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Leptogenesis: a tantalizing opportunity 
   Cosmology  
(early Universe) 
•   Cosmological Puzzles : 

•  New stage in  early Universe history : 

  

T 

TRH??  Inflation 
Leptogenesis 
EWSSB   100 GeV  

 BBN   0.1- 1 MeV  
Recombination   0.1- 1  eV  

   Leptogenesis  
   complements 
 low energy neutrino  
    experiments  
     testing the  
       seesaw 
   high energy  
    parameters 
          and 
providing a guidance  
toward the model  
underlying the seesaw 
 
 
 
 
 
   
  
  
 
        
       
   
 

   Neutrino Physics, 
   models of mass 

1.  Dark matter 

2.  Matter  - antimatter asymmetry  

3.  Inflation 

4.  Accelerating Universe 
ηB

CMB  ≃ 6 × 10-10 
 



 
1.  Can leptogenesis help to understand neutrino parameters?  
 
2. Vice-versa: can we probe leptogenesis with low energy neutrino data? 
 
A common approach in the LHC era:  “TeV Leptogenesis”   
 
Is there an alternative approach based on traditional high energy scale 
leptogenesis? Also considering that:  
 
 
Ø  No new physics at the LHC (not so far); 
 
Ø  Discovery of a non-vanishing reactor angle opened the door to  
   completing leptonic mixing matrix parameters measurement;  

Ø  Cosmological observations start to have the sensitivity to either rule 
our or discover quasi-degenerate neutrino masses and huge world 
efforts in improving 0νββ sensitivity 	


      
 
 
     
  
 
 
 
 
 
 
 
 
        
       
   
 

Two important questions: 
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Pontecorvo-Maki-Nakagawa-Sakata matrix 

Solar,Reactor Atmospheric, LB Reactor, Accel.,LB 
CP violating phase bb0ν decay 

Neutrino mixing parameters   

3σ ranges: 
	

θ23  ≃  37∘ - 53∘	

θ12 ≃  30.5∘ - 38∘	


θ13 ≃  7.5∘ -10∘	


δ, ρ, σ = [-π,π]	

	

	


	


�m2
atm, or IO, with m2

3 �m2
2 = �m2

sol and m2
2 �m2

1 = �m2
atm. For example, in a recent

global analysis [24] it is found matm ⌘
p
m 2

3 �m 2
1 ' 0.0495 eV and msol ⌘

p
�m2

sol '
0.0087 eV.

Finally, the cosmological observations place an upper bound on the sum of the neutrino

masses and recently the Planck collaboration found
P

i mi . 0.23 eV that, combined with

the measurements of msol and matm, translates into the upper bound

m1 . 0.07 eV . (10)

For NO the leptonic mixing matrix can be parameterised in the usual standard way 9

U (NO) =

0

B@
c12 c13 s12 c13 s13 e�i �

�s12 c23 � c12 s23 s13 ei � c12 c23 � s12 s23 s13 ei � s23 c13
s12 s23 � c12 c23 s13 ei � �c12 s23 � s12 c23 s13 ei � c23 c13

1

CA diag
�
ei ⇢, 1, ei�

�
,

(11)

(sij ⌘ sin ✓ij, cij ⌘ cos ✓ij) while for IO, within our convention for labelling light neutrino

masses and adopting the usual definition for the thee mixing angles ✓ij, the columns of

the leptonic mixing matrix have to be permuted in a way that

U (IO) =

0

B@
s13 e�i � c12 c13 s12 c13
s23 c13 �s12 c23 � c12 s23 s13 ei � c12 c23 � s12 s23 s13 ei �

c23 c13 s12 s23 � c12 c23 s13 ei � �c12 s23 � s12 c23 s13 ei �

1

CA diag
�
ei�, ei ⇢, 1

�
.

(12)

The mixing angles, respectively the reactor, the solar and the atmospheric one, are

now measured with the following best fit values and 1� (3�) ranges [23] for NO and IO

respectively,

✓13 = 8.8� ± 0.4� (7.6�–9.9�) and ✓13 = 8.9� ± 0.4� (7.7�–9.9�) , (13)

✓12 = 33.7� ± 1.1� (30.6�–36.8�) and ✓12 = 33.7� ± 1.1� (30.6�–36.8�) ,

✓23 = 41.4�+1.9�

�1.4� (37.7�–52.3�) and ✓23 = 42.4�+8.0�

�1.8� (38.1�–52.3�) .

It is interesting that current experimental data also start to put constraints on the Dirac

phase and the following best fit values and 1� errors are found for NO and IO respectively,

�/⇡ = �0.61+0.38
�0.27 and �/⇡ = �0.69+0.29

�0.33 , (14)

while all values [�⇡,+⇡] are still allowed at 3�.

9In the PDG parameterization the matrix of Majorana phases is defined as diag
⇣
1, ei

↵21
2 , ei

↵31
2

⌘
and,

therefore, one simply has ↵31 = 2(� � ⇢) and ↵21 = �2 ⇢.

10
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(Forero, 
Tortola, 
Valle ’14; 
Capozzi,Fogli, 
Lisi,Palazzo ‘14) 

α31 = 2(σ-ρ)	

α21 = -2ρ 	


24 CHAPTER 2. NEUTRINO OSCILLATIONS

case, from the completeness condition, U has to be a unitary matrix such that U † U = I.
The charged current can be recast, through the mass eigenstates, as

J lept
µ� =

X

↵,i

↵̄ �µ U↵i ⌫i (2.2)

A generic unitary matrix would be described by 9 parameters. However three phases
are non physical since they can be absorbed in the charged lepton fields without having
any observable physical consequence (a Dirac mass term is invariant upon phase trans-
formation of the fields). In this way the leptonic mixing matrix can be parameterized in
terms of 6 parameters, 3 mixing angles ✓12, ✓13, ✓23 and 3 phases �, �1, �2. A standard
parametrization is then given by (see slide 7)

U =

0

B@
c12 c13 s12 c13 s13 e�i �

�s12 c23 � c12 s23 s13 ei � c12 c23 � s12 s23 s13 ei � s23 c13
s12 s23 � c12 c23 s13 ei � �c12 s23 � s12 c23 s13 ei � c23 c13

1

CA · diag
�
ei�1 , ei�2 , 1

�
,

(2.3)
where sij ⌘ sin ✓ij and cij ⌘ cos ✓ij. This parametrization is basically the same one
adopted for the CKM matrix for quarks, except for the presence of two additional Majo-
rana phases �1 and �2.These signal that neutrino masses can be described in a different
way compared to the other massive fermions. In particular, as we will see, they could
have a Majorana mass term that is not invariant under Majorana phase transformations
as the Dirac field.

