s} o \mu u}$	$2.0 imes 10^{-2}$ / 2.7 $imes$ 10⁻⁶	LHC [68] / $\mu \rightarrow e$ conversion
$[\epsilon_P^{cs}]_{\mu\mu}$	$1.0 imes10^{-3}$	$\Gamma_{\mathbf{D_s} o \mu u}$	$2.0 imes 10^{-2}$	LHC [68]
$[\epsilon_P^{cs}]_{\mu au}$	$f 8.9 imes 10^{-3}$	$\Gamma_{\mathbf{D_s} o \mu u}$	$2.0 imes 10^{-2}$	LHC [68]
$[\epsilon_P^{cs}]_{ au e}$	$2.0 imes \mathbf{10^{-1}}$	$\Gamma_{\mathbf{D_s} o au u}$	$1.6 imes 10^{-2} \ / \ 1.9 imes 10^{-2}$	LHC / τ -decays [64]
$[\epsilon_P^{cs}]_{ au\mu}$	$2.0 imes \mathbf{10^{-1}}$	$\Gamma_{\mathbf{D_s} o au u}$	$2.5 imes 10^{-2}$	LHC [68]
$[\epsilon_P^{cs}]_{ au au}$	$\mathbf{3.2 imes 10^{-2}}$	$\Gamma_{\mathbf{D_s} o au u}$	$2.5 imes 10^{-2}$	LHC [68]