Neutrinos: Recent developments and Future Challenges

 KITP, UCSB, 3-7 November 2014

Pasquale Di Bari

(University of Southampton)

Leptogenesis: a tantalizing opportunity

Cosmology

 (carly Universe)- Cosmological Purzes:

1. Dark matter
2. Matrer - antimarter asymmetry
3. Inflation
4. Accelerating Universe

$$
\eta_{B}^{C M B} \simeq 6 \times 10^{-10}
$$

- New stage in early Universe history:

$\mathrm{T}_{\text {RH }}$??	- Inflation
T 100 GeV	\checkmark EWSSB
0.1-1 MeV	BE
$0.1-1 \mathrm{eV}$	- Recombination

> Leptogenesis complements experiments testing the seesaw high energy parameters and low energy neutrino providing a guidance toward the model underlying the seesaw

Two important questions:

1. Can leptogenesis help to understand neutrino parameters?
2. Vice-versa: can we probe leptogenesis with low energy neutrino data?

A common approach in the LHC era: "TeV Leptogenesis"
Is there an alternative approach based on traditional high energy scale leptogenesis? Also considering that:
> No new physics at the LHC (not so far):
> Discovery of a non-vanishing reactor angle opened the door to completing leptonic mixing matrix parameters measurement;
$>$ Cosmological observations start to have the sensitivity to either rule our or discover quasi-degenerate neutrino masses and huge world efforts in improving $0 v \beta \beta$ sensitivity

Neutrino mixing parameters

Pontecorvo-Maki-Nakagawa-Sakata matrix

$$
\left|\nu_{\alpha}\right\rangle=\sum U_{\alpha i}^{\star}\left|\nu_{i}\right\rangle
$$

$U_{\alpha i}=\left(\begin{array}{ccc}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3}\end{array}\right)_{\Delta}$

$=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right) \cdot\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right) \cdot\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{ccc}e^{i \rho} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i \sigma}\end{array}\right)$
Atmospheric, LB
$c_{i j}=\cos \theta_{i j}$, and $s_{i j}=\sin \theta_{i j}$
(Forero,
Tortola, Valle 14:
Capozzi, Fogli, Lisi, Palazzo '14)

3o ranges(NO):

$$
\begin{aligned}
& \theta_{23} \simeq 38^{\circ}-53^{\circ} \\
& \theta_{12} \simeq 32^{\circ}-38^{\circ}
\end{aligned}
$$

$$
\theta_{13} \cong 7.5^{\circ}-10^{\circ}
$$

$$
\delta, \rho, \sigma=[-\pi, \pi]
$$

Neutrino masses: $m_{1} \leqslant m_{2} \leqslant m_{3}$

$$
\begin{aligned}
& m_{\mathrm{atm}} \equiv \sqrt{\Delta m_{\mathrm{atm}}^{2}+\Delta m_{\mathrm{sol}}^{2}} \simeq 0.05 \mathrm{eV} \\
& m_{\mathrm{sol}} \equiv \sqrt{\Delta m_{\mathrm{sol}}^{2}} \simeq 0.009 \mathrm{eV}
\end{aligned}
$$

Tritium β decay :me 2 eV (Mainz +Troitzk 95\% CL)
$\beta \beta 0 v: m_{\varepsilon \varepsilon}<0.34-0.78 \mathrm{eV}$ (CUORICINO 95\% CL, similar from Heidelberg-Moscow)
$m_{\varepsilon \varepsilon}<0.12-0.25 \mathrm{eV}$
(EXO-200+Kamland-Zen 90\% CL) $m_{\varepsilon \varepsilon}<0.2-0.4 \mathrm{eV}$
(GERDA+IGEX 90\% CL.)
CMB+BAO+HO : $\Sigma \mathrm{m}_{\mathrm{i}}<0.23 \mathrm{eV}$ (Planck+high-I+WMAPpol+BAO 95\%CL)

$$
\Rightarrow m_{1}<0.07 \mathrm{eV}
$$

The minimally extended SM

$$
\mathcal{L}=\mathcal{L}_{S M}+\mathcal{L}_{\mathrm{mans}}^{\nu}
$$

$$
-\mathcal{L}_{\text {mass }}^{\nu}=\bar{\nu}_{L} h \nu_{R} \Rightarrow-\mathcal{L}_{\text {mass }}^{\nu}=v \bar{\nu}_{L} m_{D} \nu_{R}
$$

Dirac mass term
(in a basis where charged lepton mass matrix is diagonal)

$$
m_{D}=V_{L}^{\dagger} D_{m_{D}} U_{R} \quad D_{m_{D}}=\operatorname{diag}\left\{m_{D 1}, m_{D 2}, m_{D 3}\right\}
$$

Neutrino masses: $\quad m_{i}=m_{D i}$
Neutrino mixing: $\quad U=V_{L}$

Too many unanswered questions:

- Why neutrinos are much lighter than alloother fermions?
- Why large mixing angles?
- Cosmological puzzles?
- Why not a Majorana mass term as well?

Minimal scenario of Leptogenesis (Fukugita, Yanagida '86)

-Type I seesaw

$$
\mathcal{L}_{\text {mass }}^{\nu}=-\frac{1}{2}\left[\left(\bar{\nu}_{L}^{c}, \bar{\nu}_{R}\right)\left(\begin{array}{cc}
0 & m_{D}^{T} \\
m_{D} & M
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}}\right]+\text { h.c. }
$$

In the see-saw limit ($M \gg m_{D}$) the mass spectrum splits into 2 sets:

- 3 light Majorana neutrinos with masses

```
diag}(\mp@subsup{m}{1}{},\mp@subsup{m}{2}{},\mp@subsup{m}{3}{})=-\mp@subsup{U}{}{\dagger}\mp@subsup{m}{D}{}\frac{1}{M}\mp@subsup{m}{D}{T}\mp@subsup{U}{}{\star
```