Let us now consider the quantum states describing propagating free neutrinos. The
kets describing the weak interaction eigenstates will be related to the kets describing the
mass eigenstates by

|⌫↵i =
X

i

U?
↵i |⌫ii , (2.4)

where we imply the momentum and the time dependence. Consider now an ultra-
relativistic neutrino state produced at the time t = 0 in the flavour ↵. At the time t

(at distance L = c t from the place of production) it will have evolved as

|⌫↵(t)i =
X

i

U?
↵i |⌫i(t)i , (2.5)

and it will have an (oscillation) probability P↵� ⌘ |h⌫�|⌫↵i|2 to be detected as a � neutrino
in the CC interaction

⌫↵(t) +N ! � +N 0 . (2.6)
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•  Tritium β decay :me < 2 eV   
   (Mainz +Troitzk 95% CL) 

Neutrino masses: m1 < m2 < m3 

•  ββ0ν: mεε< 0.34 – 0.78 eV   
   (CUORICINO 95% CL, similar  
   from Heidelberg-Moscow)  
   mεε< 0.12 – 0.25 eV  
   (EXO-200+Kamland-Zen 90% CL) 
   mεε< 0.2 – 0.4 eV  
   (GERDA+IGEX  90% CL) 
 
 
 
 
 
 
 

Using the flat prior (0=1): 
•  CMB+BAO+H0 : Σ mi < 0.23 eV 
   (Planck+high-l+WMAPpol+BAO 95%CL) 
              ⇒  m1 < 0.07 eV 
 
 
 

NO IO 



 The minimally extended SM 

1

L = LSM + L⌫
mass

�L⌫
mass = ⌫̄L h ⌫R ) �L⌫

mass = v ⌫̄L mD ⌫R

Dirac 
mass 
term  

Neutrino mixing:      U = VL 

Too many unanswered questions:  
 
•  Why neutrinos are much lighter than all other fermions? 
•  Why large mixing angles? 
•  Cosmological puzzles? 
•  Why not a Majorana mass term as well? 

Neutrino masses:     mi = mDi         

(((in a basis where charged lepton mass matrix is diagonal) 



In the see-saw limit (M>>mD) the mass spectrum splits into 2 sets: 
 
•  3 light Majorana neutrinos with masses 

•  3 very heavy Majorana RH neutrinos N1, N2, N3 with masses M3 > M2 > M1 >> mD 

 Minimal scenario of Leptogenesis 

• Type I seesaw  

• Thermal production of RH neutrinos   
TRH ≳ Mi / (2÷10) ≳ Tsph ≃ 100 GeV ⇒ ηB= asph NB-L / Nγ 

(Fukugita,Yanagida ’86) 

  On average one Ni decay produces a B-L asymmetry given by its 

  total CP  
asymmetries 

(Kuzmin,Rubakov,Shaposhnikov ’85) 

fin rec 



                             Seesaw parameter space  

  The 6 parameters in the orthogonal matrix Ω  encode the 3 life times  
and the 3 total CP asymmetries of the RH neutrinos  
                                                                                                                      
 

(in a basis where charged lepton and Majorana mass matrices are diagonal) 

Orthogonal  
parameterisation  

Ø    imposing some condition on mD   

Ø    some parameters cancel in the asymmetry calculation     

Problem: too many parameters  

A parameter reduction would help and can occur in various ways:   

 
  Imposing  ηB = ηB

CMB  ≃ 6 × 10-10 ⇒ can we test seesaw and leptog.?  

(Casas, Ibarra’01) 

 
Ø    ηB  = ηB

CMB   is satisfied around “peaks” 

Ø    imposing independence of the initial conditions      

Ø   additional phenomenological constraints (e.g. Dark Matter)   



(Davidson, Ibarra ’02) 
 

            Vanilla leptogenesis 

1) Lepton flavor composition is neglected  

3) Strong lightest RH neutrino wash-out  
  

4) Barring fine-tuned cancellations   
  

5) Efficiency factor from simple Boltzmann equations  
  

  decay parameter: 

(Buchmüller,PDB,Plümacher ’04; Giudice et al. ’04; Blanchet, PDB ‘07) 

No dependence on the  
leptonic  mixing matrix U!  

2) Hierarchical spectrum (M2 ≳ 2M1)  



Total CP asymmetries 
(Flanz,Paschos,Sarkar’95; Covi,Roulet,Vissani’96; Buchmüller,Plümacher’98) 
 

It does not depend on U ! 



A pre-existing asymmetry? 

T 

Inflation 

 BBN   0.1- 1 MeV  

Recombination   0.1- 1  eV  

EWBG   100 GeV  

Affleck-Dine (at preheating)  
Gravitational baryogenesis  
GUT baryogenesis 
 Leptogenesis (minimal)  ≳ 109 GeV  



decay parameter: 

(Buchmüller,PDB,Plümacher ’04) 

           Independence of the initial conditions  

wash-out of a pre-existing asymmetry NB-L 

Independence of the  
initial abundance of N1 
as well 

p 

equilibrium neutrino mass: 



SO(10)-inspired leptogenesis  
( Branco et al. ’02; Nezri, Orloff ’02; Akhmedov, Frigerio, Smirnov ‘03) 

Imposing then SO(10) inspired conditions*:     

One obtains (barring fine-tuned ‘crossing level’ solutions):  

since M1 <<  109 GeV   ⇒ ηB
(N1) << ηB

CMB
   

Expressing the  neutrino Dirac mass matrix  mD in the bi-unitary  
parameterization: 

From the seesaw formula one can express:  
UR = UR (U,mi,;αi,VL) , Mi= Mi (U,mi,;αi,VL) ⇒ ηB = ηB (U,mi,;αi,VL)   

* Note that SO(10)-inspired conditions can be realized  beyond SO(10) and 
even beyond GUT models (e.g. “Tetraleptogenesis”, King ’13, Feruglio ‘14) 



Crossing level solutions  
(Akhmedov, Frigerio, Smirnov ’03; PDB, Fiorentin, Marzola 2014) 

Ø About the crossing levels the CP asymmetries are resonant  
enhancement   
 
Ø  The correct BAU can be attained for a fine tuned choice of 

parameters: many models have made use of these solutions  
 
 
      
  
 

(Covi,Roulet,Vissani ’96; Pilaftsis ’98; Pilaftsis,Underwood ’04; ...) 
 

