Reactor Neutrinos: Recent Results and Next Steps

Karsten M. Heeger Yale University

KITP, October 4, 2014

Reactor Neutrinos: Recent Results and Next Steps

Recent Results (DayaBay)

Oscillation Measurements (active, sterile)

Absolute Reactor Antineutrino Flux Absolute Reactor Spectrum Predictions of the Reactor Spectrum

Future Efforts Short-baseline experiments (e.g. PROSPECT, NuLAT) Mass Hierarchy (e.g. JUNO)

Reactor Antineutrino Flux and Spectrum

Source

ν_e from β-decays of n-rich fission products

Detection

inverse beta decay $\overline{v}_e + p \rightarrow e^+ + n$

Neutrino Oscillations in Reactor Experiments

Absolute Reactor Flux Largest uncertainty in previous measurements

Relative Measurement Removes absolute uncertainties!

Prompt + Delayed Coincidence

$$\overline{v_e} + p \rightarrow e^+ + n$$

prompt event:

positron deposits energy and annihilates (~ns)

delayed event:

neutron thermalizes and captures on Gd

Uncertainty in relative E_d efficiency (0.12%) between detectors is largest systematic.

Daya Bay Reactor Experiment

mineral oil Gd-doped liquid scintillator liquid scintillator γ-catcher

Antineutrino Detector

6 detectors, Dec 2011- Jul 2012 217 days

target mass: 20 ton per AD photosensors: 192 8"-PMTs energy resolution: $(7.5 / \sqrt{E} + 0.9)\%$

now running with 8 detectors

Oscillation Measurements

Energy Spectra

Karsten Heeger, Yale University

Energy Non-Linearity Calibration

- Two major sources of non-linearity
 - scintillator response: modeled with Birks formula and Cherenkov fraction
 - electronics: modeled with MC and single channel FADC measurement
- Combined fit with mono-energetic gamma peaks and ¹²B beta-decay spectrum
- Cross-validated with ²¹⁴Bi, ²⁰⁸Tl beta-decay spectrum, Michel electron spectrum and standalone bench-top Compton scattering measurement.

< 1% uncertainty (correlated among all detectors)

Detector Response

Detection Efficiency

Efficiency		Correlated	Uncorrelated	
		Uncertainty	Uncertainty	
Target protons		0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	
Delayed energy cut	92.7%	0.97%	0.12%	
Prompt energy cut	99.81%	0.10%	0.01%	
Capture time cut	98.70%	0.12%	0.01%	
Gd capture ratio	84.2%	0.95%	0.10%	
Spill-in correction	104.9%	1.50%	0.02%	
Combined	80.6%	2.1%	0.2%	

Detector efficiency is obtained from full detector MC simulation which is tuned with data.

Correlated uncertainties from comparison of MC and data.

621 days of data, n+Gd

- far site expected spectra based on near-site observed spectra

- current analysis is designed to be (almost) independent of any reactor flux models

 $\chi^2/NDF = 134.7/146$

consistent results from nH analysis

Daya Bay Neutrino Oscillation

Neutrino oscillation is energy and baseline dependent

$$P_{i \to j^{+}} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

Daya Bay demonstrates L/E oscillation

A Precision Measurement of θ₁₃

Karsten Heeger, Yale University

13

Daya Bay Sensitivity Projections

Precision Measurements in $sin^22\theta_{13}$ and Δm^2_{ee}

Daya Bay remains statistically limited through 2015

Major systematics:

 θ_{13} : Relative + absolute energy, and relative efficiencies

 $|\Delta m^2_{ee}|$: Relative energy model, relative efficiencies, and backgrounds

Daya Bay can also improve systematics.

Beyond 3 Neutrinos?

Search for Sterile Neutrinos at Daya Bay

sterile neutrinos would appear as additional spectral distortion and overall rate deficit

relative rate+shape comparison

- independent of reactor model, loss of sensitivity at high Δm^2

Probe largely unexplored region at $\Delta m^{2}_{41} < 0.1 \text{ eV}^{2}$

Karsten Heeger, Yale University

expand to 3+1v fit

Probing v Oscillations at Different Baselines

Experimental halls have different baselines which make them sensitive to different mass ranges of sterile neutrinos.