3 very heavy Majorana RH neutrinos N_{1}, N_{2}, N_{3} with masses $M_{3}>M_{2}>M_{1} \gg m_{D}$

$$
N_{i} \hookrightarrow l_{i} H^{\dagger} \quad N_{i} \stackrel{\Gamma}{l_{i}} H
$$

On average one N_{i} decay produces a $B-L$ asymmetry given by its | total $C P$ |
| :---: |
| asymmetries |$\varepsilon_{i} \equiv-\frac{\Gamma_{i}-\bar{\Gamma}_{i}}{\Gamma_{i}+\bar{\Gamma}_{i}}$

$$
N_{B-L}^{\mathrm{fin}}=\sum_{i} \varepsilon_{i} \kappa_{i}^{\mathrm{fin}}
$$

-Thermal production of RH neutrinos

$$
T_{R H} \geq M_{i} /(2 \div 10) \geqslant T_{\text {sph }} \simeq 100 \mathrm{GeV} \Rightarrow \eta_{B}=a_{\text {sph }} N_{B-L}^{\text {in }} / N_{i}^{\text {rec }}
$$ (Kuzmin, Rubakov,Shaposhnikov' '85)

Seesaw parameter space

 Imposing $\eta_{B}=\eta_{B}^{C M B} \cong 6 \times 10^{-10} \Rightarrow$ can we test seesaw and leptog.?
Problem: too many parameters

(Casas, Ibarra'01) $\quad m_{\nu}=-m_{D} \frac{1}{M} m_{D}^{T} \Leftrightarrow \Omega^{T} \Omega=I$
Orthogonal parameterisation
(in a basis where charged lepton and Majorana mass matrices are diagonal)
The 6 parameters in the orthogonal matrix Ω encode the 3 life times and the 3 total $C P$ asymmetries of the RH neutrinos
A parameter reduction would help and can occur in various ways:
$\Rightarrow \eta_{B}=\eta_{B}^{C M B}$ is satisfied around "peaks"
$>$ some parameters cancel in the asymmetry calculation
$>$ imposing independence of the initial conditions
> imposing some condition on m_{D}
> additional phenomenological constraints (e.g. Dark Matter)

Vanilla leptogenesis

(Buchmüller,PDB,Plümacher '04: Giudice et al. '04; Blanchet, PDB '07)

1) Lepton flavor composition is neglected

$$
\begin{gathered}
N_{i} \xrightarrow{\ulcorner } l_{i} H^{\dagger} \quad N_{i} \xrightarrow{\Gamma} \bar{l}_{i} H \\
\eta_{B} \simeq 0.01 \sum_{i} \kappa^{\mathrm{f}}\left(K_{i}\right) \varepsilon_{i}
\end{gathered}
$$

2) Hierarchical spectrum $\left(M_{2} \approx 2 M_{1}\right)$
3) Strong lightest RH neutrino wash-out

$$
\eta_{B} \simeq 0.01 \varepsilon_{1} \kappa^{\mathrm{f}}\left(K_{1}\right)
$$

4) Barring fine-tuned cancellations
(Davidson, Ibarra '02)
$\varepsilon_{1} \leq \varepsilon_{1}^{\max } \simeq 10^{-6}\left(\frac{M_{1}}{10^{10} \mathrm{GeV}}\right) \frac{m_{\text {atm }}}{m_{1}+m_{3}}$

5) Efficiency factor from simple Boltzmann equations

$$
\begin{aligned}
& \frac{d N_{N_{1}}}{d z}=-D_{1}\left(N_{N_{1}}-N_{N_{1}}^{\mathrm{eq}}\right) \\
& \frac{d N_{B-L}}{d z}=-\varepsilon_{1} \frac{d N_{N_{1}}}{d z}-W_{1} N_{B-L}
\end{aligned}
$$

No dependence on the leptonic mixing matrix U!
decay parameter: $K_{1} \equiv \frac{\Gamma_{N_{1}}(T=0)}{H\left(T=M_{1}\right)}$

Total CP asymmetries

(Flanz,Paschos,Sarkar'95; Covi,Roulet,Vissani'96; Buchmüller,Plümacher'98)

$$
\varepsilon_{i} \simeq \frac{1}{8 \pi v^{2}\left(m_{D}^{\dagger} m_{D}\right)_{i i}} \sum_{j \neq i}^{\ell} \operatorname{Im}
$$

Independence of the initial conditions

(Buchmüller,PDB,Plümacher '04)

wash-out of a pre-existing asymmetry N_{B-L}^{p}

$$
N_{B-L}^{\mathrm{p}, \text { final }}=N_{B-L}^{\mathrm{p}, \text { initial }} e^{-\frac{3 \pi}{8} K_{1}} \ll N_{B-L}^{\mathrm{f}, \mathrm{~N}_{1}}
$$

decay parameter: $K_{1} \equiv \frac{\Gamma_{N_{1}}}{H\left(T=M_{1}\right)} \xlongequal[m_{\text {sol, atm }}]{m_{*} \sim 10^{-3} \mathrm{eV}} 10 \div 50$

Independence of the initial abundance of N_{1} as well

SO(10)-inspired leptogenesis

(Branco et al. '02; Nezri, Orloff '02: Akhmedov, Frigerio, Smirnov '03)
Expressing the neutrino Dirac mass matrix m_{D} in the bi-unitary parameterization:

$$
m_{D}=V_{L}^{\dagger} D_{m_{D}} U_{R}
$$

$$
D_{m_{D}}=\operatorname{diag}\left\{m_{D 1}, m_{D 2}, m_{D 3}\right\}
$$

From the seesaw formula one can express:

$$
U_{R}=U_{R}\left(U, m_{i} ; \alpha_{i}, V_{L}\right), M_{i}=M_{i}\left(U, m_{i} ; \alpha_{i}, V_{L}\right) \Rightarrow \eta_{B}=\eta_{B}\left(U, m_{i} ; \alpha_{i}, V_{L}\right)
$$