 

(e.g. Ji, Mohapatra,Nasri; Buccella, Falcone, Nardi, ’12; Altarelli, Meloni ’14) 
 



Ø  The lower bound  on  M1 disappears and   
     is replaced by a lower bound on M2 … 
     ….that however still implies  a lower  
     bound on Treh  

...except for a special choice of parameters when K1= m1/m* << 1 and ε1=0: 

The N2-dominated scenario   

What about the asymmetry from the next-to-lightest (N2) RH neutrinos?  
It is typically washed-out:  

( PDB ’05) 

Ø  How special is having K1 ≲ 1 ?  
            P(K1 ≲ 1) ≃ 0.2%  (random scan) 
 
Ø  SO(10)-inspired models do not realise this special choice of parameters!
   
 since M1 <<  109 GeV and K1 >> 1  ⇒ ηB

(N1), ηB
(N2) << ηB

CMB
   



(Abada,Davidson,Losada,Josse-Michaux,Riotto’06; Nardi,Nir,Roulet,Racker ’06; 
   Blanchet, PDB, Raffelt ‘06; Riotto, De Simone ‘06)  

Flavor composition of lepton quantum states is important !   

are fast enough to break  the coherent evolution of    
 

    For  M1 ≳ 1012 GeV ⇒ τ-Yukawa interactions 

Lepton flavour effects 

and 

For M1 ≳ 109 GeV then also µ- Yukawas in equilibrium ⇒ 3-flavor regime  

 they become an incoherent mixture of a τ and of a µ+e component     ⇒ 

3 Flavour regime (e, µ, τ )

2 Flavour regime (τ, e+µ)

~ 109 GeV

M
i

~ 1012 GeV

UNFLAVOURED

2 fully flavoured regime 

3 fully flavoured regime 

Transition  
regions 

1-flavoured  regime 



( Vives ’05; Blanchet, PDB ’06; Blanchet, PDB ’08, PDB, Fiorentin ‘14) 

M
2

N
1
 - washout in the 3 fl. regime

~ 109 GeV
M

1

~ 1012 GeV

N
2
 - Asymmetry Production

in the 1 flavour regime

or in the 2 flavour regime

A two stage process: 

Flavour effects strongly enhance the importance of the N2-dominated scenario 

´ C M B
B

´ B

N1 wash-out  
is neglected 

Unflavored case 
M2

Both  
wash-out  
and flavor  
effects 
 

The N2-dominated scenario (flavoured)    

Ø  K1 = K1e + K1µ+ K1τ  ;  P(K1 ≲ 1) ~ 0.2% ;   

Ø  P(K1e ≲ 1) ~ 2 P(K1µ,τ ≲ 1) ~ 15%  ⇒ Σa P(K1a ≲ 1)  = 30%  
 

Flavoured decay parameters:        



(PDB, Riotto ’08) 

α2=4 VL= I α2=5 Normal ordering 

Θ13 

α2=3 
Independent of α1= mD1/mu and α3 = mD3/mt    

•   It has been also confirmed within SUSY (Blanchet,Marfatia,’10)   ‘ 

 lower bound   
    on Θ13  
  
    

The N2-dominated scenario rescues SO(10) inspired models  
 

 lower  
 bound   
 on m1 
  
    

10-3 

•   The solutions are exclusively tauon dominated ‘ 

  
  
 



α2=4 α2=5 NORMAL ORDERING α2=1 

Testing SO(10)-inspired leptogenesis with low energy neutrino data   

 (PDB, Riotto ’10) 

m1(eV) 

Θ23 

10-4 1 

Ø  m1 ≳ 10-3 eV  
  
  
 

ρ	


σ	

Ø  Majorana phases constrained  
     about specific values 
  
  
 

τ	


µ	


Ø  Very marginal allowed regions for INVERTED ORDERING  
  
  
 

Ø  A muon solution appears at high m1 : strongly constrained by Planck 

I ≤ VL ≤VCKM More general calculation with:     

m1(eV) 

Θ13 

Ø  The lower bound on θ13 at low m1  disappears 

10-3 10-2 10-1

4

6

8

10

12

14

16
10-3 10-2 10-1

4

6

8

10

12

14

16

m1 (eV)

 

 

Lo
g(

M
i /G

eV
), 

Lo
g(

T R
H
 /G

eV
)



The conditions for the wash-out of a pre-existing asymmetry,  
‘strong thermal (ST) leptogenesis’, can be realised only    
within a  tauon dominated N2-dominated scenario!  

Relic “pre-existing”  
asymmetry   
 
 

  
Asymmetry generated  
from  leptogenesis  

……… …… 

The problem of the initial conditions in flavoured leptogenesis  

K2τ >> 1 

K1e,µ >> 1 
K1τ ≲ 1 
 
 

         
 
        (Bertuzzo,PDB,Marzola  ‘10)  

Can SO(10)-inspired leptogenesis realise ST leptogenesis? 



Imposing successful strong thermal leptogenesis condition:     



         Strong thermal  SO(10)-inspired solution 
(PDB, Marzola  ’13) 

α2=5 

Ø   YES the strong thermal leptonesis condition can be also satisfied for a subset 
of the solutions (red, green, blue regions) only for NORMAL ORDERING  

NB-L= 0.001, 0.01, 0.1, 0      P,i I ≤ VL ≤VCKM 

Ø  The lightest neutrino mass respects the general lower bound but is also 
    upper bounded ⇒ 15 ≲ m1 ≲ 25 meV; 
Ø  The reactor mixing angle has to be non-vanishing (preliminary results 

presented before Daya Bay discovery); 
Ø  The atmospheric mixing angle falls strictly in the first octant; 
Ø  The Majorana phases are even more constrained around special values 

  
  
 



        SO(10)-inspired+strong thermal leptogenesis  
(PDB, Marzola ’11-’13) 

  A Dirac  phase  δ ~ - 45° is favoured: sign matters! 
 
 
 
 
 
 

          Link between the sign of JCP and  the sign of the asymmetry   
   ηB = ηB         CMB    ηB = - ηB       

  CMB 

Imposing successful strong thermal leptogenesis condition:     



Strong thermal SO(10)-inspired leptogenesis:  

  the atmospheric mixing angle test 

For values of θ23 ≳ 360  the Dirac phase is predicted to be δ ~ -450 
 

It is interesting that current global analyses find a local minimum for Normal 
Ordering, atmospheric angle in the first octant and negative sin δ 
 
 

  
   

http://www.nu-fit.org/sites/default/files/
v12.fig-dlthie-glob.pdf 

v1.2: Three-neutrino results after the 
'TAUP 2013' conference [September 2013] 
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Last brick in the wall: neutrinoless double beta decay 

(PDB, Marzola ’11-’12) 

α2=5 

NB-L= 0 
         0.001 
         0.01 
         0.1  

          Sharp predictions on the absolute neutrino mass scale  
 including 0νββ effective neutrino mass mee 

        
   

mee≃ 0.8m1 ≃ 15 meV 

Testable   
 



         Experimental test on the way: NOνA 

Strong thermal SO(10)-inspired solution  



        
A lower bound on neutrino masses (NO)   

(PDB, Sophie King, Michele Re Fiorentin 2014) 

Ø  The lower bound exists  if max[|Ωij|] is not too large as in SO(10)-inspired models 

flavoured  
decay  
parameters:      

m1 ≳ 10 meV⇒Σi mi ≳ 75 meV   
     

Imposing K1τ ≲ 1 and K1e, K1µ ≳ Kst ≃ 10 (α=e,µ)	

NB-L= 0.001, 0.01, 0.1 

P,i 

max[|Ω21|2] =2  



A new neutrino mass window for  leptogenesis 

0.01 eV ≲ m1 ≲ 0.1 eV 



        
Decrypting the strong thermal  

SO(10)-inspired leptogenesis solution  

                (PDB, Re Fiorentin, Marzola, 2014) 

        
Strong thermal leptogenesis and the  

absolute neutrino mass scale   
(PDB, Sophie King, Michele Re Fiorentin 2014) 

Final asymmetry from leptogenesis    

Relic value of the pre-existing asymmetry: 
 
 

Successful strong thermal leptogenesis then requires:  

ηΒ  ≃ 0.01	


Strong thermal  
SO(10)-inspired 
solution 

+ Strong thermal condition 
+ SO(10)-inspired conditions 

? 

