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Reactor Antineutrino Flux and Spectrum
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Observable !  Spectrum

From Bemporad, Gratta and Vogel

reactor 
spectrum

mean energy of νe: 3.6 MeV

only disappearance 
experiments possible
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inverse beta decay  !
νe + p → e+ + n

Source Detection

observed spectrum

νe from β-decays !
of n-rich fission products

> 99.9% of νe are produced by fissions in 
235U, 238U, 239Pu, 241Pu

pure νe source

cross-
section
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far

Neutrino Oscillations in Reactor Experiments

νe

distance L ~ 1.5 km

νe,x νe,x

Absolute Reactor Flux!
Largest uncertainty in 
previous measurements
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far/near νe target mass distances efficiency oscillation deficit
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νe
νe νe

!
Relative Measurement!
Removes absolute uncertainties!
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Antineutrino Candidates  (Inverse Beta Decay)

Prompt + Delayed Coincidence!
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IBD 
candidates

νe + p → e+ + n

Uncertainty in relative 
Ed efficiency (0.12%) 
between detectors is 
largest systematic.

Prompt Energy Signal Delayed Energy Signal
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prompt event:!
positron deposits energy and annihilates (~ns)!
!
delayed event: !
neutron thermalizes and captures on Gd
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6 detectors, Dec 2011- Jul 2012 
217 days!
!
now running with 8 detectors

target mass: 20 ton per AD!
photosensors:       192 8”-PMTs!
energy resolution:  (7.5 / √E  + 0.9)%

Gd-doped !
liquid scintillator

liquid 
scintillator!
γ-catcher

mineral oil

six 2.9 GWth reactors

Daya Bay Reactor Experiment

Experimental Halls Antineutrino Detector



Oscillation Measurements
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Energy Spectra
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Daya Bay near hall

Ling Ao near hall

Far hall

Prompt positron spectra measured in near, far detector halls

~300,000 inverse beta decay (IBD) 
events in near detectors !!
~42,000 IBD in far detector,!
spectral distortions consistent with 
neutrino oscillations
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Energy Non-Linearity Calibration
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< 1% uncertainty (correlated among all detectors)  
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Daya Bay Detector Response and Efficiency
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Detection Efficiency

Detector Response

Detector efficiency is obtained from full 
detector MC simulation which is tuned 
with data. !
!
Correlated uncertainties from comparison 
of MC and data.
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Latest Daya Bay Results
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consistent results from nH analysis

621 days of data, n+Gd

- far site expected spectra based on near-site 
observed spectra !
- current analysis is designed to be (almost) 
independent of any reactor flux models 

preliminary
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Daya Bay Neutrino Oscillation
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Neutrino oscillation is energy and 
baseline dependent
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Daya Bay demonstrates L/E oscillation
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A Precision Measurement of θ13

2011

2013

2012

2014
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Daya Bay Sensitivity Projections  

sin22θ13 Δm2
ee 

MINOS uncertainty 

Precision Measurements in sin22θ13 and Δm2
ee

Daya Bay remains statistically limited through 2015
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Major systematics:!
θ13: Relative + absolute energy, and relative efficiencies!
|Δm2

ee| : Relative energy model, relative efficiencies, and backgrounds

Daya Bay can also improve systematics. 



Beyond 3 Neutrinos?

Δm2new ~1 eV2



Karsten Heeger, Yale University KITP, November 4, 2014 

Search for Sterile Neutrinos at Daya Bay
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Probe largely unexplored region at Δm241 < 0.1 eV2

sterile neutrinos would appear as additional 
spectral distortion and overall rate deficit

look for additional spectral 
distortions and rate deficit

3ν fit

expand to 3+1ν fitrelative rate+shape comparison$
- independent of reactor model, loss of sensitivity at high Δm2
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Probing ν Oscillations at Different Baselines
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Experimental halls have different baselines which make them sensitive to 
different mass ranges of sterile neutrinos.

Daya Bay collaboration 
PRL 113 (2014) 141802 
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Daya Bay Sterile ν Results
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Daya Bay 95% CLs

Full 6AD

5-year 8AD

Bugey 90% CL (40m/15m)

Sensitivity

Current results are limited by statistics. Expect improvement with the full 5-year data set.

Daya Bay sets new limits in region of  Δm241< 0.1 eV2 !

