Atmospheric Neutrinos with IceCube DeepCore and PINGU

Kavli Institute for Theoretical Physics

November 3, 2014

The IceCube-PINGU Collaboration

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS)
Fonds Wetenschappelijk Onderzoek-Vlaanderen
(FWO-Vlaanderen)

Federal Ministry of Education & Research (BMBF)
German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY)
Inoue Foundation for Science, Japan
Knut and Alice Wallenberg Foundation
NSF-Office of Polar Programs
NSF-Physics Division

Swedish Polar Research Secretariat
The Swedish Research Council (VR)
University of Wisconsin Alumni Research
Foundation (WARF)
US National Science Foundation (NSF)

The IceCube Neutrino Observatory

 IceCube focuses on neutrinos with energies above a few hundred GeV

- 1 km³ of Antarctic ice as neutrino target and Cherenkov medium
- 86 strings of 60 DOMs
- DeepCore provides increased sensitivity to neutrinos at energies of 10-100 GeV
- Focus on dark matter searches, neutrino oscillations

IceCube DeepCore

- A more densely instrumented region at the bottom center of IceCube
 - Eight special strings plus 12 nearest standard strings
 - High Q.E. PMTs
 - String spacing ~70 m, DOM spacing 7 m: ~5x higher effective photocathode density than IceCube
- In the clearest ice, below 2100 m
 - $\lambda_{atten} \approx 45-50$ m, very low levels of radioactive impurities
- IceCube provides an active veto against cosmic ray muon background

DeepCore Physics

Dark matter searches

- Primarily sensitive to WIMP masses above ~50 GeV/c² due to energy threshold
- Solar WIMP annihilation: Phys. Rev. Lett. 110, 131302 (2013)
- Dwarf galaxies: Phys. Rev. D88, 122001 (2013)
- Galactic Halo: arXiv:1406.6868, submitted to Eur. Phys. J. C

Direct searches for exotic particles

- E.g. monopoles: arXiv:1402.3460, Eur. Phys. J. C74, 2938 (2014)
- Measurement of atmospheric electron neutrino spectrum
 - First measurement above 50 GeV: Phys. Rev. Lett. 110, 151105 (2013)
- Measurements of atmospheric neutrino oscillations
 - First IceCube observation: Phys Rev. Lett. 111, 081801 (2013)
 - Improved analysis with reduced energy threshold of ~10 GeV greatly improves precision preliminary results shown at Neutrino 2014

Oscillation Physics with Atmospheric Neutrinos

- Neutrinos available over a wide range of energies and baselines
 - Oscillations produce distinctive pattern in energy-angle space
 - Approach: control systematics using events in "side band" regions – trade statistics for constraints on systematics
- Neutrinos oscillating over one Earth diameter have a v_{μ} survival minimum at ~25 GeV
 - Hierarchy-dependent matter effects on v or v̄ (MSW etc.) below 10-20 GeV

Atmospheric Oscillations – 2nd Generation

- Three years with improved event selection: 2,500 events per year
- New, specialized low energy event reconstructions, enabling use of multiple energy bins in oscillation energy range
 - Permits tighter constraints on systematics from the data

Atmospheric Oscillations – 2nd Generation

- Project data onto reconstructed (L/E_v) for illustration
 - Actual analysis is performed in 2D
- Shaded range shows allowed systematics
- Second survival maximum just below DeepCore's energy threshold

Beyond IceCube

- With its DeepCore extension, IceCube has interesting results in indirect dark matter searches, neutrino oscillation measurements
 - Primary limitation is energy threshold: second oscillation maximum, hierarchydependent matter effects, low-mass dark matter just out of reach
- Further augmentation of IceCube DeepCore would provide an energy threshold low enough to enable a broader range of physics, including determination of the neutrino mass hierarchy
 - Follow IceCube design closely: quick to deploy, low technical risk, moderate cost
- Also provide platform for more precise understanding of the ice
 - Improved in situ calibration light sources, and emitter-detector baselines $\ll \lambda_{scatt}$
 - Opportunity to install prototypes for novel types of instrumentation

PINGU

- Baseline detector consists of 40 additional strings of 60 Digital PRECISION ICECUBE NEXT Optical Modules each, deployed in the DeepCore volume
 - Geometry optimization underway additional DOMs have relatively low incremental cost – final proposal likely 80-96 DOMs/string
 - 20 m string spacing (cf. 125 m for IceCube, 72 m for DeepCore)
 - ~25x higher photocathode density
 - Additional in situ calibration devices will better control detector systematics (not included in projected performance)
- Engineering issues and cost of deploying instrumentation are well understood from IceCube experience
 - Can install ~20 strings per season once underway

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Maximum effects seen for specific energies and baselines (= zenith angles) due to the Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector resolution not shown here
- At higher energies, v_{μ} CC events distinguishable by the presence of a muon track
 - Distinct signatures observable in both track (v_{μ} CC) and cascade (v_{e} and v_{τ} CC, v_{x} NC) channels