 
Thermal leptogenesis 

in the early Universe 

(and neutrino experiments 

on the Earth) 

 

 

 

    
 



Imposing SO(10)-inspired conditions 

mass is constrained within a narrow range and a lower bound on the reactor mixing angle.

In Section 7 we show how the case of IO is simply excluded. In Section 8 we make some

final remarks on the di↵erent approximations and assumptions behind the results and on

the testability of the solution in next years.

2 Set of conditions: the general picture

The ST SO(10)-inspired leptogenesis solution is obtained imposing the following set of

conditions on the see-saw parameter space:

(i) SO(10)-inspired conditions on the neutrino Dirac mass matrix;

(ii) successful leptogenesis;

(iii) strong thermal leptogenesis.

Let us briefly discuss these conditions in general, showing how the first two both inde-

pendently select the N2-dominated scenario [24] and how the third one specifies that the

asymmetry has to be necessarily tauon dominated [10].

2.1 SO(10)-inspired conditions

In the minimal see-saw mechanism the SM Lagrangian is augmented introducing RH

neutrinos with Yukawa couplings h and a Majorana mass term M . In the (flavour) basis,

where both charged leptons and Majorana mass matrices are diagonal, the leptonic mass

terms after spontaneous symmetry breaking, can be written as (↵ = e, µ, ⌧ and i = 1, 2, 3)

�LM = ↵L Dm`
↵R + ⌫↵L mD↵i NiR +

1

2
N c

iR DM NiR + h.c. , (2)

where Dm`
⌘ diag(me,mµ,m⌧ ) and DM ⌘ diag(M1,M2,M3), with M1  M2  M3. The

neutrino Dirac mass matrix mD in the flavour basis can then be written in the bi-unitary

parameterisation as

mD = V †
L DmD UR , (3)

where DmD ⌘ diag(mD1,mD2,mD3) is the neutrino Dirac mass matrix in the Yukawa

basis, that (by definition of Yukawa basis) is diagonal, and VL and UR are the unitary

matrices acting respectively on the LH and RH neutrino fields in the transformation from

the flavour basis to the Yukawa basis.
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From these expressions, either from M�1 or from M , one can derive the RH neutrino

mass spectrum and the RH neutrino mixing matrix UR, as a function of the 9 low energy

neutrino parameters in m⌫ (6 mixing parameters in U and 3 light neutrino masses mi),

the 6 parameters in the unitary matrix VL and the 3 Dirac neutrino masses mDi.

This can be done diagonalising the hermitian matrix M † M = UR D2
M U †

R (or equiva-

lently M�1 (M�1)† = UR D�2
M U †

R). For a given UR, any matrix eUR = UR D�1
� , where

D� ⌘ (e�i
�

1

2 , e�i
�

2

2 , e�i
�

3

2 ) (17)

is a generic diagonal unitary matrix, also diagonalises M and M�1. However, going back

to the (Takagi) diagonalisation M = U?
R DM U †

R and given a eUR, one can unambiguously

fix [17]

D� =
q
DM

eU †
R M�1 eU?

R . (18)

If one is not in the vicinity of crossing level solutions, where at least two RH neutrino

masses become equal, the RH neutrino mass spectrum is strongly hierarchical and analyt-

ical expressions can be easily found [13, 14]. Here we adopt a slightly di↵erent procedure

that yields simplified expressions. If we start from the eq. (16) forM , in the approximation

VL ' I, we can write

U?
R DM U †

R ' DmD U? D�1
m U † DmD . (19)

Considering that from the definition of U (cf. eq. (6)) one easily finds

m�1
⌫ = �U? D�1

m U † , (20)

the eq. (19) can be also written more compactly as

M = U?
R DM U †

R ' �DmD m�1
⌫ DmD . (21)

This equation shows thatMi3/M33 = M3i/M33 / mDi/mD3 and, therefore, in first approx-

imation the LH side is in a block diagonal form and, neglecting termsO(mD1/mD3,mD2/mD3)

one finds

M3 ' m2
D3 |(m�1

⌫ )⌧⌧ | = m2
D3

����
(U?

⌧1)
2

m1
+

(U?
⌧2)

2

m2
+

(U?
⌧3)

2

m3

���� / ↵2
3 m

2
t . (22)

At the same time the phase �3 is also specified and one simply has

�3 = Arg[�(m�1
⌫ )⌧⌧ ] . (23)

The same procedure can be adopted for M�1, rewriting the eq. (15) in the approximation

VL ' I and imposing the Takagi diagonalization

M�1 = UR D�1
M UT

R ' D�1
mD

U Dm UT D�1
mD

= �D�1
mD

m⌫ D
�1
mD

. (24)
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If we parametrize the three eigenvalues in the Dirac mass matrix in terms of the up

quark masses, such that

mD1 = ↵1 mu , mD2 = ↵2 mc , mD3 = ↵3 mt , (4)

we define SO(10)-inspired models those respecting the following conditions:

i) I  VL . VCKM ,

ii) ↵i = O(0.1–10) .

