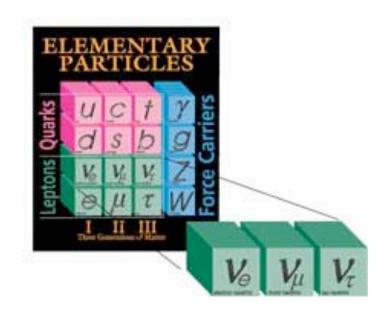


Neutrino Mass Models

Lisa L. Everett
Neutrinos: Recent Developments and Future Challenges
KITP, Santa Barbara, CA
November 3, 2014



Main Theme

Discovery of Neutrino Oscillations:

$$\mathcal{P}_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{ij} \mathcal{U}_{i\alpha} \mathcal{U}_{i\beta}^* \mathcal{U}_{j\alpha}^* \mathcal{U}_{j\beta} e^{-\frac{i\Delta m_{ij}^2 L}{2E}}$$

surprises, confusion, excitement for beyond SM physics theory!

3 Neutrino "Reference" Picture:

data (w/exceptions*) consistent with 3ν mixing picture intriguing pattern of masses, mixings: paradigm shift for SM flavor puzzle

Challenges to this picture:

*LSND, MiniBooNE, reactor anomaly, gallium anomaly: sterile neutrinos?

Many Questions Remain

• How many light neutrinos?

Anomalies: LSND, MiniBooNE, Gallium, Reactor eV-scale sterile neutrinos? But tension still with all oscillation data

First restrict to 3-family neutrino models only

$$SM \longrightarrow \nu SM$$

Still, many questions:

Nature of neutrino mass suppression? Majorana? Dirac? Mass hierarchy? Lepton mixing angle pattern? CP violation?

Implications for BSM paradigms? Connections to other NP?

The Lepton Data

$$\mathcal{U}_{\text{MNSP}} = \mathcal{R}_1(\theta_{23})\mathcal{R}_2(\theta_{13}, \delta_{\text{MNSP}})\mathcal{R}_3(\theta_{12})\mathcal{P}$$

Pontecorvo
Maki, Nakagawa,
— Sakata

	Normal Ordering ($\Delta \chi^2 = 0.97$)		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
	$0.304^{+0.013}_{-0.012}$	$0.270 \rightarrow 0.344$	$0.304^{+0.013}_{-0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2\theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579^{+0.025}_{-0.037}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2\theta_{13}$	$0.0218^{+0.0010}_{-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219^{+0.0011}_{-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \to 0.0251$
$\theta_{13}/^{\circ}$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{\mathrm{CP}}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254^{+63}_{-62}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5}~{\rm eV^2}}$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.307$	$\begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix}$

taken from:

see also:

Gonzalez-Garcia, Maltoni, Salvado, Schwetz 1409.5439

Forero, Tortola, Valle 1405.7540 Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo 1312.2878

2 large angles, I~Cabibbo-sized ("small")

For Comparison: Quark Mixings

Cabibbo; Kobayashi, Maskawa

$$\mathcal{U}_{\mathrm{CKM}} = \mathcal{R}_{1}(\theta_{23}^{\mathrm{CKM}})\mathcal{R}_{2}(\theta_{13}^{\mathrm{CKM}}, \delta_{\mathrm{CKM}})\mathcal{R}_{3}(\theta_{12}^{\mathrm{CKM}})$$

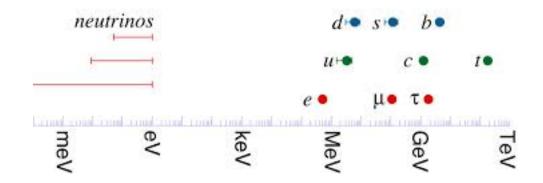
Cabibbo angle θ_c

Mixings:
$$\theta_{12}^{\text{CKM}} = 13.0^{\circ} \pm 0.1^{\circ}$$
 $\theta_{23}^{\text{CKM}} = 2.4^{\circ} \pm 0.1^{\circ}$
 $\theta_{13}^{\text{CKM}} = 0.2^{\circ} \pm 0.1^{\circ}$