Imposing then $\mathrm{SO}(10)$ inspired conditions*:

$$
m_{D 1}=\alpha_{1} m_{u}, m_{D 2}=\alpha_{2} m_{c}, m_{D 3}=\alpha_{3} m_{t}, \quad\left(\alpha_{i}=\mathcal{O}(1)\right)
$$

$$
V_{L} \simeq V_{C K M} \simeq I
$$

One obtains (barring fine-tuned 'crossing level' solutions):

$$
\begin{aligned}
& M_{1} \simeq \alpha_{1}^{2} 10^{5} \mathrm{GeV}, M_{2} \simeq \alpha_{2}^{2} 10^{10} \mathrm{GeV}, M_{3} \simeq \alpha_{3}^{2} 10^{15} \mathrm{GeV} \\
& \text { since } M_{1} \ll 10^{9} \mathrm{GeV} \Rightarrow \eta_{\mathrm{B}}^{(N 1)} \ll \eta_{\mathrm{B}} \mathrm{CMB}
\end{aligned}
$$

*Note that SO(10)-inspired conditions can be realized beyond SO(10) and even beyond GUT models (e.g. "Tetraleptogenesis", King '13, Feruglio '14)

Crossing level solutions

(Akhmedov, Frigerio, Smirnov '03: PDB, Fiorentin, Marzola 2014)
$M_{1} \simeq \frac{\alpha_{1}^{2} m_{u}^{2}}{\left|m_{\text {mee }}\right|}$
(a) $\rho=0, \sigma=0$

$M_{2} \simeq \frac{\alpha_{2}^{2} m_{c}^{2}}{m_{1} m_{2} m_{3}} \frac{\left|m_{\nu e e}\right|}{\left|\left(m_{\nu}^{-1}\right)_{\tau \tau}\right|}$
$M_{3} \simeq \alpha_{3}^{2} m_{t}^{2}\left|\left(m_{\nu}^{-1}\right)_{\tau \tau}\right|$

$$
\rho=\pi / 2, \sigma=0, s_{13}=0.1
$$

(a) $\delta=0$

(d) $\delta=\pi$

- About the crossing levels the CP asymmetries are resonant enhancement (Covi,Roulet,Vissani '96; Pilaftsis '98: Pilaftsis, Underwood '04: ...)
> The correct BAU can be attained for a fine tuned choice of parameters: many models have made use of these solutions (e.g. Ji, Mohapatra, Nasri: Buccella, Falcone, Nardi, '12; Altarelli, Meloni '14)

The N_{2}-dominated scenario

(PDB '05)

What about the asymmetry from the next-to-lightest $\left(\mathrm{N}_{2}\right)$ RH neutrinos? It is typically washed-out:

$$
N_{B-L}^{\mathrm{f}, \mathrm{~N}_{2}}=\varepsilon_{2} \kappa\left(K_{2}\right) e^{-\frac{3 \pi}{8} K_{1}} \ll N_{B-L}^{\mathrm{f}, \mathrm{~N}_{1}}=\varepsilon_{1} \kappa\left(K_{1}\right)
$$

...except for a special choice of parameters when $K_{1}=m_{1} / m_{*} \ll 1$ and $\varepsilon_{1}=0$:

$$
\Rightarrow N_{B-L}^{\mathrm{fin}}=\sum_{i} \varepsilon_{i} \kappa_{i}^{\text {fin }} \simeq \varepsilon_{2} \kappa_{2}^{\text {fin }} \quad \varepsilon_{2} \lesssim 10^{-6}\left(\frac{M_{2}}{10^{10} \mathrm{GeV}}\right)
$$

> The lower bound on M_{1} disappears and is replaced by a lower bound on $M_{2} \ldots$that however still implies a lower bound on $\mathrm{T}_{\text {reh }}$

$>$ How special is having $K_{1} \leqslant 1$?

$$
P\left(K_{1} \leqslant 1\right)=0.2 \% \text { (random scan) }
$$

> SO(10)-inspired models do not realise this special choice of parameters!
since $M_{1} \ll 10^{9} \mathrm{GeV}$ and $K_{1} \gg 1 \Rightarrow \eta_{B}^{(N 1)}, \eta_{B}^{(N 2)} \ll \eta_{B}^{C M B}$

Lepton flavour effects

(Abada, Davidson,Losada,Josse-Michaux,Riotto'06: Nardi,Nir,Roulet,Racker '06: Blanchet, PDB, Raffelt '06; Riotto, De Simone '06)
Flavor composition of lepton quantum states is important!

$$
\begin{array}{ll}
\left|l_{1}\right\rangle=\sum_{\alpha}\left\langle l_{\alpha} \mid l_{1}\right\rangle\left|l_{\alpha}\right\rangle & (\alpha=e, \mu, \tau) \\
\left|\vec{l}_{1}\right\rangle=\sum_{\alpha}\left\langle l_{\alpha} \mid \vec{l}_{1}\right\rangle\left|\bar{l}_{\alpha}\right\rangle & \\
\bar{P}_{1 \alpha} \equiv\left|\left\langle\ell_{1} \mid \alpha\right\rangle\right|^{2} \\
\left.\equiv \bar{\ell}_{1}^{\prime}|\bar{\alpha}\rangle\right|^{2}
\end{array}
$$

For $M_{1} \gtrsim 10^{12} \mathrm{GeV} \Rightarrow \tau$-Yukawa interactions $\left(\bar{l}_{L \tau} \phi f_{\tau \tau} e_{R \tau}\right)$ are fast enough to break the coherent evolution of $\left|l_{1}\right\rangle$ and $\left|\vec{l}_{1}\right\rangle$
\Rightarrow they become an incoherent mixture of $a \tau$ and of a $\mu+e$ component For $M_{1} \gtrsim 10^{9} \mathrm{GeV}$ then also μ - Yukawas in equilibrium $\Rightarrow 3$-flavor regime