With the condition i) we mean that the values of the three mixing angles in VL, that

we indicate with ✓L12, ✓
L
13, ✓

L
23 in the usual PDG parametrisation, are not larger than the

corresponding mixing angles in the CKM matrix and in particular ✓L12 . ✓CKM
12 ⌘ ✓C '

13�. In the see-saw limit, for M � mD, the spectrum of neutrino mass eigenstates splits

into a very heavy set, Ni ' NiR +N c
iR, with masses almost coinciding with the Majorana

masses Mi, and into a light set ⌫i ' ⌫iL + ⌫c
iL, with a symmetric mass matrix m⌫ given

by the see-saw formula

m⌫ = �mD
1

DM
mT

D . (5)

This is diagonalised by a unitary matrix U ,

U † m⌫ U
? = �Dm , (6)

where Dm ⌘ diag(m1,m2,m3) with m1  m2  m3, corresponding to the PMNS leptonic

mixing matrix, in a way that we can write

Dm = U † mD
1

DM
mT

D U? . (7)

When the current experimental information from neutrino oscillation experiments on the

leptonic mixing matrix and on the neutrino masses is taken into account, the RH neutrino

mass spectrum, barring special crossing level solutions, turns out to be highly hierarchical

with approximately M1 : M2 : M3 = ↵2
1 m

2
u : ↵2

2 m
2
c : ↵2

3 m
2
t , implying M1 ⌧ 109 GeV,

109 GeV . M2 . 1012 GeV and M3 � 1012 GeV. In this way the lightest RH neutrino

is too light to contribute significantly to the final asymmetry when successful leptogenesis

is imposed. The heaviest RH neutrino also gives vanishing or in any case negligible

contribution, since either it is not thermalised at all or, even if it is thermalised, its total

CP asymmetry is strongly suppressed. In this situation the only RH neutrino species that

can give a sizeable asymmetry able to explain the observed one is N2 and in this way, the

SO(10)-inspired conditions naturally realise the N2-dominated scenario [24].
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�

3
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is a generic diagonal unitary matrix, also diagonalises M and M�1. However, going back

to the (Takagi) diagonalisation M = U?
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R and given a eUR, one can unambiguously

fix [17]

D� =
q
DM

eU †
R M�1 eU?

R . (18)

If one is not in the vicinity of crossing level solutions, where at least two RH neutrino

masses become equal, the RH neutrino mass spectrum is strongly hierarchical and analyt-

ical expressions can be easily found [13, 14]. Here we adopt a slightly di↵erent procedure

that yields simplified expressions. If we start from the eq. (16) forM , in the approximation

VL ' I, we can write

U?
R DM U †

R ' DmD U? D�1
m U † DmD . (19)

Considering that from the definition of U (cf. eq. (6)) one easily finds

m�1
⌫ = �U? D�1

m U † , (20)

the eq. (19) can be also written more compactly as

M = U?
R DM U †

R ' �DmD m�1
⌫ DmD . (21)

This equation shows thatMi3/M33 = M3i/M33 / mDi/mD3 and, therefore, in first approx-

imation the LH side is in a block diagonal form and, neglecting termsO(mD1/mD3,mD2/mD3)

one finds

M3 ' m2
D3 |(m�1

⌫ )⌧⌧ | = m2
D3

����
(U?

⌧1)
2

m1
+

(U?
⌧2)

2

m2
+

(U?
⌧3)

2

m3

���� / ↵2
3 m

2
t . (22)

At the same time the phase �3 is also specified and one simply has

�3 = Arg[�(m�1
⌫ )⌧⌧ ] . (23)

The same procedure can be adopted for M�1, rewriting the eq. (15) in the approximation

VL ' I and imposing the Takagi diagonalization

M�1 = UR D�1
M UT

R ' D�1
mD

U Dm UT D�1
mD

= �D�1
mD

m⌫ D
�1
mD

. (24)
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At the same time the phase �3 is also specified and one simply has

�3 = Arg[�(m�1
⌫ )⌧⌧ ] . (23)

The same procedure can be adopted for M�1, rewriting the eq. (15) in the approximation

VL ' I and imposing the Takagi diagonalization

M�1 = UR D�1
M UT

R ' D�1
mD

U Dm UT D�1
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= �D�1
mD

m⌫ D
�1
mD

. (24)
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See-saw formula 

Bi-unitary parameterisation 

SO(10)-inspired conditions 

Majorana mass matrix  
In the Yukawa basis 

(PDB, Re Fiorentin, Marzola, 2014) 



Diagonalizing the Majorana matrix 

Figure 2: Comparison of the analytical expressions for the RH neutrino masses (cf.

eqs.(22), (28), 25) with the numerical solutions versus m1 for the three following

sets of parameters: VL = I, (↵1,↵2,↵3) = (1, 5, 1), ✓13 = (7.55�, 8.14�, 9.5�), ✓12 =

(35.2�, 34.75�, 35.5�), ✓23 = (46.2�, 42.1�, 40.0�), �/⇡ = (0.275, 0.067,�0.25), ⇢/⇡ =

(0.54, 1.080, 1.25), �/⇡ = (1.14, 0.94, 0.80). These three solutions are examples respec-

tively of a ⌧A, ⌧B and strong thermal solutions respectively and realise successful leptoge-

nesis for m1 ' (2.5, 300, 10)meV. All three cases are for NO.

j > i in a way that UR is well approximated by

UR '

0

BB@

1 �mD1

mD2

m?
⌫eµ

m?
⌫ee

mD1

mD3

(m�1

⌫ )?e⌧
(m�1

⌫ )?⌧⌧
mD1

mD2

m⌫eµ

m⌫ee
1 mD2

mD3

(m�1

⌫ )?µ⌧
(m�1

⌫ )?⌧⌧
mD1

mD3

m⌫e⌧
m⌫ee

�mD2

mD3

(m�1

⌫ )µ⌧
(m�1

⌫ )⌧⌧
1

1

CCA D�, (31)

equivalent to the expression in [14] but where we identified neutrino mass matrices com-

binations with entries of the inverse neutrino mass matrix. Details can be found in the

Appendix. It should be noticed that in this way we chose the phase �i in a way that
e�R ' 0 so that the eq. (29) for �2 specialises into

�2 = Arg


m⌫ee

(m�1
⌫ )⌧⌧

�
� 2 (⇢+ �) . (32)

It can be also useful to calculate the orthogonal matrix ⌦ within SO(10)-inspired models.

Starting from the orthogonal parameterisation for the neutrino Dirac mass matrix in the

charged lepton basis [29], mD = U
p
Dm ⌦

p
DM where ⌦⌦T = I, and comparing with

the bi-unitary parameterisation eq. (3), one finds straightforwardly an expression for the

orthogonal parameterisation [16] ⌦ = D
� 1

2

m U † V †
L DmD UR D

� 1

2

M , that in the approximation

VL ' I simplifies into ⌦ ' D
� 1

2

m U † DmD UR D
� 1

2

M , that for the entries is equivalent to

⌦ij ' 1p
mi Mj

X

k

mDk U
?
ki URkj . (33)
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From these expressions, either from M�1 or from M , one can derive the RH neutrino

mass spectrum and the RH neutrino mixing matrix UR, as a function of the 9 low energy

neutrino parameters in m⌫ (6 mixing parameters in U and 3 light neutrino masses mi),

the 6 parameters in the unitary matrix VL and the 3 Dirac neutrino masses mDi.
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M U †
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� , where
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�
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�

2

2 , e�i
�

3

2 ) (17)

is a generic diagonal unitary matrix, also diagonalises M and M�1. However, going back

to the (Takagi) diagonalisation M = U?
R DM U †

R and given a eUR, one can unambiguously

fix [17]

D� =
q
DM

eU †
R M�1 eU?