3 small angles

CP violation:
$$J \equiv \text{Im}(\mathcal{U}_{\alpha i}\mathcal{U}_{\beta j}\mathcal{U}_{\beta i}^*\mathcal{U}_{\alpha j}^*)$$

Jarlskog; Dunietz, Greenberg, Wu


$$J_{\text{CP}}^{(\text{CKM})} \simeq \sin 2\theta_{12}^{\text{CKM}} \sin 2\theta_{23}^{\text{CKM}} \sin 2\theta_{13}^{\text{CKM}} \sin \delta_{\text{CKM}}$$
$$J \sim 10^{-5} \quad \delta_{\text{CKM}} = 60^{\circ} \pm 14^{\circ}$$

O(1) CP-violating phase

(Broad) Theoretical Implications

Shifts in the paradigm for SM flavor puzzle:

Suppression of neutrino mass scale

Seemingly milder hierarchies for neutrinos

Quark, Lepton Mixing Angles strikingly different

implications for quark-lepton unification?

Mass Generation

Quarks, Charged Leptons

"natural" mass scale tied to electroweak scale Dirac mass terms, parametrized by Yukawa couplings

$$Y_{ij}H\cdot ar{\psi}_{Li}\psi_{Rj}$$

top quark: O(I) Yukawa coupling rest: suppression (flavor symmetry)

Neutrinos beyond physics of Yukawa couplings!

Options: Dirac

Majorana

Majorana first:


advantages: naturalness, leptogenesis, $0\nu\beta\beta$

SM at NR level: Weinberg dim 5 operator

$$rac{\lambda_{ij}}{\Lambda}L_iHL_jH$$

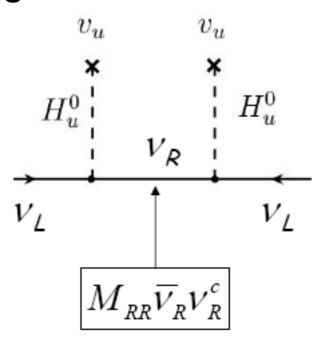
(if
$$\lambda \sim O(1)$$
 $\Lambda \gg m \sim O(100\,{
m GeV})$ but wide range possible)

Underlying mechanism: examples

Type I seesaw ν_R (fermion singlet)

Type II seesaw Δ (scalar triplet)

Type III seesaw ∑ (fermion triplet)


+ variations

Prototype: Type I seesaw

Minkowski; Yanagida; Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic;...

right-handed neutrinos:

$$Y_{ij}L_i\nu_{Rj}H + M_{Rij}\nu_{Ri}\nu_{Rj}^c$$

$$\mathcal{M}_{
u} = \begin{pmatrix} 0 & m \\ m & M \end{pmatrix} \quad \stackrel{m \sim \mathcal{O}(100\,\mathrm{GeV})}{M \gg m}$$
 $m_1 \sim \frac{m^2}{M} \quad m_2 \sim M \gg m_1$ $u_{1,2} \sim
u_{L,R} + \frac{m}{M}
u_{R,L}$

advantages: naturalness, connection to grand unification, leptogenesis,... disadvantage: testability (even at low scales)

Different in Type II, III: new EW charged states, may be visible at LHC

Many other ideas for Majorana neutrino masses...

more seesaws (double, inverse,...), loop-induced masses (Babu-Zee, ...), SUSY with R-parity violation, RS models, higher-dimensional (>5) operators,...

What about Dirac masses?

Less intuitive, but suppression mechanisms exist...

extra dimensions, extra gauge symms (non-singlet ν_R), SUSY breaking,...

General themes:

Trade-off b/w naturalness and testability.

Much richer than quark and charged lepton sectors.