Daya Bay consistent with standard 3-flavor neutrino model 

Recent Results!
6 detectors

Future Sensitivity!
8 detectors

best fit regions
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Daya Bay Flux Normalization
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Measurement of Reactor Neutrino Flux in Every Antineutrino Detector
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Daya Bay Flux Normalization
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Daya Bay reactor flux measurement consistent with previous results 

Global comparison of measurement and prediction (Huber+Mueller)

Results based on 3 near site Antineutrino Detectors (ADs)
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Daya Bay Spectrum
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Comparison of Data and Prediction Shape Comparison Between 
Near and Far Detectors
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Daya Bay Absolute Spectrum
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Data/prediction shows deviation 
in 4-6 MeV region

Recent ab-initio calculation provides a possible explanation involving decays from 
prominent fission daughter isotopes. Dwyer, Langford!

arXiv:1407.1281

Significance of Deviations

p-value in energy window

X2 contribution in each bin

spectral comparison
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Daya Bay Spectrum

23

Excess events around 5 MeV reactor power correlated & time independent, match IBD events!
Discrepancy ~2σ over entire energy range, ~4σ locally

Data/prediction shows deviation in 4-6 MeV region.!
Spectral feature seen by Daya Bay, Double Chooz, and Reno

41.4/24

0.015
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Daya Bay Absolute Spectrum
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Investigation of Spectral Feature 

12B spectrum does not have local structure at [4,6] MeV!
!
Disfavors instrumental effects !
(electronics and non-linear energy model distortion)  

Not a beta-branch 

Not a delta function

No time-dependence
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Predicting the Reactor Spectrum 
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Do we understand predictions 
and models of reactor 
spectrum?

From Dwyer, Langford 
arXiv:1407.1281 
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Predicting the Reactor Spectrum
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Direct calculation of 235U β- spectrum disagrees with BILL measurement

From Dwyer, Langford 
arXiv:1407.1281 
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Predicting the Reactor Spectrum
Direct calculation appears to agree with preliminary measurements from 
recent reactor experiments

From Dwyer, Langford 
arXiv:1407.1281 

Experimental data needed to understand spectrum and 
constrain reactor models
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A Reactor Experiment At Short Baselines

fuel

fuel element

52.8 cm

74 cm

18 cm

NBSR, NIST ATR

US operates high-powered research reactors

HFIR, ORNL

At Short Distance From a Point Source 

compact core (< 1m)HEU core provides static spectrum!
Measure at short baselines (<10m) 

Precision study of the reactor spectra at short baselines

28

Measurement of Reactor Spectrum
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A Reactor Experiment At Short Baselines

fuel

fuel element

52.8 cm

74 cm

18 cm

NBSR, NIST ATR HFIR, ORNL

compact core (< 1m)HEU core provides static spectrum!
Measure at short baselines (<10m) 

29

commercial core

US operates high-powered research reactors

Precision study of the reactor spectra at short baselines

At Short Distance From a Point Source Measurement of Reactor Spectrum
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PROSPECT

30

Karsten M. Heeger!!
Yale University

Münster, April 10, 2014

A Precision Oscillation and Spectrum Experiment

HFIR, ORNL

phase 2phase 1 phase 1+
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PROSPECT Physics
A Precision Oscillation and Spectrum Experiment
2 Detectors

31

!
!
1. Precision measurement of 235U reactor 
νe spectrum for physics and safeguards

HFIR

HFIR

2. Search fort short-baseline oscillation 
within near detector and between 
near and far detector

Primary Physics Objectives
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PROSPECT Physics
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HFIR

A Precision Oscillation and Spectrum Experiment
2 Detectors

!
!
1. Precision measurement of 235U reactor 
νe spectrum for physics and safeguards

2. Search fort short-baseline oscillation 
within near detector and between 
near and far detector

Primary Physics Objectives

HFIR
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PROSPECT Physics

33

HFIR

HFIR
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 CLσPhase I @ HFIR, 1 year live-time, 3
 CLσPhase II @ HFIR, 3 years live-time, 5

Reactor Anomaly, 95% CL
 Disappearance Exps, 95% CL

e
νAll 

phase 1

best fit reactor 
anomaly

A Precision Oscillation and Spectrum Experiment
2 Detectors

!
!
1. Precision measurement of 235U reactor 
νe spectrum for physics and safeguards

2. Search fort short-baseline oscillation 
within near detector and between 
near and far detector

Primary Physics Objectives

phase 2
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PROSPECT Detector
A Phased Approach
Near Detector - Phase I

34

1m

2.5 ton active volume of LiLS!!
~ O(150) optical segments, thin wall 
separation!!
double-ended readout
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PROSPECT
A Phased Approach
Near Detector - Phase I