R . (18)

If one is not in the vicinity of crossing level solutions, where at least two RH neutrino

masses become equal, the RH neutrino mass spectrum is strongly hierarchical and analyt-

ical expressions can be easily found [13, 14]. Here we adopt a slightly di↵erent procedure

that yields simplified expressions. If we start from the eq. (16) forM , in the approximation

VL ' I, we can write

U?
R DM U †

R ' DmD U? D�1
m U † DmD . (19)

Considering that from the definition of U (cf. eq. (6)) one easily finds

m�1
⌫ = �U? D�1

m U † , (20)

the eq. (19) can be also written more compactly as

M = U?
R DM U †

R ' �DmD m�1
⌫ DmD . (21)

This equation shows thatMi3/M33 = M3i/M33 / mDi/mD3 and, therefore, in first approx-

imation the LH side is in a block diagonal form and, neglecting termsO(mD1/mD3,mD2/mD3)

one finds

M3 ' m2
D3 |(m�1

⌫ )⌧⌧ | = m2
D3

����
(U?

⌧1)
2

m1
+

(U?
⌧2)

2

m2
+

(U?
⌧3)

2

m3

���� / ↵2
3 m

2
t . (22)

At the same time the phase �3 is also specified and one simply has

�3 = Arg[�(m�1
⌫ )⌧⌧ ] . (23)

The same procedure can be adopted for M�1, rewriting the eq. (15) in the approximation

VL ' I and imposing the Takagi diagonalization

M�1 = UR D�1
M UT

R ' D�1
mD

U Dm UT D�1
mD

= �D�1
mD

m⌫ D
�1
mD

. (24)
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At the same time the phase �3 is also specified and one simply has

�3 = Arg[�(m�1
⌫ )⌧⌧ ] . (23)

The same procedure can be adopted for M�1, rewriting the eq. (15) in the approximation

VL ' I and imposing the Takagi diagonalization

M�1 = UR D�1
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R ' D�1
mD
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= �D�1
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m⌫ D
�1
mD

. (24)

11

From these expressions, either from M�1 or from M , one can derive the RH neutrino

mass spectrum and the RH neutrino mixing matrix UR, as a function of the 9 low energy

neutrino parameters in m⌫ (6 mixing parameters in U and 3 light neutrino masses mi),

the 6 parameters in the unitary matrix VL and the 3 Dirac neutrino masses mDi.

This can be done diagonalising the hermitian matrix M † M = UR D2
M U †

R (or equiva-

lently M�1 (M�1)† = UR D�2
M U †

R). For a given UR, any matrix eUR = UR D�1
� , where

D� ⌘ (e�i
�

1

2 , e�i
�

2

2 , e�i
�

3

2 ) (17)

is a generic diagonal unitary matrix, also diagonalises M and M�1. However, going back

to the (Takagi) diagonalisation M = U?
R DM U †

R and given a eUR, one can unambiguously

fix [17]

D� =
q
DM

eU †
R M�1 eU?

R . (18)

If one is not in the vicinity of crossing level solutions, where at least two RH neutrino

masses become equal, the RH neutrino mass spectrum is strongly hierarchical and analyt-

ical expressions can be easily found [13, 14]. Here we adopt a slightly di↵erent procedure

that yields simplified expressions. If we start from the eq. (16) forM , in the approximation

VL ' I, we can write

U?
R DM U †

R ' DmD U? D�1
m U † DmD . (19)

Considering that from the definition of U (cf. eq. (6)) one easily finds

m�1
⌫ = �U? D�1

m U † , (20)

the eq. (19) can be also written more compactly as

M = U?
R DM U †

R ' �DmD m�1
⌫ DmD . (21)

This equation shows thatMi3/M33 = M3i/M33 / mDi/mD3 and, therefore, in first approx-

imation the LH side is in a block diagonal form and, neglecting termsO(mD1/mD3,mD2/mD3)

one finds

M3 ' m2
D3 |(m�1

⌫ )⌧⌧ | = m2
D3

����
(U?

⌧1)
2

m1
+

(U?
⌧2)

2

m2
+

(U?
⌧3)

2

m3

���� / ↵2
3 m

2
t . (22)

At the same time the phase �3 is also specified and one simply has

�3 = Arg[�(m�1
⌫ )⌧⌧ ] . (23)

The same procedure can be adopted for M�1, rewriting the eq. (15) in the approximation

VL ' I and imposing the Takagi diagonalization

M�1 = UR D�1
M UT

R ' D�1
mD

U Dm UT D�1
mD

= �D�1
mD

m⌫ D
�1
mD

. (24)
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This time the RH side is approximately in a block-diagonal form with M�1
i1 /M�1

11 =

M�1
1i /M

�1
11 / mD1/mmDi , so that the largest M�1 eigenvalue, 1/M1, can be written as

1/M1 ' |m⌫ee|/m2
D11 and, therefore,

M1 ' m2
D1

|m⌫ee| =
m2

D1

|m1 U2
e1 +m2 U2

e2 +m3 U2
e3|

/ ↵2
1 m

2
u . (25)

Also in this case the procedure allows to specify the phase �1,

�1 = Arg[�m?
⌫ee] . (26)

Finally, from the approximate expressions eq. (22) for M3 and eq. (25) for M1, one can

also easily find an approximate expression for M2. From the see-saw formula eq. (7) one

has

m1 m2 m3 =
m2

D1 m
2
D2 m

2
D3

M1 M2 M3
ei (2

e�R�2�U�
P

i �i), (27)

where e�R ⌘ Arg[det(eUR)] and �U ⌘ Arg[det(U)], implying
P

i �i = 2 (e�R ��U). In this

way we can write

M2 ' m2
D2

m1 m2 m3

|m⌫ee|
|(m�1

⌫ )⌧⌧ | = m2
D2

|m1 U2
e1 +m2 U2

e2 +m3 U2
e3|

|m2 m3 U? 2
⌧1 +m1 m3 U? 2

⌧2 +m1 m2 U? 2
⌧3 |

/ ↵ 2
2 m

2
c ,

(28)

and for the phase �2 = 2 (e�R � �U)� �3 � �1 one finds

�2 = Arg


m⌫ee

(m�1
⌫ )⌧⌧

�
+ 2 e�R � 2 (⇢+ �) , (29)

where we have taken into account that �U = �2 (⇢+ �). It is easy to see from the above

general expressions, that in the hierarchical limit, m1 ⌧ msol (remember that we are

assuming NO), the RH neutrino masses tend to the following simple expressions [13, 14]

M1 ' m2
D1

msol s212
, M2 ' m2

D2

matm s223
, M3 ' m2

D3

m1
s212 s

2
23 . (30)