The N_{2}-dominated scenario (flavoured)

(Vives '05: Blanchet, PDB '06; Blanchet, PDB '08, PDB, Fiorentin '14)
Flavour effects strongly enhance the importance of the N_{2}-dominated scenario

Flavoured decay parameters: $K_{1 \alpha}=P_{1 \alpha}^{0} K_{1}$

$$
\begin{aligned}
& >\mathrm{K}_{1}=\mathrm{K}_{1 e}+\mathrm{K}_{1 \mathrm{u}}+\mathrm{K}_{1 \tau}: P\left(\mathrm{~K}_{1} \leqslant 1\right) \sim 0.2 \% ; \\
& >P\left(\mathrm{~K}_{1 e} \lesssim 1\right) \sim 2 \mathrm{P}\left(\mathrm{~K}_{1 \mu \tau} \lesssim 1\right) \sim 15 \% \Rightarrow \Sigma_{\mathrm{a}} \mathrm{P}\left(\mathrm{~K}_{1 \mathrm{a}} \lesssim 1\right)=30 \%
\end{aligned}
$$

The N_{2}-dominated scenario rescues $\mathrm{SO}(10)$ inspired models

(PDB. Riotto '08)

$$
N_{B-L}^{\mathrm{f}} \simeq \varepsilon_{2 e} \kappa\left(K_{2 e+\mu}\right) e^{-\frac{3 \pi}{8} K_{1 e}}+\varepsilon_{2 \mu} \kappa\left(K_{2 \varepsilon+\mu}\right) e^{-\frac{3 \pi}{8} K_{1 \mu}}+\varepsilon_{2 \tau} \kappa\left(K_{2 \tau}\right) e^{-\frac{3 \pi}{8} K_{1 \tau}}
$$

Independent of $\alpha_{1}=m_{D 1} / m_{U}$ and $\alpha_{3}=m_{D 3} / m_{+}$
$\alpha_{2}=5 \quad \alpha_{2}=4 \quad \alpha_{2}=3 \quad V_{L}=I \quad$ Normal ordering
lower
bound
on m_{1}

- The solutions are exclusively tauon dominated '
- It has been also confirmed within SUSY (Blanchet,Marfatia,'10)

Testing SO(10)-inspired leptogenesis with low energy neutrino data

More general calculation with: $I \leq V_{L} \leq V_{C K M}$

> Majorana phases constrained about specific values
$>$ The lower bound on θ_{13} at low m_{1} disappears
> A muon solution appears at high m_{1} : strongly constrained by Planck
$>$ Very marginal allowed regions for INVERTED ORDERING

The problem of the initial conditions in flavoured leptogenesis

The conditions for the wash-out of a pre-existing asymmetry, 'strong thermal (ST) leptogenesis', can be realised only within a tauon dominated N_{2}-dominated scenario!

Can SO(10)-inspired leptogenesis realise ST leptogenesis?

Wash-out of a pre-existing asymmetry

in SO(10)-inspired leptogenesis

(PDB, Marzola '11) $N_{B-L}^{\mathrm{f}}=N_{B-L}^{\mathrm{p}, \mathrm{f}}+N_{B-L}^{\mathrm{lep}, \mathrm{f}}$,

Imposing successful strong thermal leptogenesis condition:

$$
N_{B-L}^{\mathrm{f}}=N_{B-L}^{\mathrm{p}}+N_{B-L}^{\mathrm{lep}}, \quad\left|N_{B-L}^{\mathrm{p}}\right| \ll N_{B-L}^{\mathrm{lep}} \simeq 100 \eta_{B}^{C M B}
$$

NO Solutions for Inverted Ordering, while for
Normal Ordering there is a subset with interesting predictions:
$N_{B-L}^{p . f}=0$
0.001
0.01

Non-vanishing θ_{13}

Talk at the DESY theory workshop 28/9/11

Strong thermal SO(10)-inspired solution

(PDB, Marzola '13)

$>$ YES the strong thermal leptonesis condition can be also satisfied for a subset of the solutions (red, green, blue regions) only for NORMAL ORDERING

$$
\alpha_{2}=5 \quad N_{B-L}^{p, i}=0.001,0.01,0.1,0 \quad I \leq V_{L} \leq V_{C K M}
$$

The lightest neutrino mass respects the general lower bound but is also upper bounded $\Rightarrow 15 \lesssim m_{1} \lesssim 25 \mathrm{meV}$:
$>$ The reactor mixing angle has to be non-vanishing (preliminary results presented before Daya Bay discovery):
$>$ The atmospheric mixing angle falls strictly in the first octant:
\Rightarrow The Majorana phases are even more constrained around special values

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'13)
Imposing successful strong thermal leptogenesis condition:

$$
N_{B-L}^{\mathrm{f}}=N_{B-L}^{\mathrm{p}}+N_{B-L}^{\mathrm{lep}},\left|N_{B-L}^{\mathrm{p}}\right| \ll N_{B-L}^{\mathrm{lep}} \simeq 100 \eta_{B}^{C M B}
$$

Link between the sign of $J_{C P}$ and the sign of the asymmetry

$$
\eta_{B}=\eta_{B}^{C M B} \quad \eta_{B}=-\eta_{B}^{C M B}
$$

A Dirac phase $\delta \sim=45^{\circ}$ is favoured: sign matters!