Lepton (and Quark) Mixing Angle Generation

Standard paradigm: spontaneously broken flavor symmetry

$$Y_{ij}H\cdot \bar{\psi}_{Li}\psi_{Rj}$$
 \longrightarrow $\left(\frac{\varphi}{M}\right)^{n_{ij}}H\cdot \bar{\psi}_{Li}\psi_{Rj}$ Froggatt, Nielsen

Quarks:

hierarchical masses, small mixings: continuous family symmetries CKM matrix: small angles and/or alignment of left-handed mixings

$$\mathcal{U}_{\mathrm{CKM}} = \mathcal{U}_u \mathcal{U}_d^{\dagger} \sim 1 + \mathcal{O}(\lambda)$$

$${}_{\lambda \sim \frac{\varphi}{M}}$$

Wolfenstein parametrization: $\lambda \equiv \sin \theta_c = 0.22$

suggests Cabibbo angle (or some power) as a flavor expansion parameter

The Flavor Puzzle, Rejuvenated

Flavor puzzle of SM is notoriously difficult...

Still difficult in ν SM, but more interesting --

One primary reason: two large mixing angles!

$$\theta_{23} \simeq 45^{\circ} \pm 5^{\circ} \quad \theta_{12} \simeq 34^{\circ} \pm 1^{\circ}$$

3-family models: handwave a bit (in diagonal charged lepton basis)

Anarchy vs. Structure

 \longrightarrow The question: is θ_{13} large or small?

$$\theta_{13} \simeq 9^{\circ} \pm 1^{\circ}$$

New case for anarchy: de Gouvea and Murayama, '12

some recent realizations: Bai and Torroba, Altarelli et al., '12

Focus here on structure (symmetry):

Paradigm: discrete non-Abelian family symmetry

(e.g. some subgroup of SO(3) or SU(3), broken to some appropriate coset space)

Main issue/challenge: many theoretical starting points

Role of Small (Cabibbo-sized) Corrections

Quark sector:

$$\mathcal{U}_{\text{CKM}} \sim 1 + O(\lambda_C)$$

Cabibbo angle λ_C (or some power) as a flavor expansion parameter

Lepton sector:

$$\mathcal{U}_{\rm MNSP} \sim \mathcal{W} + O(\lambda')$$

$$\uparrow \qquad \uparrow$$
 'bare' mixing angles $(\theta_{12}^0,\theta_{13}^0,\theta_{23}^0)$ perturbations

choice of bare mixing angles?

Unification paradigm (broad sense): useful to take

$$\lambda' = \lambda_C$$

ideas of quark-lepton complementarity and "Cabibbo haze"

Raidal '04, Minakata+Smirnov, '04, many others... "haze" terminology from Datta, L.E., Ramond '05

Long before measurement, conjectured that $heta_{13}$ is a Cabibbo effect

$$heta_{13} \sim rac{\lambda_C}{\sqrt{2}} \sim \lambda_C \cos heta_{23}^0$$
 Ramond '03,...

(general idea often called "charged lepton corrections") $\;\mathcal{U}_{ ext{MNSP}} \sim \mathcal{U}_{ ext{CKM}}^{\dagger} \mathcal{W}$

good fit to data! but nontrivial to implement...

one reason: now $\sim \lambda_C$ corrections floating around

The Flavor Puzzle in the ν SM

Pre-Reactor Meas. most models: $\theta_{23}^0 = 45^\circ$ $\theta_{13}^0 = 0^\circ$

Choices for "bare" solar angle θ_{12}^0 :

(i) within $\sim \lambda_C^2$ of exp:

tri-bimaximal mixing

"the beautiful matrix with the ugly name"

 $\tan \theta_{12}^0 = \frac{1}{\sqrt{2}} \quad \theta_{12}^0 = 35.26^\circ$

Harrison, Perkins, Scott '02

(100s of papers. Key players include Ma, Chen et al., Altarelli et al.,...)

others, such as golden ratio mixing $_{_{I}}$ $\phi=(1+\sqrt{5})/2$

$$\tan \theta_{12} = \phi^{-1}$$
 $\theta_{12} = 31.72^{\circ}$ or $\cos \theta_{12} = \frac{\phi}{2}$ $\theta_{12} = 36^{\circ}$

Ramond, Kajiyama et al., LE+Stuart (+Ding), Feruglio et al.,...

(ii) within $\sim \lambda_C$ of exp:

Rodejohann et al.,...