In Fig. 1 we compare the found approximated analytic expressions for the RH neutrino

masses (cf. eqs. (22), (25) and (28)) with the numerical solutions for the simple four sets

of parameters yielding level crossings for special values of m1 as discussed in [14] (note

that for simplicity ✓13 = 0 and ✓23 = ⇡/4). For the up quark masses at the leptogenesis

scale, 5 we adopted the values (mu,mc,mt) = (1MeV, 400MeV, 100GeV) [28]. It can

be noticed how the analytic solutions (dashed black lines) very well track the numerical

ones (solid coloured lines) except for those values of m1 the RH neutrino masses become
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Figure 2: Comparison of the analytical expressions for the RH neutrino masses (cf.

eqs.(22), (28), 25) with the numerical solutions versus m1 for the three following

sets of parameters: VL = I, (↵1,↵2,↵3) = (1, 5, 1), ✓13 = (7.55�, 8.14�, 9.5�), ✓12 =

(35.2�, 34.75�, 35.5�), ✓23 = (46.2�, 42.1�, 40.0�), �/⇡ = (0.275, 0.067,�0.25), ⇢/⇡ =

(0.54, 1.080, 1.25), �/⇡ = (1.14, 0.94, 0.80). These three solutions are examples respec-

tively of a ⌧A, ⌧B and strong thermal solutions respectively and realise successful leptoge-

nesis for m1 ' (2.5, 300, 10)meV. All three cases are for NO.

j > i in a way that UR is well approximated by

UR '

0

BB@

1 �mD1

mD2

m?
⌫eµ

m?
⌫ee

mD1

mD3

(m�1

⌫ )?e⌧
(m�1

⌫ )?⌧⌧
mD1

mD2

m⌫eµ

m⌫ee
1 mD2

mD3

(m�1

⌫ )?µ⌧

(m�1

⌫ )?⌧⌧
mD1

mD3

m⌫e⌧
m⌫ee

�mD2

mD3

(m�1

⌫ )µ⌧

(m�1

⌫ )⌧⌧
1

1

CCA D�, (31)

equivalent to the expression in [14] but where we identified neutrino mass matrices com-

binations with entries of the inverse neutrino mass matrix. Details can be found in the

Appendix. It should be noticed that in this way we chose the phase �i in a way that
e�R ' 0 so that the eq. (29) for �2 specialises into

�2 = Arg


m⌫ee

(m�1
⌫ )⌧⌧

�
� 2 (⇢+ �) . (32)

It can be also useful to calculate the orthogonal matrix ⌦ within SO(10)-inspired models.

Starting from the orthogonal parameterisation for the neutrino Dirac mass matrix in the

charged lepton basis [29], mD = U
p
Dm ⌦

p
DM where ⌦⌦T = I, and comparing with

the bi-unitary parameterisation eq. (3), one finds straightforwardly an expression for the

orthogonal parameterisation [16] ⌦ = D
� 1

2

m U † V †
L DmD UR D

� 1

2

M , that in the approximation

VL ' I simplifies into ⌦ ' D
� 1

2

m U † DmD UR D
� 1

2

M , that for the entries is equivalent to

⌦ij ' 1p
mi Mj

X

k

mDk U
?
ki URkj . (33)
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(PDB, Re Fiorentin, Marzola, 2014) 



CP flavoured asymmetries 

Analytical  
result 

Comparison with numerical results: 

The tauon flavour dominates 

e 
µ	

τ	


(PDB, Re Fiorentin, Marzola, 2014) 



A formula for the final asymmetry From this we can then an explicit expression in terms of mixing angles and low energy

phases that will prove useful,

K1⌧ ' |c13 c12 s12 s23 (m1 e2 i ⇢ �m2) + s13 c13 c23 (m3 ei (2���) �m2 s212 e
i � �m1 c212 e

i (2 ⇢+�))|
m? |m1 c212 c

2
13 e

2 i ⇢ +m2 s212 c
2
13 +m3 s213 e

2 i (���)| .

(51)

We can then finally put together all the results finding, from the eq. (43), an expression

in terms of the low energy neutrino parameters,

N lep,f
B�L ' 3

16 ⇡

↵2
2 m

2
c

v2
|m⌫ee| (|m�1

⌫⌧⌧ |2 + |m�1
⌫µ⌧ |2)�1

m1 m2 m3

|m�1
⌫⌧⌧ |2

|m�1
⌫µ⌧ |2

sin↵L (52)

⇥ 

✓
m1 m2 m3

m?

|(m�1
⌫ )µ⌧ |2

|m⌫ee| |(m�1
⌫ )⌧⌧ |

◆
(53)

⇥ e�
3⇡
8

|m⌫e⌧ |2
m? |m⌫ee| . (54)

It is interesting to notice that:

• The asymmetry does not depend on a1 and on ↵3 [16]. This is a very important

point since the only left non-observable parameter is ↵2 on which however one can

place a lower bound and, within SO(10)-inspired models cannot be in any case too

large.

• The e↵ective neutrino less double beta decay mass mee ⌘ |m⌫ee| plays a direct role

and it can be noticed that successful leptogenesis implies the existence of a lower

bound.

We can now impose the successful leptogenesis condition and derive some of the constraints

of the scenario on the low energy neutrino parameters. First of all we have again made

a comparison between the constraints that derive from the analytical expression eq. (52)

and the numerical constraints (for VL = I). In Fig. 3 we show, with orange points, the

results of a scatter plot for VL = I imposing successful SO(10)-inspired leptogenesis for

↵2 = 5. The asymmetry is calculated from the eq. (43) where RH neutrino masses and

mixing matrix UR are calculated numerically. The mixing angles are uniformly random

generated within the same ranges also employed in [16],

0  ✓13  11.5� , 35�  ✓23  52� , 31.3�  ✓12  36.3� , (55)

with the only exception of ✓23 that is allowed to be slightly lower as in [15]. The results

confirm those obtained in [16, 17], simply here a much higher (about thousands more)

amount of points has been obtained and the constraints are much sharper. We have
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Strong thermal leptogenesis and the  

absolute neutrino mass scale   
(PDB, Sophie King, Michele Re Fiorentin 2014) 

Final asymmetry from leptogenesis    

Relic value of the pre-existing asymmetry: 
 
 

Successful strong thermal leptogenesis then requires:  

ηΒ  ≃ 0.01	


ηΒ  ≃ 0.01	


Ø  Cancellation of α1 and α3  is explicit 
Ø  Direct role played by mee= |mνee| 

= 6x10-10 

Ø  SO(10)-inspired leptogenesis entangles all low energy neutrino parameters 

Only left 
non-exp 
parameter  
 

effective  
leptogenesis 
phase  
 

(PDB, Re Fiorentin, Marzola, 2014) 



All numerical results are reproduced (VL=I) 