Strong thermal SO(10)-inspired leptogenesis:

the atmospheric mixing angle test

arXiv:1308.1107

v1.2: Three-neutrino results after the
'TAUP 2013' conference [September 2013]

http://www.nu-fit.org/sites/default/files/ v12.fig-dlthie-glob.pdf

For values of $\theta_{23} \approx 36^{\circ}$ the Dirac phase is predicted to be $\delta \sim-45^{\circ}$
It is interesting that current global analyses find a local minimum for Normal Ordering, atmospheric angle in the first octant and negative $\sin \delta$

Last brick in the wall: neutrinoless double beta decay

```
(PDB, Marzola '11-'12)
```

Sharp predictions on the absolute neutrino mass scale including $0 v \beta \beta$ effective neutrino mass $m_{e e}$

$$
\begin{aligned}
& N_{B-L}= 0 \\
& 0.001 \\
& 0.01 \\
& 0.1 \\
& \alpha_{2}=5
\end{aligned}
$$

Experimental test on the way: NOvA

Expected NOvA contours for one example scenario at $3 \mathrm{yr}+3 \mathrm{yr}$

Strong thermal SO(10)-inspired solution

A lower bound on neutrino masses (NO)

(PDB, Sophie King, Michele Re Fiorentin 2014) $N_{B-L}^{P_{L}^{i}}=0.001,0.01,0.1$

Imposing $K_{1 \tau} \approx 1$ and $K_{1 e,}, K_{1 \mu} \gtrless K_{s t} \approx 10(\alpha=e, \mu)$
$\begin{aligned} & \text { flavoured } \\ & \text { decay } \\ & \text { parameters: }\end{aligned} \quad K_{i \beta} \equiv p_{i \beta}^{0} K_{i}=\left|\sum_{k} \sqrt{\frac{m_{k}}{m_{\star}}} U_{\beta k} \Omega_{k i}\right|^{2}$
$\max \left[\left|\Omega_{21}\right|^{2}\right]=2$

$m_{1} \geqslant 10 \mathrm{meV} \Rightarrow \Sigma_{i} m_{i} \geqslant 75 \mathrm{meV}$

$$
m_{1}>m_{1}^{\mathrm{lb}} \equiv m_{\star} \max _{\alpha}\left[\left(\frac{\sqrt{K_{\mathrm{st}}}-\sqrt{K_{1 \alpha}^{0, \max }}}{\max \left[\left|\Omega_{11}\right|\right]\left|U_{\alpha 1}-\frac{U_{\tau 1}}{U_{\tau 3}} U_{\alpha 3}\right|}\right)^{2}\right]
$$

$>$ The lower bound exists if max $\left[\left|\Omega_{\mathrm{ij}}\right|\right]$ is not too large as in $\mathrm{SO}(10)$-inspired models

A new neutrino mass window for leptogenesis

$0.01 \mathrm{eV} \lesssim m_{1} \lesssim 0.1 \mathrm{eV}$

Decrypting the strong thermal
 SO(10)-inspired leptogenesis solution

(PDB, Re Fiorentin, Marzola, 2014)

$$
\eta_{\mathrm{B}} \simeq 0.01 \varepsilon_{2 \tau} \kappa\left(K_{2 \tau}\right) e^{-\frac{3 \pi}{8} K_{1 \tau}}
$$

+ Strong thermal condition
+ SO(10)-inspired conditions

Strong thermal SO(10)-inspired solution

Imposing SO(10)-inspired conditions

(PDB, Re Fiorentin, Marzola, 2014)
Bi-unitary parameterisation

$$
\begin{aligned}
m_{D} & =V_{L}^{\dagger} D_{m_{D}} U_{R} \\
m_{\nu} & =-m_{D} \frac{1}{D_{M}} m_{D}^{T}
\end{aligned}
$$

See-saw formula
SO(10)-inspired conditions

$$
\begin{gathered}
m_{D 1}=\alpha_{1} m_{u}, m_{D 2}=\alpha_{2} m_{c}, m_{D 3}=\alpha_{3} m_{t}, \quad\left(\alpha_{i}=\mathcal{O}(1)\right) \\
V_{L} \simeq V_{C K M} \simeq I
\end{gathered}
$$

A diagonalization problem:

Majorana mass matrix
In the Yukawa basis

$$
U_{R}^{\star} D_{M} U_{R}^{\dagger}=M \simeq-D_{m_{D}} m_{\nu}^{-1} D_{m_{D}}
$$

Diagonalizing the Majorana matrix

(PDB, Re Fiorentin, Marzola, 2014)

$$
M_{3} \simeq m_{D 3}^{2}\left|\left(m_{\nu}^{-1}\right)_{\tau \tau}\right|=m_{D 3}^{2}\left|\frac{\left(U_{1}^{\star}\right)^{2}}{m_{1}}+\frac{\left(U_{\tau 2}^{\star}\right)^{2}}{m_{2}}+\frac{\left(U_{\tau 3}^{\star}\right)^{2}}{m_{3}}\right| \propto \alpha_{3}^{2} m_{t}^{2} \quad \Phi_{3}=\operatorname{Arg}\left[-\left(m_{\nu}^{-1}\right)_{\tau \tau}\right]
$$

$$
M_{1} \simeq \frac{m_{D 1}^{2}}{\left|m_{\nu e e}\right|}=\frac{m_{D 1}^{2}}{\left|m_{1} U_{e 1}^{2}+m_{2} U_{e 2}^{2}+m_{3} U_{e 3}^{2}\right|} \propto \alpha_{1}^{2} m_{u}^{2} . \quad \Phi_{1}=\operatorname{Arg}\left[-m_{\nu e e}^{\star}\right]
$$

$$
M_{2} \simeq \frac{m_{D 2}^{2}}{m_{1} m_{2} m_{3}} \frac{\left|m_{\nu e e}\right|}{\left|\left(m_{\nu}^{-1}\right)_{\tau \tau}\right|}=m_{D 2}^{2} \frac{\left|m_{1} U_{e 1}^{2}+m_{2} U_{e 2}^{2}+m_{3} U_{e 3}^{2}\right|}{\left|m_{2} m_{3} U_{\tau 1}^{\star 2}+m_{1} m_{3} U_{\tau 2}^{\star 2}+m_{1} m_{2} U_{\tau 3}^{\star 2}\right|} \propto \alpha_{2}^{2} m_{c}^{2},
$$

$$
\Phi_{2}=\operatorname{Arg}\left[\frac{m_{\nu e e}}{\left(m_{\nu}^{-1}\right)_{\tau \tau}}\right]-2(\rho+\sigma)
$$