Daya Bav

Daya Bay Sterile v Results

Daya Bay sets new limits in region of $\Delta m^2_{41} < 0.1 \text{ eV}^2$ Daya Bay consistent with standard 3-flavor neutrino model

Current results are limited by statistics. Expect improvement with the full 5-year data set.

Daya Bay Flux Normalization

Measurement of Reactor Neutrino Flux in Every Antineutrino Detector

Measured IBD events (background subtracted) in each detector are normalized to $cm^2/GW/day$ (Y_0) and $cm^2/fission$ (σ_f).

	Uncertainty
statistics	0.2%
$sin^2 2\theta_{13}$	0.2%
reactor	0.9%
detector efficiency	2.1%
combined	2.3%

3-AD (near sites) measurement:

 $Y_0 = 1.553 \times 10^{-18}$

 $\sigma_f = 5.934 \times 10^{-43}$

Data/Prediction (Huber+Mueller) 0.947 ± 0.022

Data/Prediction (ILL+Vogel) 0.992 ± 0.023

Karsten Heeger, Yale University

Daya Bay Flux Normalization

Global comparison of measurement and prediction (Huber+Mueller)

Results based on 3 near site Antineutrino Detectors (ADs)

Effective baseline of Daya Bay: L_{eff} = 573m

• Flux weighted detector-reactor distances of 3 ADs in near sites only.

Effective fission fractions α_k of Daya Bay ²³⁵U: ²³⁸U: ²³⁹Pu: ²⁴¹Pu = 0.586: 0.076: 0.288: 0.050

• Mean fission fractions from 3 ADs in near sites only.

Daya Bay reactor flux measurement consistent with previous results

Daya Bay Spectrum

Comparison of Data and Prediction

• Absolute shape comparison of data and prediction: $\chi^2/ndf = 41.8/21$

Shape Comparison Between Near and Far Detectors

♦ Primarily relative shape comparison among detectors: χ^2 /ndf = 134.7/146

Daya Bay Absolute Spectrum

Significance of Deviations

Recent ab-initio calculation provides a possible explanation involving decays from prominent fission daughter isotopes.

Dwyer, Langford arXiv:1407.1281

Daya Bay Spectrum

Data/prediction shows deviation in 4-6 MeV region. Spectral feature seen by Daya Bay, Double Chooz, and Reno

Excess events around 5 MeV reactor power correlated & time independent, match IBD events Discrepancy $\sim 2\sigma$ over entire energy range, $\sim 4\sigma$ locally

Karsten Heeger, Yale University

KITP, November 4, 2014

Daya Bay Absolute Spectrum

Investigation of Spectral Feature

Not a beta-branch

Not a delta function

No time-dependence

¹²B spectrum does not have local structure at [4,6] MeV

Disfavors instrumental effects (electronics and non-linear energy model distortion)

Predicting the Reactor Spectrum

Spectral Structure of Electron Antineutrinos from Nuclear Reactors

D. A. Dwyer* Lawrence Berkeley National Laboratory, Berkeley, CA, USA

> T. J. Langford[†] Yale University, New Haven, CT, USA (Dated: September 8, 2014)

Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for

Do we understand predictions and models of reactor spectrum?