Example 1: Upper bound on the atmospheric mixing angle 

Strong 
Thermal 
solution 
 



All numerical results are reproduced (VL=I) 

Example 2: Dirac phase vs. atmospheric mixing angle 

Strong 
thermal 
solution 
 

(PDB, Re Fiorentin, Marzola, 2014) 



Relaxing VL=I: ST solution is quite stable 

VL= I 

I ≤VL ≤ VCKM 

STRONG THERMAL 
     SOLUTION 
      (NB-L = 10-3) p 

Atmospheric upper bound 
 
for the ST solution  
 
  



 
                Conclusions:     

Ø  Highs scale leptogenesis is difficult to test but maybe not impossible: 
necessary to work out plausible scenarios;  

Ø  Thermal leptogenesis: problem of the independence of the initial 
conditions because of flavour effects; 

 
Ø  Solution: N2-dominated scenario (minimal seesaw, hierarchical Ni) 

Ø  SO(10)-inspired models can realise ST leptogenesis 
 
   
 

       θ13              ≳  3° 
     ORDERING         NORMAL  
           θ23          ≲  42°    
           δ           ~ -45° 
     mee ≃ 0.8 m1          ≃ 15 meV 

Strong thermal  
SO(10)-inspired 

leptogenesis 
solution     

FULL ANALYTICAL DECRYPTION OF THE SOLUTION 



Flavour projection and wash-out of a pre-existing asymmetry    

Mi ≳ 1012
 GeV T << Mi  

       
 
        (Barbieri et al. ’99; Engelhard, Nir, Nardi ‘08; Blanchet, PDB, Jones,Marzola  ‘10)  

τ	


µ	


    T>> Mi  

e 

τ	


e µ	


Mi << 109
 GeV 

µ	


    T>> Mi  

e 

τ	
 T << Mi  

µ	

e 

τ	




T (GeV) 

 1011   

 109   

 103--8   

Courtesy of Michele Re Fiorentin 



Density matrix formalism with  
heavy neutrino flavours      

 

For a thorough description of all neutrino  
mass patterns including transition regions 
and all effects (flavour projection, phantom 
leptogenesis,…) one needs a description in  
Terms of a density matrix formalism  
The result is a “monster” equation: 
 

(Blanchet,PDB, Jones, Marzola ‘11) 



Some insight from the decay parameters  

At the  
production 
(T ~ M2)  
 

At the wash-out (T ~ M1)  
 





2 RH neutrino scenario revisited  

Unflavoured 
 

only N1 asymmetry 
 

   + N2 asymmetry 
 

In the 2 RH neutrino scenario the N2  production has been so far considered 
to be safely negligible because ε2α  were supposed to be strongly suppressed 
and very strong N1 wash-out.   But taking into account: 
           - the N2 asymmetry N1-orthogonal component 
           - an additional unsuppressed term to ε2α  
              New allowed N2 dominated regions appear 
 

(King 2000;Frampton,Yanagida,Glashow ‘01,Ibarra, Ross 2003;Antusch, PDB,Jones,King ‘11) 

These regions are interesting because they correspond to light sequential  
dominated neutrino mass models realized in some grandunified models  

Re z Re z Re z 

Im
 z

 

M1 /1010 GeV iso-contours M1 /1010 GeV iso-contours M1 /1010 GeV iso-contours 



Affleck-Dine Baryogenesis 
In the Supersymmetric SM there are many “flat directions” 
in the space of a field composed of squarks and/or sleptons  

F term  D term  

(Affleck, Dine ‘85) 

A flat direction can be parametrized in terms of a  
complex field (AD field) that carries a baryon number   
that is violated dynamically during inflation  

The final asymmetry is ∝ TRH and the observed one can 
be reproduced   for low values TRH ∼ 10 GeV  ! 



Gravitational Baryogenesis 
(Davoudiasl,Kribs,Kitano,Murayama,Steinhardt ‘04) 

It works   efficiently and asymmetries even much larger than  
the observed one are generated for  TRH >> 100 GeV 
 

TRH 

The key ingredient is a CP violating interaction between the derivative of  
the Ricci scalar curvature R  and the baryon number current Jµ: 

It is natural 
to have this 
operator in 
quantum gravity 
and in supergravity 

Cutoff 
scale of 
the effective 
theory 



 Density matrix and CTP formalism 
to describe the transition regimes  
(De Simone, Riotto ’06; Beneke, Gabrecht, Fidler, Herranen, Schwaller ‘10) 

 
Unflavoured regime limit 

Fully two-flavoured  
    regime limit 



1) 

N1 

2) 

N1 
 

 

e+ 

e+ 

+ 

Additional contribution to CP violation:   

depends on U ! f N ` 1

f N ¹̀ 0
1

(α = τ, e+µ) 
(Nardi,Racker,Roulet ’06) 



(Abada et al.’ 07; Blanchet,PDB,Raffelt;Blanchet,PDB ’08) 

PMNS phases off 

m1(eV) m1(eV) 

M
1(G

eV
) 

Imposing the validity of 
the Boltzmann equations 

109 

1012 

108 0.1 0.1 

Neutrino mass bounds and role of PMNS phases 

m1(eV) 
0.1 

one-flavour  

 

M
1(G

eV
) 

transition 

Two-flavour 

transition 

0.1 

1012 



Low energy phases can be the only source of CP violation   
(Nardi et al.’06;Blanchet,PDB’06;Pascoli,Petcov,Riotto ’06;Anisimov,Blanchet,PDB ’08) 

 
Green points: 
only Dirac phase 
with sin θ13= 0.2 
       |sin δ | = 1 
  
Red points: 
only Majorana 
phases 
 

initial thermal  N1 abundance independent of initial  N1 abundance 

- Assume real Ω ⇒  ε1 = 0 ⇒    

     -  Assume  even vanishing Majorana phases   
 ⇒ δ with non-vanishing θ13 (JCP≠ 0) would be the only source of CP violation  
                                                                                                          (and testable) 

             ⇒ NB-L ⇒ 2ε1k1  + ΔP1α(κ1α - κ1β)      
fin fin fin (α = τ, e+µ) 

•  No  reasons for these assumptions to be rigorously satisfied    
•  In general this contribution is overwhelmed  by the high energy phases    
•  But they can be approximately satisfied  in specific scenarios for some regions   
•  It is in  any case by itself interesting that CP violation in neutrino mixing could be  
  sufficient to have successful leptogenesis 

M
1(G

eV
) 

m1(eV) m1(eV) 
(Davidson, 
 Rius et al.’07) 



A lower bound on neutrino masses (IO)   

NB-L= 0.001, 0.01, 0.1  P,i  INVERTED ORDERING 

m1 ≳ 3 meV⇒Σi mi ≳ 100 meV  (not necessarily deviation from HL)  



Two fully flavoured regime 

Flavoured decay parameters:        

(α = τ, e+µ) 