Raidal '04, Minakata, Smirnov '04,...)

bimaximal mixing $\tan \theta_{12}^0 = 1$

Approaches:

"top-down": detailed model-building

example: tri-bimaximal mixing

Harrison, Perkins, Scott '02

$$\mathcal{U}_{\mathrm{MNSP}}^{(\mathrm{HPS})} = \left(\begin{array}{ccc} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{array} \right) \qquad \text{(\simClebsch-Gordan coeffs!)}$$
 Meshkov; Zee,...

Readily obtained within many discrete subgroups of $SO(3),\,SU(3)$

$$\mathcal{G}_F = \mathcal{A}_4, \, \mathcal{S}_4, \, \mathcal{T}', \Delta(3n^2), \dots$$

(100s of papers. Key players include Ma, Chen et al., Altarelli et al.,...)

"bottom-up": residual symmetries

$$\mathcal{G}_F \longrightarrow \mathcal{G}_e \times \mathcal{G}_{\nu}$$

Lam '07, '08,...

pure group theory argument: e.g. "minimal" group is S_4 for TBM

Post-Reactor Meas.

"top-down": detailed model-building

- (I) Keep $\theta_{23}^0 = 45^{\circ}$ $\theta_{13}^0 = 0^{\circ}$
 - (i) within $\sim \lambda_C^2$ of exp: need to control corrections TBM (or other mixing scenarios) as leading order framework e.g. Lin '09; Ma '12, '13; Chen et al., King and Stuart '12, '13, many others...
 - (ii) within $\sim \lambda_C$ of exp: resurgence?
- (2) Modify $\theta_{23}^0=45^\circ$ $\theta_{13}^0=0^\circ$ e.g. Hagedorn et al. '12, '13, King and Stuart '12, many others... drop maximal θ_{23} (some hints in data)? implications for GUT connections?

"bottom-up": residual symmetries

large groups, typically trivial CP violation w/Klein group for \mathcal{G}_{ν} Holthausen et al.'12, King et al.'13, Hagedorn et al.'13, many others,...

eV-scale Sterile Neutrinos?

suggested by LSND, MiniBooNE, reactor anomaly, gallium anomaly

$$n_s$$
 sterile neutrinos: $3(n_s+1)$ mixing angles $2n_s+1$ Dirac phases n_s+2 Majorana phases

Global fits:

```
n_s=1 "2+2" strongly disfavored, "3+1" tension w/cosmology I+3 (I at eV scale) better, but no possibility of CP violation in SBL n_s=2 "3+2" tension w/cosmology, "I+3+1" better allows for CPV in SBL experiments Kopp, Maltoni, Schwetz '13 Giunti et al. '13
```

but all fits "bad" — tension b/w app and disapp data

Theoretical Implications: Sterile Neutrinos

If eV-scale sterile ν present, many implications:

Impact on $0\nu\beta\beta$

see e.g. Barry, et al. 'II, Girardi et al. 'I3, ...

Many interesting implications for model-building!

mass hierarchies? GUT connections? mixing pattern and residual symmetries

intriguing hint: $n_s = 1$ $\theta_{14} \sim \theta_{13}$ same origin?

recent example: Merle, Morisi, Winter '14,...

back to the drawing board!!

CP Violation

Reactor angle measured: prospects for measuring CP phases

Model-building: spontaneous v. explicit CP violation generalized CP transformations

CP tmns as automorphisms Grimus, Rebelo '95

for discrete groups: Holthausen et al. '12, Chen et al. '14,...

family symm tmn: $\phi \to \rho(g)\phi$

generalized CP tmn: $\phi \to U \phi^*$ (not $\phi \to \phi^*$)

with consistency condition: $U\rho(g)^*U^{-1}=\rho(g')$

Moral: CP and family symmetries can be inextricably intertwined

Much recent model-building along these lines...

see e.g. Ding et al., Girardi et al., many others...

Conclusions and Outlook

The SM flavor puzzle is a hard but intriguing problem!

The lepton data —— paradigm shift

Bottom Line:

A number of ways to generate masses/mixings, all with advantages/disadvantages. Reactor angle has added new surprises

Still room for many more surprises (CP violation, sterile neutrinos...)

Exciting times! Lots of ideas, lots of room for more

Stay tuned!