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Maximum effects seen for specific energies and baselines (= zenith angles) due to the Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector resolution not shown here
- At higher energies, v_{μ} CC events distinguishable by the presence of a muon track
 - Distinct signatures observable in both track (v_{μ} CC) and cascade (v_{e} and v_{τ} CC, v_{x} NC) channels

Hierarchy Signature: Statistical Significance

- With full detector response included, distinctive (and quite different) hierarchydependent signatures are still visible in both the track and cascade channels
 - Quantity shown is an illustration of statistical significance per bin (as per Akhmedov et al. arXiv:1205.7071)
 - Parametrized rates and detector resolutions and efficiencies used to eliminate statistical fluctuations

Leading Systematics

- Dominant systematics are uncertainties in neutrino and antineutrino cross sections (equivalently, fluxes), possible energy scale errors
 - Currently working on more detailed modeling of uncertainties from cross sections (using GENIE), ice optical properties

Impact: change to NMH significance if systematic error is assumed perfectly determined by other data

- CP-violating phase δ has little impact (as expected)
- Conservatively assume current knowledge of systematics some will be better understood by the time PINGU is operational

PINGU Hierarchy Sensitivity

- With baseline geometry, a determination of the mass hierarchy with 3σ significance appears possible with 3.5 years of data (first octant: worst case)
 - Combine track and cascade channels to obtain final significance
 - Maximal mixing or the second octant improve expected significance
- Based on full Monte Carlo simulations of detector performance
 - Optimization of detector geometry & analysis techniques and more detailed treatment of systematics underway

Other Scientific Goals of PINGU

- World-class measurements of atmospheric oscillation parameters
 - DeepCore already becoming competitive with current generation of experiments, and further improvements coming soon
 - PINGU would provide access to multiple oscillation maxima preliminary estimates of measurement precision are extremely encouraging
- High-statistics measurement of v_τ appearance
 - In the standard oscillation scenario, the disappearing v_{μ} are converted to v_{τ} confirmation of tau appearance at expected rate is an interesting test of unitarity of 3x3 mixing matrix
- Search for dark matter with masses below 10 GeV
 - Indirect search for solar annihilations a uniquely background-free channel

Oscillation Parameters

- Preliminary estimates of PINGU precision of oscillation parameters
 - Assumed current global fit preferred values
- Warning: not all systematic effects included yet, probably over-optimistic (Δm² in particular)
 - Work in progress –
 intended only to give a
 first indication of relative
 improvement over
 DeepCore alone

Tau Appearance with PINGU

- Higher energy range of PINGU vs. OPERA, Super-K substantially improves appearance rate
 - Reduced kinematic suppression due to tau lepton mass
- Tau appearance visible as distortion of cascade energyangle distribution
 - Preliminary studies suggest 5σ observation of v_τ possible with around 1 month of PINGU data

Tau Appearance with PINGU

- Similar set of systematics, assumptions as used in hierarchy study
- Interesting test of the unitarity of the neutrino mixing matrix
 - 10% precision on the v_{τ} appearance rate within 1 year

PINGU in Context

- The neutrino sector is the least well understood part of the Standard Model – rapid progress in measurement, potential for new physics
- PINGU has a unique place in the world-wide neutrino program
 - Measurements at a range of higher energies/longer baselines
- Opportunity to discover new physics is greatly enhanced by PINGU's statistical reach and complementarity with other experiments
 - Over-constraint of parameters in the standard oscillation paradigm is necessary for searching for new physics in the neutrino sector – multiple measurements using different techniques are essential

PINGU and IceCube-GenTwo

- An expanded IceCube-based facility is being proposed for the South Pole following the discovery of high energy astrophysical neutrinos
 - PINGU for GeV-scale physics (neutrino oscillations, dark matter, SNe)
 - A high energy expansion for 100 TeV PeV scale neutrinos
 - Opportunities for related projects: ARA, DM-Ice, etc.
- Design will closely follow that of IceCube
 - Similar photodetectors with upgraded electronics
 - Reduces R&D cost and technical, schedule and budget risk
- Estimated PINGU share of facility cost: \$55M US + \$25M non-US
 - PINGU to be deployed first, as early as late 2018 early 2021 in a favorable funding scenario
 - Statistically significant determination of the hierarchy possible by 2024 or 2025

Final Thoughts

- The South Pole ice cap is a unique site for underground physics, as well as for neutrino astronomy
 - Excellent optical Cherenkov medium, very low levels of radioactive impurities
 - Substantial overburden, with a highly efficient muon veto world-class neutrino observatory already in place
 - Polar ice cap functions as both Cherenkov radiator and support structure: cost is driven by instrumentation, not installation *independent of scale*
- PINGU will establish IceCube and the South Pole as a world-class facility for fundamental physics, as well as astrophysics
 - Beginning to evaluate potential capabilities beyond PINGU to search for proton decay, observe extragalactic supernova neutrinos
 - IceCube-GenTwo will provide opportunities for detector R&D with potential for breakthrough reductions in cost