From Dwyer, Langford arXiv:1407.1281

Predicting the Reactor Spectrum

Direct calculation of ²³⁵U β ⁻ spectrum disagrees with BILL measurement

Uncertainty band for calc. is a lower bound. Only includes tabulated yield+branch uncertainties

From Dwyer, Langford arXiv:1407.1281

Predicting the Reactor Spectrum

Direct calculation appears to agree with preliminary measurements from recent reactor experiments

Experimental data needed to understand spectrum and constrain reactor models

From Dwyer, Langford arXiv:1407.1281

A Reactor Experiment At Short Baselines

Measurement of Reactor Spectrum

HEU core provides static spectrum Measure at short baselines (<10m)

At Short Distance From a Point Source

Precision study of the reactor spectra at short baselines

US operates high-powered research reactors

A Reactor Experiment At Short Baselines

US operates high-powered research reactors

ORNL Visit, PROSPECT Experiment

PROSPECT

A Precision Oscillation and Spectrum Experiment

PROSPECT Physics

A Precision Oscillation and Spectrum Experiment

2 Detectors

Primary Physics Objectives

- 1. Precision measurement of 235 U reactor $\overline{v_e}$ spectrum for physics and safeguards
- 2. Search fort short-baseline oscillation within near detector and between near and far detector

PROSPECT Physics

A Precision Oscillation and Spectrum Experiment

2 Detectors

Primary Physics Objectives

- 1. Precision measurement of 235 U reactor $\overline{v_e}$ spectrum for physics and safeguards
- 2. Search fort short-baseline oscillation within near detector and between near and far detector

PROSPECT Physics

A Precision Oscillation and Spectrum Experiment

2 Detectors

Primary Physics Objectives

- 1. Precision measurement of 235 U reactor $\overline{v_e}$ spectrum for physics and safeguards
- 2. Search fort short-baseline oscillation within near detector and between near and far detector

A Phased Approach

Near Detector - Phase I

2.5 ton active volume of LiLS

 \sim O(150) optical segments, thin wall separation

double-ended readout

1m

A Phased Approach

Near Detector - Phase I

PROSPECT Detector

0.6 0.5 **PSD** Parameter Prompt signal: 1-10 MeV 0.4 positron from inverse beta decay (IBD) 0.3 Delay signal: ~0.5 MeV 0.2 signal from neutron capture on ⁶Li 0.1 0.0 4 Energy (MeV) 1.0 - 5" cell with Cf252 source 0.9 0.8 0.7 IRD-lil Delay PSD 0.6 ast Neutror n-like prompt, n-like delay 0.5 0.3 Accidental Gamma 0.1 L 0.0 0.2 0.6 0.8 0.4 1.0

Prompt PSD

Event Identification

inverse beta decay γ-like prompt, n-like delay

fast neutron

accidental gamma γ -like prompt, γ -like delay

5

6

Vial

Acrylic

Holder

5

2"

PMT

3

Liquid Scintillator Target

- Samples produced by Brookhaven and NIST
- Sent to Yale for testing with radioactive sources
- - ²⁵²Cf and ⁶⁰Co
- Characterize Light Yield and PSD performance in small vials, feed results back to NIST/BNL
- Use larger cells to determine geometric effects on performance

Ultima-Gold doped with NIST ⁶Li microemulsion

PSD enhanced LAB-LS doped with BNL ⁶Li chemistry

Liquid Scintillator Testing

- ~20 liter cells have been constructed
- Mockup of one PROSPECT segment, study PSD and light collection in real-world conditions
- Test various reflector materials (ESR, Mylar, Tyvek, etc) to compare to simulations
- To be deployed at reactor site in late 2014 to test background mitigation techniques

Background Measurements at HFIR

Measurement Techniques Reactor on/off Backgrounds Reactor ON; current shielding configuration Reactor Off 0.1 0.01 REM Neutron **HPGe** Nal 0.001 Localized Backgrounds 0.0001 2000 8000 4000 6000 Gamma Energy (keV)

Several features of the HFIR near location result in localized gamma ray emissions.