Systematic check by moving near detector by ~1/2 
detector length 

35

PROSPECT Detector
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PROSPECT Detector
Event Identification

inverse beta decay!
γ-like prompt, n-like delay!
!
fast neutron!
n-like prompt, n-like delay!
!
accidental gamma!
γ-like prompt, γ-like delay
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PROSPECT - LiLS

37

- Samples produced by Brookhaven and NIST  
- Sent to Yale for testing with radioactive sources 
-      - 252Cf and 60Co 
- Characterize Light Yield and PSD performance in 

small vials, feed results back to NIST/BNL 
- Use larger cells to determine geometric effects on 

performance

* * * PSD benchmark

n,𝛾

2” 
PMT

Vial

Acrylic  
Holder

Liquid Scintillator Target
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PROSPECT - Scintillator Tests
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• ~20 liter cells have been constructed!
• Mockup of one PROSPECT segment, study PSD 

and light collection in real-world conditions!
• Test various reflector materials (ESR, Mylar, 

Tyvek, etc) to compare to simulations!
• To be deployed at reactor site in late 2014 to test 

background mitigation techniques

Cylinder	


Rectangle

Specular	


DiffuseSimulation Simulation

Liquid Scintillator Testing
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Background  Measurements at HFIR
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a b c

Localized Backgrounds 
Several features of the HFIR near location result in localized gamma ray emissions. 
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Measurement Techniques

REM HPGe NaI Neutron
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NuLAT - Neutrino Detection on a Lattice

40

Learned, 
Vogelaar
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Worldwide Short-Baseline Reactor Experiments

41
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Sensitivity, Minimal Absolute Energy Spectrum Information
PROSPECT@HFIR, Phase I, 1 calendar year, 95% CL
PROSPECT@HFIR, Phase I, 3 calendar years, 95% CL
PROSPECT@HFIR, Phase II, 3 calendar years, 95% CL
Reactor Anomaly, 95% CL

 Disappearance Exps, 95% CLeνAll 
Daya Bay, 95% CL

Physics Reach to 3+1 Oscillations!
Short and intermediate reactor 
experiments (e.g. Daya Bay and 
PROSPECT) probe relevant parameter 
space 

Short-baseline reactor experiments!
Variety of approaches worldwide!
to address experimental challenges!
(background rejection)

Daya Bay

PROSPECT 
phase 1

PROSPECT 
phase 2



Mass Hierarchy



Karsten Heeger, Yale University KITP, November 4, 2014 

Mass Hierarchy and Reactor Neutrinos

Precision Measurement at ~ 58km

Δm221 is only 3% of |Δm232| mass hierarchy is contained in the spectrum!
independent of the unknown CP phase

arXiv:1307.5487
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Jiangmen Underground Neutrino Observatory (JUNO)
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Jiangmen Underground Neutrino Observatory (JUNO)
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groundbreaking in 2015, filling and data taking in 2020



Karsten Heeger, Yale University KITP, November 4, 2014 

JUNO Physics
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Current JUNO

Δm 3% 0.6%

Δm 5% 0.6%

sin 6% 0.7%

sin 20% N/A

sin 10% !
(~4% in 3 yrs)

15%

Precision 3-v Oscillation PhysicsSensitivity to Mass Hierarchy

with 6 years of data taking assuming 3% energy 
resolution and 1% energy non-linearity, JUNO MH 
sensitivity is Δχ2=9-10 (~3σ)!
!
adding external T2K/NovA Δmμμ of 1.5% constraint, 
JUNO cam achieve MH sensitivity with Δχ2=14 
(~4σ)
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JUNO - Experimental Challenges

47

Energy Resolution

Other Challenges!
- liquid scintillator!
- detector calibration!
- PMTs
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Summary & Outlook 

Short-baseline (L~10m) experiments (e.g. PROSPECT, NuLAT) offer opportunities 
for precision studies of reactor spectrum and a definitive search for short-
baseline oscillation and sterile neutrinos.

Current reactor experiments (L~1-2km) provide precision data on θ13, and reactor 
antineutrino flux and spectra. Daya Bay flux measurement is consistent with 
previous short-baseline measurements (~5% deficit). Positron spectrum appears 
inconsistent with current predictions in 4-6 MeV region.

Reactor neutrinos are a tool for discovery. $
Reactors are flavor pure sources of νe

Medium-baseline experiments (L~60km) (e.g JUNO, RENO-50) are technically 
demanding but may offer <1% precision oscillation physics and a window to 
the mass hierarchy.
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