CP flavoured asymmetries

(PDB, Re Fiorentin, Marzola, 2014)
Analytical result

$$
\varepsilon_{2 \alpha} \simeq \bar{\varepsilon}\left(M_{2}\right) \frac{m_{D \alpha}^{2}}{m_{D 3}^{2}\left|U_{R 32}\right|^{2}+m_{D 2}^{2}} \frac{\left|\left(m_{\nu}^{-1}\right)_{\tau \tau}\right|^{-1}}{m_{\mathrm{atm}}} \operatorname{Im}\left[U_{R \alpha 2}^{\star} U_{R \alpha 3} U_{R 32}^{\star} U_{R 33}\right] .
$$

Comparison with numerical results:

$$
\varepsilon_{2 \tau}: \varepsilon_{2 \mu}: \varepsilon_{2 e}=\alpha_{3}^{2} m_{t}^{2}: \alpha_{2}^{2} m_{c}^{2}: \alpha_{1}^{2} m_{u}^{2} \frac{\alpha_{3} m_{t}}{a_{2} m_{c}} \frac{\alpha_{1}^{2} m_{u}^{2}}{\alpha_{2}^{2} m_{c}^{2}}
$$

The tauon flavour dominates

A formula for the final asymmetry

(PDB, Re Fiorentin, Marzola, 2014)

Only left non-exp parameter ${ }^{r}$

$$
\eta_{\mathrm{B}} \simeq 0.01 \underbrace{\varepsilon_{2 \tau}}_{\downarrow} \underbrace{\kappa\left(K_{2 \tau}\right)} e^{-\frac{3 \pi}{8} K_{1 \tau}}
$$

$$
\eta_{\mathrm{B}} \simeq 0.01
$$

effective leptogenesis phase

$$
\begin{aligned}
& \times \kappa\left(\frac{m_{1} m_{2} m_{3}}{m_{\star}} \frac{\left|\left(m_{\nu}^{-1}\right)_{\mu \tau}\right|^{2}}{\left|m_{\nu e e}\right|\left|\left(m_{\nu}^{-1}\right)_{\tau \tau}\right|}\right) \\
& \times e^{-\frac{3 \pi}{8} \frac{\left|m_{\nu e \tau}\right|^{2}}{m_{\star}} m_{\nu e e \mid}} .=6 \times 10^{-10}
\end{aligned}
$$

$>$ Cancellation of α_{1} and α_{3} is explicit
$>$ Direct role played by $m_{e e}=\left|m_{\text {vee }}\right|$
SO(10)-inspired leptogenesis entangles all low energy neutrino parameters

All numerical results are reproduced $\left(\mathrm{V}_{\mathrm{L}}=\mathrm{I}\right)$

Example 1: Upper bound on the atmospheric mixing angle

Strong
Thermal solution

All numerical results are reproduced $\left(\mathrm{V}_{\mathrm{L}}=\mathrm{I}\right)$

(PDB, Re Fiorentin, Marzola, 2014)
Example 2: Dirac phase vs. atmospheric mixing angle

$$
0 \leq \theta_{13} \leq 11.5^{\circ}
$$

$$
7.8^{\circ} \leq \theta_{13} \leq 9.9^{\circ}
$$

 thermal solution

Relaxing $\mathrm{V}_{\mathrm{L}}=\mathrm{I}$: ST solution is quite stable

$$
\begin{gathered}
V_{L}=I \square \\
I \leq V_{L} \leq V_{C K M} \square \\
\square
\end{gathered} \begin{gathered}
\text { STRONG THERMAL } \\
\text { SOLUTION } \\
\left(N_{B-L}^{p}=10^{-3}\right)
\end{gathered}
$$

Atmospheric upper bound
for the ST solution

Conclusions:

> Highs scale leptogenesis is difficult to test but maybe not impossible: necessary to work out plausible scenarios;
$>$ Thermal leptogenesis: problem of the independence of the initial conditions because of flavour effects;
$>$ Solution: N_{2}-dominated scenario (minimal seesaw, hierarchical N_{i})
> SO(10)-inspired models can realise ST leptogenesis

	θ_{13}	$\approx 3^{\circ}$
Strong thermal SO(10)-inspired leptogenesis solution	ORDERING	NORMAL
	θ_{23}	$\lesssim 42^{\circ}$
	δ	$\sim-45^{\circ}$
	$\mathrm{m}_{e e} \simeq 0.8 \mathrm{~m}_{1}$	$\simeq 15 \mathrm{meV}$

Flavour projection and wash-out of a pre-existing asymmetry
(Barbieri et al. '99; Engelhard, Nir, Nardi '08; Blanchet, PDB, Jones,Marzola '10) $M_{i} \gtrsim 10^{12} \mathrm{GeV} \uparrow^{\tau} \quad \ell^{i} \quad T \gg M_{i} \quad \tau \uparrow \quad T \ll M_{i}$

$N_{B-L}^{\mathrm{p}}\left(T \ll M_{i}\right)=\left(1-P_{\mathrm{p} i}\right) N_{B-L}^{\mathrm{p}, \mathrm{i}}+P_{\mathrm{p} i} e^{-\frac{3 \pi}{8} K_{i}} N_{B-L}^{\mathrm{p}, \mathrm{i}}$

$N_{B-L}^{\mathrm{p}}\left(T \ll M_{i}\right)=P_{\mathrm{p} e} e^{-\frac{3 \pi}{8} \frac{\pi}{8} K_{i e}} N_{B-L}^{\mathrm{pi}}+P_{\mathrm{p} \mu} e^{-\frac{3 \pi}{8} K_{i \mu} K_{B}^{\mathrm{p}}} N_{B-L}^{\mathrm{p} i}+P_{\mathrm{p} \tau} e^{-\frac{3 \mathrm{~s}}{8} K_{i \tau}} N_{B-L}^{\mathrm{pi}}$