Karsten Heeger, Yale University

NuLAT - Neutrino Detection on a Lattice

<u>NuLat:</u> 15^3 = 3375 voxels Cubes 2.25" each Boron Doped PVT scintillator 0.005" air gap between cells 6 *15^2 = 1350 of 2" PMTs

<u>Compact version:</u> Mirrors on 3 faces 675 PMTs Fits in mTC cave at NIST for test

- Positron energy in red cell
- One sees the light from annihilation gammas in neighbor cells

Learned, Vogelaar

Worldwide Short-Baseline Reactor Experiments

Short-baseline reactor experiments Variety of approaches worldwide to address experimental challenges (background rejection)

Project	Gd	6Li	10B	Segm.	Move Det.	2 Det.
Nucifer (FRA)				0		
Poseiden (RU)				1		
Stereo (FRA)				1	•	
Neutrino 4 (RU)				1	•	
Hanaro (KO)				\bigcirc	•	•
DANSS (RU)				\bigcirc	•	
PROSPECT (USA)				\bigcirc	•	•
SoLid (UK)				3		
NuLat (USA)				3	•	

Physics Reach to 3+1 Oscillations

Short and intermediate reactor experiments (e.g. Daya Bay and PROSPECT) probe relevant parameter space

Karsten Heeger, Yale University

Mass Hierarchy

Mass Hierarchy and Reactor Neutrinos

mass hierarchy is contained in the spectrum independent of the unknown CP phase

 Δm^2_{21} is only 3% of $|\Delta m^2_{32}|$

Jiangmen Underground Neutrino Observatory (JUNO)

Jiangmen Underground Neutrino Observatory (JUNO)

groundbreaking in 2015, filling and data taking in 2020

JUNO Physics

Sensitivity to Mass Hierarchy

10^5 events with 5-6 years of data-taking

Precision 3-v Oscillation Physics

	Current	JUNO
Δm	3%	0.6%
Δm	5%	0.6%
sin	6%	0.7%
sin	20%	N/A
sin	10% (~4% in 3 yrs)	15%

with 6 years of data taking assuming 3% energy resolution and 1% energy non-linearity, JUNO MH sensitivity is $\Delta\chi^2$ =9-10 (~3 σ)

adding external T2K/NovA $\Delta m_{\mu\mu}$ of 1.5% constraint, JUNO cam achieve MH sensitivity with $\Delta \chi^2$ =14 (~4 σ)

JUNO - Experimental Challenges

Energy Resolution

- 3%/VE energy resolution
- JUNO preliminary Monte Carlo,
 - based on Daya Bay Monte Carlo
 - JUNO Geometry: 77% PMT coverage
 - High QE Efficiency: 25% -> 35%
 - LS attenuation length (1m-tube measurement @430nm)
 - From: 15m (= absorption 30m + Rayleigh scattering 30m)
 - To: 20m (= absorption 60m + Rayleigh scattering 30m)

Other Challenges

- liquid scintillator
- detector calibration
- PMTs

Reactor neutrinos are a tool for discovery.

Reactors are flavor pure sources of \overline{v}_e

Current reactor experiments (L~1-2km) provide precision data on θ_{13} , and reactor antineutrino flux and spectra. Daya Bay flux measurement is consistent with previous short-baseline measurements (~5% deficit). Positron spectrum appears inconsistent with current predictions in 4-6 MeV region.

Medium-baseline experiments (L~60km) (e.g JUNO, RENO-50) are technically demanding but may offer <1% precision oscillation physics and a window to the mass hierarchy.

Short-baseline (L~10m) experiments (e.g. PROSPECT, NuLAT) offer opportunities for precision studies of reactor spectrum and a definitive search for short-baseline oscillation and sterile neutrinos.

Acknowledgements

Thanks to Daya Bay, JUNO, PROSPECT, and NuLAT collaborators for materials

NuLAT

J. Blackmon, R. Dorrill, M.Duvall, C.Lane, P.Huber, <u>J.G.Learned</u>, V.Li, D.Markov, J.Maricic, R.Milincic, H.P.Mumm, S.Negrashov, M.Rosen, M.L.Pitt, C.Rasco, S.D.Rountree, S.M.Usman, G.Varner, R.B.Vogelaar, T.Wright, Z.Yokley, *Drexel, Johns Hopkins, LSU, NIST Gaithersburg, North Carolina Central, U. Hawaii, Virginia Tech*

JUNO Collaboration