How is STL realised? - A cartoon

Final asymmetry: T-flavoured
Strong thermal leptogenesis conditions

$$
K_{2 \tau} \gg 1 \quad K_{1 e}, K_{1 \mu} \gg 1 \quad K_{1 \tau} \lesssim 1
$$

Courtesy of Michele Re Fiorentin

Density matrix formalism with heavy neutrino flavours

(Blanchet,PDB, Jones, Marzola '11)

For a thorough description of all neutrino mass patterns including transition regions and all effects (flavour projection, phantom leptogenesis,...) one needs a description in Terms of a density matrix formalism The result is a "monster" equation:

$$
\begin{align*}
\frac{d N_{\alpha \beta}^{B-L}}{d z} & =\varepsilon_{\alpha \beta}^{(1)} D_{1}\left(N_{N_{1}}-N_{N_{1}}^{\mathrm{eq}}\right)-\frac{1}{2} W_{1}\left\{\mathcal{P}^{0(1)}, N^{B-L}\right\}_{\alpha \beta} \tag{80}\\
& +\varepsilon_{\alpha \beta}^{(2)} D_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right)-\frac{1}{2} W_{2}\left\{\mathcal{P}^{0(2)}, N^{B-L}\right\}_{\alpha \beta} \\
& +\varepsilon_{\alpha \beta}^{(3)} D_{3}\left(N_{N_{3}}-N_{N_{3}}^{\mathrm{eq}}\right)-\frac{1}{2} W_{3}\left\{\mathcal{P}^{0(3)}, N^{B-L}\right\}_{\alpha \beta} \\
& +i \operatorname{Re}\left(\Lambda_{\tau}\right)\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), N^{\ell+\bar{\ell}}\right]_{\alpha \beta}-\operatorname{Im}\left(\Lambda_{\tau}\right)\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), N^{B-L}\right]\right]_{\alpha \beta} \\
& +\operatorname{iRe}\left(\Lambda_{\mu}\right)\left[\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), N^{\ell+\ell}\right]_{\alpha \beta}-\operatorname{Im}\left(\Lambda_{\mu}\right)\left[\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left[\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), N^{B-L}\right]\right]_{\alpha \beta}
\end{align*}
$$

Some insight from the decay parameters

At the production ($T \sim M_{2}$)

At the wash-out ($T \sim M_{1}$)

Flavour projection

(Engelhard, Nir, Nardi '08 , Bertuzzo,PDB,Marzola '10)

Assume $M_{i+1} \gtrsim 3 M_{i} \quad(i=1,2)$

The heavy neutrino flavour basis cannot be orthonormal otherwise the CP asymmetries would vanish: this complicates the calculation of the final asymmetry
$p_{i j}=\left|\left\langle\ell_{i} \mid \ell_{j}\right\rangle\right|^{2} \quad p_{i j}=\frac{\left|\left(m_{D}^{\dagger} m_{D}\right)_{i j}\right|^{2}}{\left(m_{D}^{\dagger} m_{D}\right)_{i i}\left(m_{D}^{\dagger} m_{D}\right)_{j j}}$.

$$
N_{B-L}^{\left(N_{2}\right)}\left(T \ll M_{1}\right) \not N_{\Delta_{1}}^{\left(N_{2}\right)}\left(T \ll M_{1}\right)+N_{\Delta_{1 \perp}}^{\left(N_{2}\right)}\left(T \ll M_{1}\right)
$$

Component from heavier RH neutrinos parallel to I_{1} and washed-out by N_{1} inverse decays
neutrinos orthogonal to I_{1} and escaping
N_{1} wash-out

$$
N_{\Delta_{1}}^{\left(N_{2}\right)}\left(T \ll M_{1}\right)=p_{12}\left(e^{-\frac{3 \pi}{8} K_{1}} N_{B-L}^{\left(N_{2}\right)}\left(T \sim M_{2}\right)\right.
$$

2 RH neutrino scenario revisited

(King 2000;Frampton, Yanagida, Glashow '01, Ibarra, Ross 2003;Antusch, PDB, Jones, King '11)
In the 2 RH neutrino scenario the N_{2} production has been so far considered to be safely negligible because $\varepsilon_{2 a}$ were supposed to be strongly suppressed and very strong N_{1} wash-out. But taking into account:

- the N_{2} asymmetry N_{1}-orthogonal component
- an additional unsuppressed term to $\varepsilon_{2 a}$ New allowed N_{2} dominated regions appear

These regions are interesting because they correspond to light sequential dominated neutrino mass models realized in some grandunified models

Affleck-Dine Baryogenesis

 (Affleck, Dine '85)In the Supersymmetric SM there are many "flat directions" in the space of a field composed of squarks and/or sleptons

$$
V(\phi)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{1}{2} \sum_{A}\left(\sum_{i j} \phi_{i}^{*}\left(t_{A}\right)_{i j} \phi_{j}\right)^{2}
$$

F term
D term

A flat direction can be parametrized in terms of a complex field (AD field) that carries a baryon number that is violated dynamically during inflation

$$
\frac{n_{B}}{s} \sim 10^{-10}\left(\frac{m_{3 / 2}}{m_{\Phi}}\right)\left(\frac{m_{\Phi}}{\mathrm{TeV}}\right)^{-\frac{1}{2}}\left(\frac{M}{M_{P}}\right)^{\frac{3}{2}}\left(\frac{T_{R}}{10 \mathrm{GeV}}\right)
$$

The final asymmetry is $\propto T_{R H}$ and the observed one can be reproduced for low values $T_{R H} \sim 10 \mathrm{GeV}$!

Electron appearance events for $0.5^{*} \mathrm{LBNO}$ and LBNE

Density matrix and CTP formalism to describe the transition regimes

(De Simone, Riotto '06: Beneke, Gabrecht, Fidler, Herranen, Schwaller '10)

$$
\frac{\mathrm{d} Y_{\alpha \beta}}{\mathrm{d} z}=\frac{1}{s z H(z)}\left[\left(\gamma_{D}+\gamma_{\Delta L=1}\right)\left(\frac{Y_{N_{1}}}{Y_{N_{1}}^{\mathrm{eq}}}-1\right) \epsilon_{\alpha \beta}-\frac{1}{2 Y_{\ell}^{\mathrm{ec}}}\left\{\gamma_{D}+\gamma_{\Delta L=1}, Y\right\}_{\alpha \beta}\right]-\left[\sigma_{2} \operatorname{Re}(\Lambda)+\sigma_{1}|\operatorname{Im}(\Lambda)|\right] Y_{\alpha \beta}
$$

Fully two-flavoured regime limit

Unflavoured regime limit

Additional contribution to CP violation:
(Nardi,Racker,Roulet '06)
$(a=T, e+\mu)$

$$
\varepsilon_{1 \alpha}=P_{1 \alpha}^{0} \varepsilon_{1}+\left(\frac{\Delta P_{1 \alpha}}{2}\right)
$$

1)

depends on U!

$$
\Rightarrow P_{1 \alpha}^{0} \varepsilon_{1}
$$

2) $\left|\bar{l}_{1}\right\rangle \neq C P\left|l_{1}\right\rangle$

Neutrino mass bounds and role of PMNS phases

(Abada et al.' 07: Blanchet,PDB,Raffelt;Blanchet,PDB '08)

$m_{1}(\mathrm{eV})$

PMNS phases off

$m_{1}(\mathrm{eV})$

$\min _{1}(e V)$
 (Nardi et al., 06;Blanchet,PDB'06;Pascoli,Petcov,Riotto '06:Anisimov, Blanchet,PDB '08)

- Assume real $\Omega \Rightarrow \varepsilon_{1}=0 \Rightarrow \varepsilon_{1 \alpha}=P_{1 \alpha}^{\alpha} \varepsilon_{1}+\frac{\Delta P_{1 \alpha}}{2}$

$$
\Rightarrow N_{B-L} \Rightarrow 2 \varepsilon_{a} K_{1}^{f i n}+\Delta P_{1 a}\left(K_{1 a}^{f i n}-K_{1 \beta}^{f i n}\right) \quad(a=T, e+\mu)
$$

- Assume even vanishing Majorana phases
$\Rightarrow \delta$ with non-vanishing $\theta_{13}\left(\mathrm{~J}_{C P^{*}} 0\right)$ would be the only source of $C P$ violation (and testable)

Green points: only Dirac phase with $\sin \theta_{13}=0.2$ $|\sin \delta|=1$

Red points: only Majorana phases

- No reasons for these assumptions to be rigorously satisfied
(Davidson, - In general this contribution is overwhelmed by the high energy phases Rius et al. '07) - But they can be approximately satisfied in specific scenarios for some regions - It is in any case by itself interesting that CP violation in neutrino mixing could be sufficient to have successful leptogenesis

A lower bound on neutrino masses (IO)

$N_{B,-L}^{P, i}=0.001,0.01,0.1 \max \left[\left|\Omega_{21}^{2}\right|\right]=2 \quad$ INVERTED ORDERING

 $\max \left[\left|\Omega_{21}^{2}\right|\right]=2$

$m_{1} \gtrless 3 \mathrm{me} \overparen{V} \Rightarrow \Sigma_{i} m_{i} \gtrless 100 \mathrm{meV}$ (not necessarily deviation from HL)

Two fully flavoured regime

- Classic Kinetic Equations (in their simplest form)

$$
\begin{array}{r}
(\mathbf{a}=\mathbf{T}, \mathbf{e}+\boldsymbol{\mu}) \quad \begin{array}{r}
\frac{d N N_{1}}{d z} \\
\frac{d N_{\Delta_{\alpha}}}{d z}=-D_{1}\left(N_{N_{1}}-N_{N_{1}}^{\mathrm{eq}}\right) \\
\Rightarrow \varepsilon_{1 \alpha-L} \frac{d N_{N_{1}}}{d z}-P_{1 \alpha}^{0} W_{1} N_{\Delta_{\alpha}} \\
P_{1 \alpha} \equiv\left|\left\langle l_{\alpha} \mid l_{1}\right\rangle\right|^{2}=P_{1 \alpha}^{0}+\Delta P_{1 \alpha} / 2 \\
\bar{P}_{1 \alpha} \equiv\left|\left\langle\bar{l}_{\alpha} \mid \bar{l}_{1}^{\prime}\right\rangle\right|^{2}=P_{1 \alpha}^{0}-\Delta P_{1 \alpha} / 2 \\
\Rightarrow \varepsilon_{1 \alpha} \equiv-\frac{P_{1 \alpha} \Gamma_{1}-\bar{P}_{1 \alpha} \bar{\Gamma}_{1}}{\Gamma_{1}+\bar{\Gamma}_{1}}=P_{1 \alpha}^{0} \varepsilon_{1}+\Delta P_{1 \alpha}(\Omega, U) / 2
\end{array}
\end{array}
$$

$$
\Rightarrow N_{B-L}^{\mathrm{fin}}=\sum_{\alpha} \varepsilon_{1 \alpha} \kappa_{1 \alpha}^{\mathrm{fin}} \simeq 2 \varepsilon_{1} \kappa_{1}^{\mathrm{fin}}+\frac{\Delta P_{1 \alpha}}{2}\left[\kappa^{\mathrm{f}}\left(K_{1 \alpha}\right)-\kappa^{\mathrm{fin}}\left(K_{1 \beta}\right)\right]
$$

Flavoured decay parameters: $K_{i \alpha} \equiv P_{i \alpha}^{0} K_{i}=\left|\sum_{k} \sqrt{\frac{m_{k}}{m_{*}}} U_{\alpha k} \Omega_{k i}\right|^{2}$

